解直角三角形常作的几种辅助线

合集下载

初中数学辅助线添加技巧:弦图

初中数学辅助线添加技巧:弦图

初中数学辅助线添加技巧:弦图勾股的几个重要证明方法证法一(赵爽证明):以a 、b 为直角边(b >a ),以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于12ab .把这四个直角三角形拼成如图所示形状.c b aHG F EDCBA∵ Rt △DAH ≌ Rt △ABE , ∴ ∠HDA = ∠EAB . ∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a ,∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2b a -. ∴()22142ab b a c ⨯+-= .∴ 222a b c +=.证法二(邹元治证明):以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于12ab . 把这四个直角三角形拼成如图所示形状,使A 、E 、B三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.cb a HGFED CBA∵ Rt △HAE ≌ Rt △EBF , ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的正方形.它的面积等于c 2. ∵ Rt △GDH ≌ Rt △HAE , ∴ ∠HGD =∠EHA . ∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º, ∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2a b +. ∴ ()22142a b ab c +=⨯+.∴ 222a b c +=.证法三(陈杰证明):直角边长分别为a 、b 的四个三角形全等,斜边长为c ,图中有3个正方形边长分别为a 、b 、c ,设整个图形的面积为S .c b a Ic b a HGF EDCBA∵△ABH ≌ △HEF , ∴BAH EHF ∠=∠,∴90BAH AHB EHF AHB ∠+∠=∠+∠=︒, ∴90AHF ∠=︒,∴四边形AHFI 是正方形.∵2222122S a b ab a b ab =++⨯=++,22122S c ab c ab =+⨯=+,∴222a b ab c ab ++=+, ∴222a b c +=.证法四(1876年美国总统Garfield 证明):c b a cb ED C BA以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于12ab .把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵ Rt △EAD ≌ Rt △CBE , ∴ ∠ADE = ∠BEC . ∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º. ∴ △DEC 是一个等腰直角三角形, 它的面积等于212c .又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()212a b +. ∴()221112222a b ab c +=⨯+. ∴222a b c +=.证法五(总统证法变形):如图,矩形ABCD 绕点A 顺时针旋转90º至AB'C'D'的位置,连接CC'.设,,AB a BC b AC c ===.B'C'D'c b aD C BA∵四边形BCC'D'为直角梯形,∴()()2122'D'a b S BC C'D'BD'+=+=梯形BCC . ∵Rt Rt ABC AB'C'△≌△, ∴BAC B'AC'∠=∠.∴2211122222ABC CAC'D'AC''D'c abS S S S ab c ab +=++=++=△△△梯形BCC . ∴()22222a b c ab++=.∴222a b c +=.证法六(梅文鼎证明):作四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .a b c a b c a bc P cb a HG F E DC BA∵ D 、E 、F 在一条直线上,且Rt △GEF ≌ Rt △EBD , ∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c , ∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt △ABC ≌ Rt △EBD , ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º. 即∠CBD = 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a . ∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形.设多边形GHCBE 的面积为S ,则222112,222a b S ab c S ab +=+⨯=+⨯∴222a b c +=.勾股定理的证明方法较多,这是其中的几种.方法总结:勾股定理的证明方法是多样的,而其中的多种方法是具有共性的. 观察上面的证明方法可发现:每个图形中都可以提炼出一个相同的模型——三垂直全等模型.如下图所示.三垂直全等模型其实是从弦图中衍生出来的一个模型,当我们解直角三角形或者正方形的试题时,在很多情况下我们可以考虑构造弦图来解决,有时候是完整的弦图,有时只需一半弦图——三垂直全等模型.图a 与图b 是三垂直全等模型经过直角三角形位置变化之后所得到的另外两个有三垂直和全等三角形的图形,在做题时可参考.图b图a典例精析例1.(1)图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 .图1CBA(2)如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积是5和11,则b 的面积为 .b a cCEDBA解:(1)76;(2)16例2如图1——图3,两个正方形如下图并列排列,要求剪两刀,使之拼成一个新的正方形.(1)如图1,若正方形边长分别为1、2,请在图中画出剪切线;(2)如图2,若正方形的边长分别为a 、b (a >b ),请画出剪切线并标出各边的长度; (3)若要求剪三刀拼成一个正方形,请在图3中画出剪切线.图3图2图1解:(1)、(2)、(3)的剪切线如图a 、图b 、图c 所示:图c图b图a点拨:图c 是证明勾股定理中非常有名的“朱青出入图”. 例3.如图,已知ADBC ,ABE △和CDF △是等腰直角三角形,90,2,5EAB FDC AD BC ∠=∠=︒==,求四边形AEDF 的面积.CFEDBA解:分别过点E 、B 作EN AD ⊥,BM AD ⊥交DA 的延长线于点N 、M ,分别过点F 、C 作FP AD ⊥,CQ AD ⊥,交AD 及AD 延长线于点P 、Q .NM QP CFEDBAAED ADF EAFD S S S =+△△四边形 ()111222AD EN AD FP AD EN FP =+=+ ∵△AEB 和△FDC 都是等腰直角三角形, ∴90,,EAB FDC AE AB DF CD ∠=∠=︒==. ∵EN AD ⊥,BM AD ⊥,FP AD ⊥,CQ AD ⊥, ∴90BMN ENA FPD DQC ∠=∠=∠=∠=︒. ∴,ENA MBA FPD QCD ∠=∠∠=∠. ∴,ENA AMB FPD DQC △≌△△≌△. ∴,EN AM FP DQ ==.∴EN FP AM DQ MQ AD +=+=-. ∵ADBC ,BM CQ ,且90BMN ∠=︒,∴四边形BMQC 是矩形. ∴BC MQ =. ∵5,2BC AD ==,∴523EN FP +=-=. ∴12332EAFD S =⨯⨯=四边形.例4. 如图1,在Rt △ABC 中,∠ACB =90°,BC =a ,AC =b ,以其各边向外作正方形,得到一个凸六边形DEFGHI .(1)求这个六边形的面积;(2)试判断线段EF 、GH 、DI 能否构成三角形,若能,探求该三角形的面积与△ABC 面积的关系;若不能,请说明理由.ZY XW 图3图2图1A B C H ID EF GAB C HI D E FGH P IC GFEDB A解:(1)如上图2,作出正方形ABDE 的内弦图,则易知四个直角三角形全等. 则AZ WB AF ==,那么AWB AZE DYE BXD ABC S S S S S ====△△△△△.又∵,,EAF EAZ DBI DBX GCH ABC S S S S S S ===△△△△△△,且AEF ABC CGH BID S S S S ===△△△△,4ABC AFGC BCHI ABDE DEFGHI S S S S S =+++△正方形正方形正方形六边形 222142a b c ab =+++⨯22222a b ab =++.(2)线段EF 、GH 、DI 能构成三角形. 如图3,过点F 作FPGH 交AC 于点P ,连接EP 、IP ,易证四边形FPHG 是平行四边形,PHI ACB △≌△, ∴四边形PIDE 也是平行四边形. 那么,AFP GCH BID APE △≌△△≌△.∴EF 、GH 、DI 可能构成三角形,即EPF △,面积为3ABC S △.点拨:以三角形三边为边向外分别作正方形的题型,可能构造弦图或者作平行线构造平行四边形,利用弦图的性质,三角形全等或者面积关系来解题.例5. 将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△A′C′D ,如图1所示.将△A′C′D 的顶点A′与点A 重合,并绕点A 按逆时针方向旋转,使点D 、A (A′)、B 在同一条直线上,如图2所示.观察图2可知:与BC 相等的线段是 ,∠CAC′= °. 问题探究如图3,△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q . 试探究EP 与FQ 之间的数量关系,并证明你的结论.AB CEFG PQ图3解:情景观察:AD 或A′D ;90. 问题探究:结论:EP =FQ . 证明:∵△ABE 是等腰三角形, ∴AB =AE ,∠BAE=90°. ∴∠BAG +∠EAP =90°. ∵AG ⊥BC ,∴∠BAG +∠ABG =90°, ∴∠ABG =∠EAP . ∵EP ⊥AG ,∴∠AGB =∠EPA =90°, ∴Rt △ABG ≌Rt △EAP . ∴AG =EP .同理AG =FQ . ∴EP =FQ . 举一反三如图,梯形ABCD 中,AD ∥BC ,分别以两腰AB 、CD 为边向两边作正方形ABGE 和正方形DCHF .设线段AD 的垂直平分线l 交线段EF 于点M ,EP ⊥l 于点P ,FQ ⊥l 于点Q .求证:EP =FQ .图1 图2C'A'B A DCABCDBCD A (A')C'HNM QP Ll CGFEDBA点拨:这两道题图形较复杂,但解题的思路很清晰,仍是构造三垂直全等模型,添加了辅助线问题就迎刃而解了.例6. 如图,直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,l 是AD 的垂直平分线,交AD 于点M ,以腰AB 为边作正方形ABFE ,EP ⊥l 于点P .求证:2EP +AD =2CD .M P l CFED BA解:作AH BC ⊥于点H ,延长EP 交AH 于点G .54321M PlCFEDBA∵l 是AD 的垂直平分线, ∴1,2AM DM AD l AH ==.又∵ABCD 是梯形, ∴90C D ∠=∠=︒. ∴四边形AHCD 是矩形, ∴AH CD =. 又∵PE l ⊥,∴EH AH ⊥,∴四边形AGPM 是矩形, ∴12GP AM AD ==, ∴1290∠=∠=︒. ∴3490∠+∠=︒.在正方形ABFE 中,,90AB AE BAE =∠=︒, ∴4590∠+∠=︒. ∴35∠=∠.∵12∠=∠,35∠=∠,AB EA =, ∴ABH EAG △≌△.∴AH EG =,即CD AH EG ==.∴12CD GP PE AD PE =+=+,即22CD AD PE =+. 例7.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,设BCD α∠=,以D 为旋转中心,将腰DC 逆时针旋转90°至DE .CEDBA(1)当45α=︒时,求EAD △的面积; (2)当30α=︒时,求EAD △的面积;(3)当090α︒<<︒,猜想EAD △的面积与α的大小有无关系?若有关,写出EAD △的面积S 与α的关系式;若无关,请说明理由.解:(1)当45α=︒时,90BCE ∠=︒.延长AD 交DE 于点G ,则AG CE ⊥,点G 是CE 中点,CG EDBA∴四边形ABCG 是矩形,EG =DG =1. ∴112122EAD S AD EG ==⨯⨯△. (2)当30α=︒时,延长AD 交CE 于点G ,过点E 作EH AG ⊥于点H .HCG ED BA∵30α=︒,∴30CDG ∠=︒,60EDG ∠=︒,DE CD ==. 在Rt EHD △中,12DH DE ==, ∴1, ∴112122EAD S AD EH ==⨯⨯△. (3)分别过E 、C 两点作AD 的垂线,交AD 延长线于点F 、G ,HCG ED BA∴90EFG AGC ∠=∠=︒, ∵,ADBC AB BC ⊥,∴90B BAD ∠=∠=︒, B BAD AGC ∠=∠=∠,∴四边形ABCG 是矩形. ∴3AG BC ==, ∴321DG =-=, ∵90CDE ∠=︒, ∴90CDG EDG ∠+∠=︒, ∵90CDG DCG ∠+∠=︒,∴DCG EDG ∠=∠, ∵CD DE =, ∴CDG DEF △≌△, ∴1DE DG ==, ∴112122EAD S AD EF ==⨯⨯△. ∴EAD △的面积与α的大小无关. 跟踪训练1.如图,点C 为线段AB 上一点,正方形ADEF 和正方形BCDG 的面积分别为10cm 2和5cm 2,则△EDG 的面积为 cm 2.CGFEDBA2.四边形ABCD 是正方形,直线1l ,2l ,3l 分别通过A 、B 、C 三点,且123l l l ,若1l 与2l 的距离为5,2l 与3l 的距离为7,则正方形ABCD 的面积为 .CDBA3.在正方形ABCD 中,点G 为BC 上任意一点,连接AG ,过B 、D 两点分别作,BE AG DF AG ⊥⊥,垂足分别为E 、F 两点.探究线段EF 、DF 、BE 三者之间的关系,并证明你的结论.CGFEDBA4.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1,图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为1S,2S,3S.若12310S S S++=,则2S的值是.5.如图,平面直角坐标系xOy中,点A、B的坐标分别为A(4,0),B(0,—4),P为y轴上B点下方一点,PB=m(m>0),以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限.(1)求直线AB的解析式;(2)用含m 的代数式表示点M 的坐标;(3)若直线MB 与x 轴交于点Q ,判断点Q 的坐标是否随m 的变化而变化?写出你的结论,并说明理由.例6.如图,Rt △PQR 的直角边为5厘米,9厘米.问图中3个正方形面积之和比4个三角形面积之和大多少?95RQ P FEDCBA7.(1)四年一度的国际数学家大会于2002年8月20日在北京召开.大会会标如图1所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5厘米,宽为2厘米的纸片,如图2,请你将它分割成6块,再拼成一个正方形(要求:先在图2中画出分割线,再画出拼成的正方形并标明相应数据).图2图1中考前瞻如图1至图3,点C 为定线段AB 外一动点,以AC 、BC 为边分别向外侧作正方形CADF 和正方形CBEG ,分别作1DD AB ⊥、1EE AB ⊥,垂足分别为1D 、1E .当C 的位置在直线AB 的同侧变化过程中,(1)如图1,当∠ACB =90°,AC =4,BC =3时,求11DD EE +的值;(2)求证:如图2,不论C 的位置在直线AB 的同侧怎样变化,11DD EE +的值为定值; (3)求证:如图3,不论C 的位置在直线AB 的同侧怎样变化,线段DE 的中点M 为定点.图3图2图1A1E 1GAD 1BE 1E GC FD E 1D 1GFEDC B A。

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。

初中数学 解直角三角形 知识点讲解及例题解析

初中数学 解直角三角形 知识点讲解及例题解析

解直角三角形知识点讲解及例题解析 一、知识点讲解: 1、解直角三角形的依据 在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么 (1)三边之间的关系为(勾股定理) (2)锐角之间的关系为∠A+∠B=90° (3)边角之间的关系为 2、其他有关公式 面积公式:(hc为c边上的高) 3、角三角形的条件 在除直角C外的五个元素中,只要已知其中两个元素(至少有一个是边)就可以求出其余三个元素。

4、直角三角形的关键是正确选择关系式 在直角三角形中,锐角三角函数是勾通三角形边角关系的结合部,只要题目中已知加未知的三个元素中有边,有角,则一定使用锐角三角函数,应如何从三角函数的八个公式中迅速而准确地优选出所需要的公式呢? (1)若求边:一般用未知边比已知边,去寻找已知角的某三角函数 (2)若求角:一般用已知边比已知边(斜边放在分母),去寻找未知角的某三角函数。

(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”。

5、直角三角形时需要注意的几个问题 (1)在解直角三角形时,是用三角知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合为一种形式,所以在分析问题时,一般先根据已知条件画出它的平面或截面示意图,按照图中边角之间的关系去进行计算,这样可以帮助思考,防止出错。

(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,从而把它们转化为直角三角形的问题来解决。

(3)按照题目中已知数据的精确度进行近似计算 二、例题解析: 例1、已知直角三角形的斜边与一条直角边的和是16cm,另一条直角边为8cm,求它的面积, 解:设斜边为c,一条直角边为a,另一条直角边b=8cm,由勾股定理可得,由题意,有c+a=16 ,b=8 说明:(1)由于知两边和及第三边的长,故相当于存在两个未知量,因为是在直角三角形中,所以可以利用勾股定理来沟通关系。

中考数学秘籍-几何巧画辅助线的技巧,建议收藏

中考数学秘籍-几何巧画辅助线的技巧,建议收藏

中考数学秘籍| 几何巧画辅助线的技巧,建议收藏基本图形的辅助线的画法1三角形问题添加辅助线方法(1)有关三角形中线的题目,常将中线加倍。

含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

(2)含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

(3)结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

(4)结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线;(2)过顶点作对边的垂线构造直角三角形;(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。

3梯形中常用辅助线的添法梯形是一种特殊的四边形。

它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。

辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰;(2)梯形外平移一腰;(3)梯形内平移两腰;(4)延长两腰;(5)过梯形上底的两端点向下底作高;(6)平移对角线;(7)连接梯形一顶点及一腰的中点;(8)过一腰的中点作另一腰的平行线;(9)作中位线。

解直角三角形辅助线的添法种种

解直角三角形辅助线的添法种种

解直角三角形辅助线的添法种种1.如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75°方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.2.如图,已知MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M 的南偏东60°方向上有一点A,以A为圆心,500m为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°,已知MB=400m,通过计算回答,如果不改变方向,输水线路是否会穿过居民区?3. 为了防洪,某地区计划将长为1000m的一堤面加宽1.5m,背水坡坡度由原来的1:1改为1:2已知原背水坡坡长AD=8.0m求完成这一工程所需的土方。

4.5.一水库大坝的横断面为梯形ABCD,坝顶宽6.2米,坝高23.5米,斜坡AB的坡度i1=1∶3,斜坡CD的坡度i2=1∶2.5.求:(1)斜坡AB与坝底AD的长度;(精确到0.1米)(2)斜坡CD的坡角α.(精确到1°)6.一列火车由A市途经B、C两市到达D市.如图,其中A、B、C三市在同一直线上,D市在A市的北偏东45°方向,在B市的正北方向,在C市的北偏西60°方向,C市在A市的北偏东75°方向.已知B、D两市相距100km.问该火车从A市到D市共行驶了多少路程?(保留根号)第22题。

2020年中考数学考点梳理:相似三角形和解直角三角形

2020年中考数学考点梳理:相似三角形和解直角三角形

知识点:一、比例线段1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如dc b a = 4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例d cb a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例dcb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为abb a =(或a:b=b:c 时,我们把b 叫做a 和d 的比例中项。

8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。

9、比例的基本性质:如果a :b =c :d 那么ad =bc 逆命题也成立,即如果ad =bc ,那么a :b =c :d10、比例的基本性质推论:如果a :b=b :d 那么b 2=ad ,逆定理是如果b 2=ad 那么a :b=b :c 。

说明:两个论是比积相等的式子叫做等积式。

比例的基本性质及推例式与等积式互化的理论依据。

11、合比性质:如果d c b a =,那么d dc b b a +=+ 12.等比性质:如果n m d c b a ===K ,(0≠+++m d b Λ),那么ban d b m c a =++++++ΛΛ说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。

13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。

2020中考复习第24课时解直角三角形的应用

2020中考复习第24课时解直角三角形的应用

2
=(4+4 3)m.
图24-14
考点聚焦
5. [2019·南京] 如图24-15,山顶有一塔AB,塔高33 m.计划在塔的正下方沿直线
CD开通穿山隧道EF.从与点E相距80 m的C处测得A,B的仰角分别为27°,22°,从
与点 F相距50 m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据
上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼
墙面上的影高为DA.已知CD=42 m.
(1)求楼间距AB;
(2)若2号楼共有30层,层高均为3 m,则点C位于第几层?
(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,
sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47).
建筑的高度BC为
m.
(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)
图24-11
考点聚焦
[答案]262
[解析] 过点 A 作 AE⊥BC 于点 E,则四边形 ADCE 为矩形.
在 Rt△ACD 中,∵AD=62,∠ACD=∠EAC=17°,

62
∴AE=CD=tan 17°≈0.31 =200.
A.h(tan50°-tan20°)
B.h(tan50°+tan20°)
C.h
D.h
1

tan 70°
1
1
tan 40°
1
+ tan 40°
tan 70°
图24-5
)
考点聚焦
[答案] A
[解析] 过点A作AD⊥BC,交CB的延长线于点D,

关于初中数学几何题作辅助线的方法归纳综述

关于初中数学几何题作辅助线的方法归纳综述

随笔关于初中数学几何题作辅助线的方法归纳综述孙红振摘要:初中几何作为初中数学的一个重点难点,很多的学生都对初中数学中的几何无可奈何,但在初中数学中几何题占据着重要的地位,很多的学生对几何体都有着厌恶的心理,认为几何体特别难,也找不到解题的思路和方法[1]。

如何正确的解决几何难题,就需要找到好的思路,大多时候我们还需要使用到辅助线来帮助我们解题,只有作对一条辅助线,才能更好的解决难题。

关键词:辅助线;初中数学;几何题对于很多的初中生,一提到数学他们就头疼不已,对于数学中的几何稍微复杂一点的题目就无从下手。

初中数学分为两大模块:几何、代数,而几何也是初中数学中的重点,也是历年来考试的重点难点。

几何题都比较的灵活,一道题解题的方法也会出现多种,大多数的几何题在解答的过程中都需要应用到辅助线才能更好的解答题目,很多的学生一旦遇到需要做辅助线的题目便无从下手。

辅助线有什么作用?在几何中作辅助线的技巧是什么便是本文重点讨论和归纳的问题。

一、辅助线的作用在初中数学几何中,简单的几何题目,通常根据题意我们就能找到解题的思路和方法,但是较难的几何题通过题意,很多时候在解题中都无法找到思路和方法,甚至还会觉得题目给出的已知条件非常的散乱,没有办法让所有的已知条件相结合起来,帮助学生们更好的答题。

通常遇到这种题型都需要借助辅助线来帮助解题,只有作对了辅助线,那就相当于题目已经解答出了一半了。

几何辅助线的添加,等于在原题中添加了一个甚至多个已知条件,能够更好的帮助我们快速的找到解答的思路和方法。

某些时候,通过题目的已知条件,往往还不能找到证明方法和思路,总会缺少一个将已知和未知相联合起来的桥梁,缺少一个等量转换的关系,通常要将已知和未知相联合起来就只需要一条辅助线。

划对一条辅助线好似给迷路的人指了一条明路,原本僵硬找不到思路的题目瞬间就变得简单易懂。

二、画辅助线的技巧在做几何题之前,学生们应该先将辅助线的作用和使用方法总结归纳起来,科学合理的使用辅助线,才能将构建起解题的思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档