氧化还原引发剂低温引发DPUA_St_BA超浓乳液共聚合的研究

合集下载

耐温抗盐型丙烯酰胺类聚合物的研究进展

耐温抗盐型丙烯酰胺类聚合物的研究进展

耐温抗盐型丙烯酰胺类聚合物的研究进展刘阳阳;黄文章;吴柯颖;牟亚晨【摘要】丙烯酰胺类共聚物的耐温抗盐性是近几年研究的热点之一。

主要介绍了其耐温抗盐单体的性质、聚合方法以及引发剂的选择。

通过调研国内外耐温抗盐聚合物研究现状认为,添加适量的功能单体是提高聚丙烯酰胺耐温抗盐性的最有效途径。

选取合适的聚合方法和引发剂,对共聚物相对分子质量和性能影响明显。

%Heat‐resistant and salt‐tolerant acrylamide copolymer is one of the hotspots in the cur‐rent research ,which is formed of acrylamide as main monomer ,added the monomer with properties of heat‐resistant and salt‐tolerant .This article introduces the heat‐resistant and salt‐tolerance mecha‐nism of function monomer ,polymerization met hod ,and the choice of initiator .Through the recent research status of heat‐resistant and salt‐tolerant acrylamide based copolymers at home and abroad , adding adequate function monomer is the most effective way to improve the heat‐resistant and salt‐tol‐erance of polyacrylamide .And selecting the appropriate polymerization method and initiator could ob‐versly influence the molecular weight and performance of copolymer .【期刊名称】《石油与天然气化工》【年(卷),期】2015(000)003【总页数】5页(P99-103)【关键词】丙烯酰胺;单体;耐温抗盐;聚合方法;引发剂【作者】刘阳阳;黄文章;吴柯颖;牟亚晨【作者单位】西南石油大学化学化工学院;重庆科技学院化学化工学院;西南石油大学化学化工学院;西南石油大学化学化工学院【正文语种】中文【中图分类】TE254+4聚丙烯酰胺(PAM)是一种水溶性高分子聚合物,侧链上所含的酰胺基团使其具有特殊的理化性质,例如增稠性、增黏性、絮凝性、降失水性、降摩阻性等[1],在石油生产中被广泛用做驱油剂、压裂液添加剂、堵水剂、絮凝剂、水处理剂等。

氧化还原引发丙烯酸丁酯和丙烯腈乳液共聚合的研究_李建宗

氧化还原引发丙烯酸丁酯和丙烯腈乳液共聚合的研究_李建宗
:
分 频率 3 5 H
,
透 射 电 子 显 微镜
,
,
一 仪 器 为 J E M ! 0 X 电 子 显 微镜

乳 液 胶粒 和 尺 寸 分 析 的 试
:
样 是 由 原 乳 液稀 释 若 干 倍

S N一 0 1 A 型
:
然 后 浸 涂 在 喷碳 的 铜 网 上 制 成
,
凝 胶渗透 色 谱 仪
, ,
天 津 仪器 厂 生
,
0 ℃下 测 定 3
由上 表 可 以 看 出
,
特 性粘 度 随
N
a :
5 20
,

·
S
H O 浓 度的升 高而 升 高
N H
`
:
,
但变化 不 大
,
而 随
(NH
`
)
.
:
S O
:

浓 度 和 温 度 升 高 而 显 著 降低
但都大于 (
)
2
5 O
:

单组 引 发 所 得 聚 合 物 的 特
性粘 度
.
5
〔 2 〕 一 t = 27℃

4
共聚 物 的 G P C 曲线
实 线为氧化 还 原 引 发
虚 线 为 氧化剂单 组分 引发
〔 1 〕 一 t 二 17℃ 〔 3 〕 一 t 二 3 7℃
〔4 〕 一 t = 4 7 ℃
由图 看 出
(NH
6
`
,
氧化 还原 引 发 体 系
,
不 论其 配 比 如 何
,
,
,
m
o
l /1

MMA-St-BA-AA共聚乳液的制备工艺条件研究

MMA-St-BA-AA共聚乳液的制备工艺条件研究

MMA-St-BA-AA共聚乳液的制备工艺条件研究尚成新;秦鹰;苏禹铭【摘要】以甲基丙烯酸甲酯(MMA)、苯乙烯(St)、丙烯酸丁酯(BA)为主单体,丙烯酸(AA)为功能单体,SDS/OP-10为复合乳化剂,过硫酸铵为引发剂,采用单体预乳化、种子乳液聚合的方法制备丙烯酸酯乳液.系统地研究了乳化剂的用量及配比、引发剂用量、单体用量及配比对乳液聚合过程和乳液性能的影响.结果表明,在复合乳化剂用量为2%~4%,SDS/OP-10配比为1∶2~1∶1,引发剂用量为0.2%~0.4%,AA用量为1%~2%,主单体总量为40%,软硬单体质量比为1∶1时,聚合反应的稳定性及乳液性能良好.【期刊名称】《应用化工》【年(卷),期】2016(045)010【总页数】4页(P1930-1933)【关键词】丙烯酸酯乳液;种子乳液聚合;甲基丙烯酸甲酯;苯乙烯;丙烯酸丁酯【作者】尚成新;秦鹰;苏禹铭【作者单位】山西大学化学化工学院,山西太原030006;山西大学化学化工学院,山西太原030006;山西大学化学化工学院,山西太原030006【正文语种】中文【中图分类】TQ320.6为了降低涂料中挥发性有机化合物(VOC)造成的污染,低VOC水性涂料已经成为涂料工业的主要发展方向之一[1]。

在水性涂料中,丙烯酸酯乳液涂料凭借其良好的耐候性、耐擦洗性、耐水性和低廉的价格,占据了大部分的市场[2-3],广泛应用于内墙涂料、外墙涂料、水性防锈涂料、金属表面涂料、粘合剂、纸加工处理剂、木器涂饰剂等领域[4-6]。

目前,丙烯酸酯乳液的生产工艺主要有间歇法、连续法、半连续法3种,其中半连续法的种子乳液聚合应用最多。

种子乳液聚合时既可以将单体直接滴加到种子乳液中,又可以采用将单体预先乳化的方法[7-8]。

研究表明,采用种子乳液聚合、预乳化的方法,可使乳液的粒径均匀,提高乳液聚合的稳定性[9-12]。

传统的丙烯酸酯乳液多采用苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸等单体,组成三元共聚体系,如苯丙乳液、纯丙乳液。

氧化还原引发下的苯丙乳液聚合

氧化还原引发下的苯丙乳液聚合

氧化还原引发下的苯丙乳液聚合孔翼烨;邵国强【摘要】以苯乙烯、丙烯酸丁酯为混合单体,十二烷基硫酸钠和壬基酚聚氧乙烯醚为复合乳化剂,过硫酸钾和亚硫酸氢钠为氧化还原引发体系,进行乳液聚合制备苯乙烯-丙烯酸丁酯水性共聚乳液.用粒度测定、红外光谱和热分析等仪器对聚合乳液进行了表征.结果表明引入氧化还原体系合成苯丙乳液能在较低温度下引发进行,乳液聚合产物的性能较好.%Styrene acrylic copolymer emulsion was prepared using styrene,butyl acrylate as a mixture of monomer,sodium dodecyl sulfate and nonylphenol ethoxylates as emulsifier,and potassium persulfate and sodium bisulfite for the oxidation reduction system.The emul【期刊名称】《浙江外国语学院学报》【年(卷),期】2011(000)003【总页数】4页(P86-88,93)【关键词】乳液聚合;氧化还原;苯乙烯;丙烯酸丁酯【作者】孔翼烨;邵国强【作者单位】浙江外国语学院理工学院,浙江杭州310012;浙江外国语学院理工学院,浙江杭州310012【正文语种】中文【中图分类】TQ316.31 引言乳液聚合以其反应速度快、反应条件温和、所得胶乳可直接使用和以水作溶剂,对保护环境十分有利等独特优点,越来越引起学术界和工业界的重视[1-4].聚合乳液已广泛用作涂料、粘合剂以及经破乳制取橡胶或塑料等,也可作为获得性能互补的复合材料的基体[5].然而乳液聚合也是一种受多种因素影响的复杂聚合,其引发剂的选用对乳液聚合的很多方面都有影响,利用氧化还原引发乳液聚合,具有低温、聚合过程稳定且分子量高等优点[6-8].在苯丙乳液制备过程中,本实验引入过硫酸钾-亚硫酸氢钠氧化还原引发体系进行单体聚合,并对聚合乳液与仅用过硫酸钾热引发制得的乳液进行了粒度测定、红外光谱和热分析等仪器的对比表征.2 实验部分2.1 仪器与试剂真空干燥箱,旋转黏度计,ZetasizerNano ZS90粒度测定仪,Nicolet iSl0型傅里叶变换红外光谱仪,SDT-Q600同步热分析仪.十二烷基硫酸钠(SDS)(分析纯,无锡市晶科化工有限公司);壬基酚聚氧乙烯醚(NP-10)(南京古田化工有限公司);亚硫酸氢钠(分析纯,上海凌峰化学试剂有限公司);过硫酸钾(爱建德固赛引发剂有限公司,重结晶).单体(苯乙烯,丙烯酸丁酯)提纯:用4%氢氧化钠溶液洗涤3次,再用蒸馏水洗涤至中性,低温下(冰箱内)用无水硫酸镁干燥24h,在通风厨内60℃下减压蒸馏.2.2 合成工艺苯乙烯和丙烯酸丁酯的质量配比为1∶1,乳化剂(SDS∶NP-10=1∶2)用量为单体量的3%,引发剂用量为单体量的0.43%,其中氧化剂过硫酸钾与还原剂亚硫酸氢钠的质量配比为8∶1,缓冲剂碳酸氢钠用量为单体量的0.5%,功能单体丙烯酸用量为单体量的1%.加料合成工艺如下:预乳化阶段将一定量的去离子水、乳化剂和缓冲剂加入到250mL三口瓶中,50℃温度下开启搅拌,使其全部溶解,在搅拌下将混合单体及功能单体加入三口瓶中,继续搅拌30min形成稳定的预乳液.聚合反应阶段在装有搅拌器、温度计、回流冷凝管的250mL三口瓶中,加入一定量的上述预乳液,通入高纯氮气,搅拌下升温至67℃,先后缓慢滴加新配制的过硫酸钾溶液和亚硫酸氢钠溶液,待反应液出现青光后,开始滴加剩余预乳液,预乳液加完后保温且反应3h时间,降温出料.2.3 测试及表征外观采用目测的方法进行;黏度采用旋转黏度计进行测定(测试温度为25℃,转速为60r/min);参照国家标准(GB/T 2793-1995)测定固含量;乳液聚合产物从100目的纱布中过滤,用干燥的凝聚物所占单体总质量的百分数来表示凝胶率;将乳液稀释一定倍数后测定粒径及粒径分布;乳液均匀涂在干燥洁净的载玻片上,真空干燥后刮得膜片,红外光谱仪表征聚合物分子结构,热分析从150℃等速升温至600℃,速率10℃/min,流动介质为空气,流速为100mL/min.3 结果与讨论3.1 水性苯丙乳液一般性能不同体系引发的水性苯丙乳液一般性能见表1.表1 乳液的性能测试项目A样品(过硫酸钾热引发)[9]B样品(过硫酸钾-亚硫酸氢钠引发)引发温度/℃8067乳液外观有蓝光乳白色液体有蓝光乳白色液体乳液黏度/(mPa·s)4.34.1凝胶率/%1.10.7固含量/%51.241.0涂膜性能平滑、透明平滑、透明实验引入过硫酸钾-亚硫酸氢钠氧化还原体系引发乳液聚合,引发温度与在相同条件下仅用过硫酸钾热引发的相比有了明显下降.这是由于加入合适量的还原剂亚硫酸氢钠,使得由过硫酸钾生成自由基的活化能降低,可在较低温度下产生活性自由基,从而引发聚合反应;乳液的固含量略有下降,是由于在相同反应时间里后续较低的反应温度影响了单体转化率.3.2 乳液粒子的大小及分布粒度测定仪测定的乳液粒子大小及粒径分布见图1.图1 苯丙乳液粒径分布由图1可见:两乳液的粒子粒径都呈单分散性分布,粒子平均粒径都小于10nm.A样品曲线的右移,表明了由于反应温度较高而导致乳液粒子大小和粒子粒径分布增大.3.3 乳液红外光谱分析图2是水性苯丙乳液经成膜后的红外光谱图.图2 苯丙乳液薄膜的红外光谱在图2中,2957cm-1、2929cm-1是-CH3和-CH2-的伸缩振动吸收峰,1729cm-1是丙烯酸酯基中的CO的伸缩振动吸收峰,1453cm-1是苯乙烯苯环的骨架振动吸收峰,1161cm-1是丙烯酸酯基中C-O-C的对称伸缩振动吸收峰,758cm-1可以判断出结构中有单取代苯环存在,700cm-1是苯环中的C-H面外弯曲的特征峰.1600~1680cm-1范围是烯键的特征吸收峰区域.由图2可知,A、B两样品的红外光谱图基本相同;谱图出峰情况基本表明:两样品乳液中苯乙烯、丙烯酸丁酯单体及加入聚合体系的功能单体丙烯酸都参与了共聚反应.3.4 乳液的DSC分析图3是A、B两样品的差示热量扫描曲线.从图中可以对比发现,B样品聚合物的分解温度和分解残留物完全燃烧时的吸热峰温度都比A样品的要高,表明氧化还原引发制得的聚合物的热氧稳定性较大,反映了氧化还原引发的聚合物的交联度或结晶度较高.图3 苯丙乳液的DSC曲线4 结论以苯乙烯、丙烯酸丁酯为主要单体,在乳液聚合中引入过硫酸钾和亚硫酸氢钠的氧化还原引发体系,得到了性能较好的水性纳米级苯丙乳液.与过硫酸钾热引发相比,乳液聚合的氧化还原引发温度明显降低,聚合物的粒子平均粒径更小、粒径分布更窄,聚合物的热氧稳定性更大.参考文献:[1]de Arbina L L,Barandiaran M J,Gugliotta L M,et al.Kinetics of the emulsioncopoly merization of styrene and butylactylate[J].Polymer,1997,38(1):143-148.[2]Zoco N,de ArbinaL L,Leiza J R,et a1.Molecular weight development in emulsion copoly merization of n-butyl acrylate and styrene[J].Journal of Applied Polymer Science,2003,87(12):1918-1926.[3]Gu S J,Wang Y P,Zhang F A.Study on acrylic emulsion with core-shell structure containing high hydroxyl content[J].Journal of Macromolecular Science:Pure and Applied Chemistry,2005,42(6):771-781.[4]赵晨阳,李效玉.高固含量乳液(St/BA/AA)的合成、乳胶粒径及其分布[J].高分子材料科学与工程,2005(2):118-124.[5]黄增芳,谢辉,马军现,等.丙烯酸酯乳液聚合及其在胶粘剂中的应用研究进展[J].中国胶粘剂,2010,19(1):53-57.[6]万超瑛.水溶性氧化-还原引发体系在乳液聚合中的应用[J].化学与粘合,2001(5):219-221.[7]张洪涛,操建华,王岸林.氧化-还原引发剂引发苯乙烯超浓乳液聚合的研究[J].高等学校化学学报,2003,24(4):739-744.[8]王雪荣,焦剑,曲忠先,等.氧化还原引发聚合丙烯酸酯乳液及胶粘剂的研究[J].中国胶粘剂,2006,15(2):1-4.[9]邵国强.水性苯丙纳米乳液的制备与表征[J].化工新型材料,2011,39(4):111-113.。

氧化-还原低温引发苯乙烯/丙烯酸丁酯细乳液聚合粒度分布和成核

氧化-还原低温引发苯乙烯/丙烯酸丁酯细乳液聚合粒度分布和成核

氧化- 还原低温引发苯乙烯/丙烯酸丁酯细乳液聚合粒度分布和成核机理的研究核心提示:乳液聚合粒度分布和成核机理的研究张洪涛谭必恩胡芳李建宗(湖北大学化学与材料学院, 武汉430062) 摘要用氧化还原引发剂(N H 4) 2S2O 8?N aH SO 3 研究了苯乙烯(St) ? 丙烯酸丁酯(BA ) 低温下的细乳液共聚合,细乳液单体液滴在亚微米级(100〜400…乳液聚合粒度分布和成核机理的研究张洪涛谭必恩胡芳李建宗( 湖北大学化学与材料学院, 武汉430062) 摘要用氧化还原引发剂(N H 4) 2S2O 8?N aH SO 3 研究了苯乙烯(St) ? 丙烯酸丁酯(BA ) 低温下的细乳液共聚合, 细乳液单体液滴在亚微米级(100 〜400 nm ). 测定了聚合过程中粒子大小及分布的变化, 发现细乳液聚合随引发剂、乳化剂和共乳化剂浓度的增加, 乳胶粒子尺寸变小, 分布变宽, 并且比相同条件下传统乳液聚合的粒子大. 计算了聚合过程中粒子数变化规律及乳化剂覆盖率, 讨论了细乳液与传统乳液中引发剂、乳化剂对反应过程的影响及成核机理的差异. 关键词细乳液聚合; 粒度分布; 成核机理; 氧化还原引发剂基金项目: 国家自然科学基金(批准号: 04010) 资助. 联系人简介: 张洪涛(1942 年出生) , 男, 研究员, 从事乳液聚合研究. 细乳液聚合是一种崭新的乳液聚合方法[1 ] , 其乳化体系、乳化工艺、引发聚合机理、动力学行为、乳胶性能等都不同于传统乳液聚合[2 ] , 也不同于加入大量表面活性剂和大量短链脂肪醇的微乳液聚合[3, 4 ]. 细乳液聚合与传统乳液聚合的差别是在体系中引进了共乳化剂, 并采用了微乳化工艺, 这样使原来较大的单体液滴被分散成更小的单体亚微液滴. 单体亚微液滴的直径大约在100〜400 nm 之间, 大于单体增溶胶束( 直径约为40〜50 nm ) , 而小于传统乳液的单体液滴( 直径为> 10 000 nm ) , 其单位体积液滴的总表面积接近于单体增溶胶束的总表面积. 以胶束形式存在的乳化剂将转移到单体亚微液滴表面上, 胶束基本消失, 因此单体的亚微液滴就成为引发聚合和粒子成核的主要场所. 目前, 国外对细乳液的研究仅限于单一的过氧化物引发剂, 在较高温度下引发聚合[5 ] , 细乳液稳定性差, 单体液滴容易粗化, 粒子成核机理的研究受到影响. 我们曾经研究了细乳液的制备、稳定性及聚合动力学特征[6 ] , 为了进一步证明细乳液聚合中, 乳胶粒子成核机理是单体亚微液滴,本文采用(N H 4) 2S2O 8?N aH SO 3 氧化2还原引发体系, 在低温下(25〜45 C)进行了细乳液共聚合.用PCS (Pho ton大小及分布的变化规律, 为乳胶粒子成核机理的研究提供了可靠的实验依据. 1 实验部分1. 1 原料苯乙烯(St) 和丙烯酸丁酯(BA ) 为化学纯, 经减压蒸馏处理, 在冰箱中保存备用. 其余试剂均为分析纯. 过硫酸铵(A PS) 和过氧化苯甲酰(BPO ) 均为分析纯, 经重结晶处理, 水经去离子处理. 1. 2 细乳液的制备及聚合在装有温度计和冷凝管的250 mL四口烧瓶中,加入H 20及乳化剂.于50 C 下, 高速搅拌15 m in. 然后将混合单体St?BA 和共乳化剂的溶液加入到以上预乳化液中, 用超声波仪[ 工作频率(26±3)反应6〜8 h, 跟踪取样测定. V ol. 21 高等学校化学学报N o. 1 2 0 0 0年1 月CHEM ICAL JOU RNAL O F CH IN ESE UN IV ERS IT IES 156 〜159 转载1. 3 表征1. 3. 1 水相中残留乳化剂浓度的测定取乳液3010 mL 于塑料离心试管中, 高速离心40 m in (20 00 r? m in). 取下层水相约1010 mL , 放入三角烧瓶中, 加入50 mL 蒸馏水稀释, 加15 mL 亚甲基蓝(1% ) 和硫酸溶液(0105% ) 混合指示剂, 15 mL CHC l3, 用浓度为015 mol?L 的十六烷基溴化铵水溶液滴到粒度分布仪( 英国)测定. Z 均粒径(dZ ) ; 该仪器同时给出多分散性( 用Poly 表示) , Po ly 值越接近0, 说明分布越窄.由表1 可见, 随着温度升高, 粒子变大, 这是由于温度高, 细乳液稳定性差, 容易引起粒子聚并; 又发现随引发剂浓度的增加, 粒子尺寸减小, 从单体液滴成核机理解释, 是因为引发剂浓度较高时, 诱导期短, 反应速率快, 相对在较短的时间内有大量的单体液滴被引发成核. 引发剂浓度低引发期较长, 反应缓慢, 只有部分单体先引发成核, 剩下的部分单体在反应中将充当单体仓库, 向聚合物粒子输送单体, 使乳胶粒径增加. 引发剂越少诱导期越长, 粒子分布越宽; 另外, 随乳化剂浓度增加, 胶乳粒子变小, 这是由于乳化剂浓度越高, 单体液滴越小, 体系中单体液滴的数目增加; 在引发剂浓度一定时, 单体液滴数越多, 同时引发的几率越小, 粒子变小, 粒子分布变宽; 随共乳化剂比例的增加, 乳胶粒子尺寸减小. 同时测定了传统乳液聚合的有关数据, 单体液滴的尺寸为711X 104 nm ,转化率为20%时粒子尺寸为5218 nm ,随着聚合的继续进行, 粒子逐渐增大. 细乳液和传统乳液聚合的乳胶粒子电镜照片见图1,发现细乳液的粒子比传统的乳液粒子直径大, 且分布宽. (A ) M iniem ulsion; (B) Convention em ulsion. 从表2 可见, 随反应时间增加, 粒子尺寸先减小, 而后增大. 反应开始前, 单体液滴粒直径为17815小. 当转化率从2013% 增大到3817% 时, 部分单体液滴向聚合物粒子输送单体, 或与成核粒子碰撞, 使粒子变大, 但增长的幅度不大. 转化率从3817% 增大到7313% 时, 粒径变化不大. 在反应后期, 当转化率大于80% 时, 体系粘度增加, 粒子凝聚, 粒径增大的幅度较大, 粒子分布随反应的进行逐渐变窄, ( SDS ) = 0?1; • M iniem ulsion: m (HDE ) ?m (SDS) = 4?1. 从图2 可知, 细乳液聚合过程中, 粒子数不断增加, 说明不断有新的粒子成核, 反应后期, 由于粒子凝聚, 粒子数略有下降. 较高引发剂浓度(018% ) 下, 发现粒子数也随反应进行持续增加, 说明在细乳液聚合过程中, 始终只有部分单体引发成核. 传统乳液聚合中粒子数目增加到一定值便基本保持一定. 因传统乳液聚合引发快, 大量增溶胶束几乎同时引发, 当只剩下单体液滴向聚合物粒子输送单体时, 体系的粒子数一定. 从图2 还可看出, 传统乳液聚合过程中, 当转化率大于60% 时, 粒子数不再增加.根据经典乳液聚合理论, 此时体系的单体液滴已消失, 粒子数恒定, 反应速率最大(0133X10- 3 mol?L - 1? 液滴消失, 即成核期结束. 细乳液聚合过程的反应速率最大值(0112X10- 3 mol?L - 1?S- 1) 出现在转化率为25%〜30% 处, 随转化率增加, 反应速率下降, 体系中的粒子数仍在持续增长, 说明成核过程仍在进行. 从以上分析, 可知, 细乳液聚合与传统乳液聚合确实遵循着不同的成核机理. 粒度分布直接影响着乳液的微观性质及反应特征. 本文计算了粒子数与引发剂浓度、乳化剂浓度的关系, 并将细乳液与传统乳液聚合情况进行比较•细乳液:N * [ I]0. 76, N * [S ]0. 75 传统乳液:N *[I]0. 45, N * [S ]1.40 弓I发剂浓度对细乳液聚合的粒子数的影响较大,乳化剂浓度对传统乳液聚合粒子数的影响较大. 因为传统乳液聚合以胶束成核为主乳化剂的浓度决定胶束的个数, 也决定着最终粒子数目. 细乳液聚合以单体液滴成核为主, 引发剂浓度决定着自由基浓度及引发速率的大小, 对最终粒子数目影响较大. 由此可知, 体系中乳化剂的存在形式对聚合机理至关重要. 对乳化剂在乳胶粒子上的覆盖率作了进一步计算, 结果见表3. 从表3 可见, 乳化剂在乳胶粒子上的覆盖率, 细乳液的要大于传统乳液, 而且随着乳化剂浓度的增大而增大, 因此细乳液的稳定性好. 为更直观地论证细乳液的单体液滴成核机理, 设计了一组对比实验. 先用传统乳液聚合方法制备一批种子乳液, 测得粒子直径为148 nm. 将种子乳液分成等量的两份, 向一份中滴加传统乳液; 向另一份中滴加细乳液, 测定了聚合后的粒子大小及分布. 滴加传统乳液的粒子随着反应的进行粒子不断增大, 且成单峰分布; 在滴加细乳液的体系中, 滴加前细乳液的液滴分布呈双峰, 大部分是9813 nm , 少量是16719 nm. 滴加1 h 后取样测定, 粒子分布只有一个明显的单峰, 在13417 nm 处. 因为种子粒径是14811 nm , 所以这部分13417 nm 大小的粒子是由滴入的细乳液液滴成核生成的. 反应5 h 后的粒度分布为明显的双峰, 分别在18219 nm , 27716 nm 处, 说明部分细乳液单体在原有种子上生长聚合了, 生成的粒子更大. 有部分比种子粒子小的粒子生成, 说明滴入的细乳液中单体液滴自身引发成核,生成小粒子. 通过对比, 可见细乳液是以单体液滴成核为主的乳液聚合. 参考文献1 U gelstad J. , E l2A asser M. S. , V anderhoff J. W. . Po lym. L etter. [J ], 1973, 11: 503?507 2 ZHAN G Hong2Tao (张洪涛). Po lymer Bulletin ( 高分子通报) [J ], 1991, (1) : 35?40 3 U gelstad J. . Ger. O ffen 2 707 070[P ], 1977 4 Choi Y. T. . Ph. D. Dissertation[D ], L eh igh U niversity, 1986 5 M asa J. A. ,Dearbina L. L. , A sua J. M. . J. App l. Po lym. Sci. [J ], 1993, 49: 81?90 6 Huang He, Zhang Hongtao, L i J ianzong et al. . J. App l.Po lym. Sci. [J ], 1998, 68: 2 029?2 039 (T he f acu lty of Chem istry and M aterials, W uhan 430062, Ch ina) (N H 4 ) 2S2O 8?N aH SO 3 at low er temperature and con trasted it to conven tion em ulsion po lym erization. (Ed. : Q , L )。

丁苯橡胶装置低温乳液聚合反应影响因素及控制方法

丁苯橡胶装置低温乳液聚合反应影响因素及控制方法

3111 聚合反应简介丁苯橡胶装置采用低温乳液聚合法,世界上约90%的乳聚丁苯橡胶是用此法生产。

该方法引发剂、活化剂使用效率高、聚合反应温度低、凝胶含量少,能生产出大分子量、机械性能较好的橡胶。

由于聚合反应工艺复杂、使用助剂种类多,一旦出现波动对橡胶产品质量以及后续单元的正常生产有较大影响,因此提前控制和调整聚合反应相当重要。

2 聚合反应影响因素聚合反应主要是通过分析最终胶乳的总固物含量(TSC)和脱气胶乳的门尼(MV)以及结合苯乙烯来进行反应控制和调整的。

胶乳结合苯乙烯一般控制在22.5~24.5之间。

影响聚合反应的因素如下:(1)单体配比。

聚合反应丁二烯与苯乙烯的比例一般是72/28,单体比例变化影响聚合反应加成,从而改变胶乳的TSC以及结合苯乙烯含量。

(2)单体纯度。

丁二烯和苯乙烯的纯度对聚合反应有较大影响,要尤其要注意丁二烯以及苯乙烯在单体储存单元的掺混质量,以及丁二烯和苯乙烯在聚合单元的进料带水情况,如果单体纯度低或者进料带水都会造成反应低的后果。

(3)各助剂质量和加料水平。

歧化松香酸钾皂和脂肪酸皂质量直接影响乳化剂的质量好坏,而乳化剂为聚合反应提供场所,因此其TSC、pH值、除氧剂量对反应有很大影响。

另外氧化还原体系(氧化剂和活化剂)帮助反应引发聚合,其质量和加料水平直接影响反应高低从而影响胶乳TSC和门尼是否合格。

调节剂质量及加料水平直接影响胶乳的相对分子质量(门尼)。

(4)聚合反应温度和压力。

控制好聚合釜温度和压力是重中之重。

正常生产时,首釜温度控制在7℃其他几釜控制在5.5℃,聚合系统压力一般控制在0.18-0.22Mpa之间,当超过0.6Mpa时聚合反应联锁停止进料。

(5)聚合反应时间。

聚合反应的反应时间长短影响聚合转化率、TSC、门尼,通常通过切釜改变停留时间来调节反应时间,或者改变置换塔终止剂加料点改变反应时间。

(6)丁二烯中TBC含量、乳化剂中除氧剂含量、氨系统漏氨、密封油系统漏油。

氧化-还原引发剂在乳液聚合方面的应用

氧化-还原引发剂在乳液聚合方面的应用

The application of redox initiators in emulsion polymerization乳液聚合是一种常用的聚合方法,它可以用来制备具有特殊性能的高分子材料。

氧化-还原引发剂是乳液聚合中使用的重要化学试剂,它可以促进高分子材料的形成和性能优化。

氧化-还原引发剂通常与其他有机或无机试剂相结合,形成一个复杂体系,并提供了一种快速、低温、低应力和高效的方法来生产出具有特定性能的高分子材料。

此外,氧化-还原引发剂在乳液聚合中也可以作为表面活性剂和协助因子使用。

Emulsion polymerization is a commonly used polymerization method which can be used to prepare polymeric materials with special properties. Redox initiators are important chemical reagents used in emulsion polymerization, which can promote the formation and performance optimization of polymeric materials. Redox initiators are usually combined with other organic or inorganic reagents to form a complex system, providing a fast, low temperature, low stress and efficient method to produce polymeric materials with specific properties. In addition, redox initiators can also be used as surfactants and assistant factors in emulsion polymerization.。

丙烯酰胺氧化-还原引发体系反相乳液聚合

丙烯酰胺氧化-还原引发体系反相乳液聚合

丙烯酰胺氧化 -还原引发体系反相乳液聚合周诗彪1,2,罗鸿1,张维庆1,郑庆云1,肖安国1,姚强2【摘要】摘要∶以过硫酸钾和亚硫酸钠为引发剂,Span-80和 OP-10为乳化剂,进行了丙烯酰胺的反相乳液聚合研究;对合成产物进行了FT-IR、线粒径分布测试和表征;探讨了反应温度、反应时间、引发剂用量、乳化剂用量以及油相与水相体积比对转化率的影响。

研究结果表明,反应温度30℃,反应时间4 h,油水体积比4∶1,引发剂[n(过硫酸钾)∶n(亚硫酸钠)=1∶1]用量为单体质量的 0.5%(质量分数),乳化剂[m(OP-10)∶m(Span-80)=1∶1]用量为单体质量的8.0%(质量分数),在此工艺条件下,单体转化率达 98.8%,乳胶体积平均粒径112μm。

【期刊名称】涂料工业【年(卷),期】2010(040)005【总页数】3【关键词】关键词: 丙烯酰胺;聚丙烯酰胺;反相乳液聚合;氧化 -还原体系0 引言聚丙烯酰胺(polyacrylamide,简称PAM)及其衍生物是常用以改善工业生产和工业过程的高分子化合物,20世纪50年代实现工业化生产。

多年来一直作为一类重要絮凝剂、增稠剂、减阻剂、泥浆处理剂、表面活性剂、土壤改良剂、水土保湿剂、种子包衣剂、纸力增强剂等而被广泛用于石油开采、水处理、纺织、造纸、选矿、医药、农业等,有“百业助剂”之称[1-2]。

合成聚丙烯酰胺的方法很多,其中水溶液聚合至今仍占很大比重。

近年来,人们对AM反相乳液聚合进行了深入研究。

张志成等[3-4]探讨了在辐射条件下AM的反相乳液聚合;王雨华等[5]采用反相乳液聚合合成了阴离子聚丙烯酰胺;王振卫及笔者对丙烯酰胺反相乳液共聚进行了研究[6-7]。

本研究采用过硫酸钾和亚硫酸钠氧化-还原体系为引发剂,进行丙烯酰胺的反相乳液聚合,探讨其聚合反应的工艺条件。

1 实验部分1.1 主要试剂和仪器无水乙酸钠、无水亚硫酸钠:分析纯,湖南化学试剂总厂;乙二胺四乙酸二钠:分析纯,上海山浦化工有限公司;Span-80:化学纯,天津市博迪化工有限公司;OP-10:化学纯,上海山浦化工有限公司;丙烯酰胺:分析纯,天津市化学试剂研究所;过硫酸钾:分析纯,上海化学试剂采购供应站经销;乙醇:分析纯,长沙安泰精细化工实业有限公司;丙酮:分析纯,湖南汇虹试剂有限公司。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档