2021年高考数学一轮复习题型归纳与高效训练试题:2.4 二次函数与幂函数(学生版)文
高考数学一轮专项复习讲义(新高考用)-幂函数与二次函数(含解析)

幂函数与二次函数目录01考情透视.目标导航 (2)02知识导图.思维引航 (3)03考点突破.题型探究 (4)知识点1:幂函数 (4)知识点2:二次函数 (5)解题方法总结 (7)题型一:幂函数的定义及其图像 (10)题型二:幂函数性质的综合应用 (12)题型三:由幂函数的单调性比较大小 (15)题型四:二次函数的解析式 (18)题型五:二次函数的图象、单调性与最值 (22)题型六:二次函数定轴动区间和动轴定区间问题 (24)题型七:二次方程实根的分布及条件 (27)题型八:二次函数最大值的最小值问题 (29)04真题练习.命题洞见 (34)05课本典例.高考素材 (35)06易错分析.答题模板 (38)易错点:解二次型函数问题时忽视对二次项系数的讨论 (38)答题模板:含参二次函数在区间上的最值问题 (38)考点要求考题统计考情分析(1)幂函数的定义、图像与性质(2)二次函数的图象与性质2020年天津卷第3题,5分2020年江苏卷第7题,5分从近五年全国卷的考查情况来看,本节内容很少单独命题,幂函数要求相对较低,常与指数函数、对数函数综合,比较幂值的大小,多以选择题、填空题出现.复习目标:(1)通过具体实例,了解幂函数及其图象的变化规律.(2)掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识点1:幂函数1、幂函数的定义一般地,()a y x a R =∈(a 为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数.2、幂函数的特征:同时满足一下三个条件才是幂函数①a x 的系数为1;②a x 的底数是自变量;③指数为常数.(3)幂函数的图象和性质3、常见的幂函数图像及性质:函数y x =2y x =3y x =12y x =1y x -=图象定义域R R R {|0}x x ≥{|0}x x ≠值域R {|0}y y ≥R {|0}y y ≥{|0}y y ≠奇偶性奇偶奇非奇非偶奇单调性在R 上单调递增在(0)-∞,上单调递减,在(0+)∞,上单调递增在R 上单调递增在[0+)∞,上单调递增在(0)-∞,和(0+)∞,上单调递减公共点(11),【诊断自测】若幂函数()y f x =的图象经过点()2,则()16f =()A 2B .2C .4D .12【答案】C 【解析】设幂函数()y f x x α==,因为()f x 的图象经过点(2,所以22α=12α=,所以()12f x x =,所以()1216164f ==.故选:C 知识点2:二次函数1、二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程.(3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标.2、二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2b x a=-,顶点坐标为24(,24b ac b a a --.(1)单调性与最值①当0a >时,如图所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2b x a =-时,2min 4()4ac b f x a-=;②当0a <时,如图所示,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a-+∞上递减,当2b x a =-时,2max 4()4ac b f x a-=(2)与x 轴相交的弦长当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,212121212||||()4||M M x x x x x x a ∆=-=+-=.3、二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,令02p q x +=:(1)若2b p a-≤,则(),()m f p M f q ==;(2)若02b p x a <-<,则(),()2b m f M f q a=-=;(3)若02b x q a ≤-<,则(),()2b m f M f p a =-=;(4)若2b q a-≥,则(),()m f q M f p ==.【诊断自测】下列四个图象中,有一个图象是函数()()()32214803f x x ax a x a =-+-+≠的导数的图象,则()2f -的值为()A .173B .173-C .83D .83-【答案】D【解析】函数3221()(4)83f x x ax a x =-+-+,求导得222()24()4f x x ax a x a '=-+-=--,于是函数()y f x '=的图象是开口向上,对称轴为x a =的抛物线,①②不满足,又0a ≠,即函数()y f x '=的图象对称轴不是y 轴,④不满足,因此符合条件的是③,函数()y f x '=的图象过原点,且0a >,显然(0)0f '=,从而2a =,321()283f x x x =-+,所以3218(2)(2)2(2)833f -=⨯--⨯-+=-.故选:D解题方法总结1、幂函数()a y x a R =∈在第一象限内图象的画法如下:①当0a <时,其图象可类似1y x -=画出;②当01a <<时,其图象可类似12y x =画出;③当1a >时,其图象可类似2y x =画出.2、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120c x x a =<3、一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1)开口方向;(2)判别式;(3)对称轴2b x a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.根的分布图像限定条件12m x x <<02()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩12x m x <<()0f m <12x x m <<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩在区间(,)m n 内没有实根0∆<12120x x mx x m∆==≤=≥或02()0b m af m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩2()0b naf n∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f mf n≤⎧⎨≤⎩在区间(,)m n内有且只有一个实根()0()0f mf n>⎧⎨<⎩()0()0f mf n<⎧⎨>⎩在区间(,)m n内有两个不等实根2()0()0bm naf mf n∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩4、有关二次函数的问题,关键是利用图像.(1)要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2)对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.题型一:幂函数的定义及其图像【典例1-1】(2024·山东日照·二模)已知幂函数图象过点()2,4,则函数的解析式为()A .2xy =B .2y x =C .2log y x =D .sin y x =【答案】B 【解析】设幂函数的解析式为y x α=,由于函数过点()2,4,故42α=,解得2α=,该幂函数的解析式为2y x =;故选:B【典例1-2】已知幂函数pq y x =(,Z p q ∈且,p q 互质)的图象关于y 轴对称,如图所示,则()A .p ,q 均为奇数,且0p q>B .q 为偶数,p 为奇数,且0p q <C .q 为奇数,p 为偶数,且0p q>D .q 为奇数,p 为偶数,且0p q<【答案】D 【解析】因为函数p q y x =的定义域为(,0)(0,)-∞+∞ ,且在(0,)+∞上单调递减,所以p q <0,因为函数p qy x =的图象关于y 轴对称,所以函数pq y x =为偶函数,即p 为偶数,又p 、q 互质,所以q 为奇数,所以选项D 正确,故选:D.【方法技巧】确定幂函数y x α=的定义域,当α为分数时,可转化为根式考虑,是否为偶次根式,或为则被开方式非负.当0α≤时,底数是非零的.【变式1-1】已知函数()()11m f x m x +=-为幂函数,则()()2222f a a f a a -+-=()A .0B .1-C .2aD .64a a -【答案】A【解析】由题意有11m -=,可得()32,m f x x ==,其定义域为R ,且()()()33f x x x f x -=-=-=-,则函数()f x 为奇函数,所以()()22220f a a f a a -+-=.故选:A.【变式1-2】(多选题)(2024·新疆喀什·一模)若函数()231y m m x =--是幂函数,则实数m 的值可能是()A .2m =-B .2m =C .1m =-D .1m =【答案】BC【解析】()231y m m x =--是幂函数,则211m m --=,解得2m =或1m =-.故选:BC.【变式1-3】给出幂函数:①()f x x =;②2()f x x =;③()3f x x =;④()f x =()1f x x=.其中满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭的函数的个数是()A .1B .2C .3D .4【答案】A【解析】由题,满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭表示函数图象在第一象限上凸,结合幂函数的图象特征可知只有④满足.故选:A题型二:幂函数性质的综合应用【典例2-1】已知幂函数()()21n m x f x =-的图象经过点()2,8,下面给出的四个结论:①()3f x x -=;②()f x 为奇函数;③()f x 在R 上单调递增;④()()211f a f +<,其中所有正确命题的序号为()A .①④B .②③C .②④D .①②③【答案】B【解析】对于①:由幂函数的定义可知211m -=,解得1m =,将点()2,8代入函数()nf x x =得28n =,解得3n =,所以()3f x x =,故①错误;对于②:因为定义域为R ,且()()()33f x x x f x -=-=-=-,所以()f x 为奇函数,故②正确;对于③:由幂函数的图象可知,()f x 在R 上单调递增,故③正确;对于④:因为211a +≥,且()f x 在R 上单调递增,所以()()211f a f +≥,故④错误,综上可知,②③正确,①④错误.故选:B.【典例2-2】已知幂函数()()212223a a f x a x +-=-在()0,∞+上单调递减,函数()3xh x m =+,对任意[]11,3x ∈,总存在[]21,2x ∈使得()()12f x h x =,则m 的取值范围为.【答案】268,9⎡⎤--⎢⎥⎣⎦【解析】因为函数()()212223a a f x a x+-=-是幂函数,则231a -=,2a =±,()f x 在()0,∞+上单调递减,则21202a a +-<,可得2a =-,()221f x x x -∴==,()f x \在[]1,3上的值域为1,19⎡⎤⎢⎥⎣⎦,()h x 在[]1,2上的值域为[]3,9m m ++,根据题意有918126399m m m m +≥≥-⎧⎧⎪⎪⇒⎨⎨+≤≤-⎪⎪⎩⎩,m ∴的范围为268,9⎡⎤--⎢⎥⎣⎦.故答案为:268,9⎡⎤--⎢⎥⎣⎦.【方法技巧】紧扣幂函数y x α=的定义、图像、性质,特别注意它的单调性在不等式中的作用,这里注意α为奇数时,x α为奇函数,α为偶数时,x α为偶函数.【变式2-1】已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭.若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则α=.【答案】1-【解析】因为幂函数()f x x α=在(0,)+∞上递减,所以12,1,2α=---,又幂函数()f x x α=为奇函数,可知α为奇数,即1α=-.故答案为:1-【变式2-2】已知函数()()3222332ln34ln31x x f x x x --=-+-+-+,则满足()()832f x f x +->的x 的取值范围是.【答案】(),2-∞【解析】由题意得()()()32223322ln 31x x f x x x --=-+-+-+,设()3332ln 3x xg x x x -=+-+,则()()21f x g x =-+,()g x 的定义域为R ,且()()3332ln 3x xg x x x g x --=-+--=-,所以()g x 为奇函数,3,3,3,2ln 3x x y x y y y x -===-=都是增函数,所以()g x 是增函数,()f x 的图象是由()g x 的图象先向右平移2个单位长度,再向上平移1个单位长度得到的,所以()f x 图象的对称中心为()2,1,所以()()42f x f x +-=.易知()f x 在R 上单调递增,因为()()()()8324f x f x f x f x +->=+-,所以()()834f x f x ->-,所以834x x ->-,解得2x <,故答案为:(),2∞-.【变式2-3】已知幂函数()223mm f x x --=(其中,m ∈Z )为偶函数,且()f x 在()0,∞+上单调递减,则m的值为.【答案】1【解析】因为函数幂函数()f x 在()0,∞+上单调递减,所以2230m m --<,解得13m -<<,又m ∈Z ,所以0m =或1或2,当0m =或2时,()331f x x x -==定义域为{}0x x ≠,且()()()3311f x f x x x -==-=--,此时函数()f x 为奇函数,不符合题意;当1m =时,()441f x x x -==定义域为{}0x x ≠,且()()()4411f x f x x x -===-,此时函数()f x 为偶函数,符合题意;综上所述,1m =.故答案为:1.【变式2-4】已知函数()13f x x =,则关于t 的表达式()()222210f t t f t -+-<的解集为.【答案】1,13⎛⎫- ⎪⎝⎭【解析】由题意可知,()f x 的定义域为(),-∞+∞,所以()()()1133f x x x f x -=-=-=-,所以函数()f x 是奇函数,由幂函数的性质知,函数()13f x x =在函数(),-∞+∞上单调递增,由()()222210f t t f t -+-<,得()()22221f t t f t -<--,即()()22212f t t f t -<-,所以22212t t t -<-,即23210t t --<,解得113t -<<,所以关于t 的表达式()()222210f t t f t -+-<的解集为1,13⎛⎫- ⎪⎝⎭.故答案为:1,13⎛⎫- ⎪⎝⎭.【变式2-5】满足1133(1)(32)m m --+<-的实数m 的取值范围是().A .23,32⎛⎫ ⎪⎝⎭B .23,1,32⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .2,3⎛⎫+∞ ⎪⎝⎭D .23(,1),32⎛⎫-∞-⋃ ⎪⎝⎭【答案】D【解析】幂函数13y x -=在(0,)+∞为减函数,且函数值为正,在(,0)-∞为减函数,且函数值为负,1133(1)(32)m m --+<-等价于,320132m m m ->⎧⎨+>-⎩或10132m m m +<⎧⎨+>-⎩或32010m m ->⎧⎨+<⎩,解得2332m <<或m ∈∅或1m <-,所以不等式的解集为23(,1),32⎛⎫-∞-⋃ ⎪⎝⎭.故选:D.题型三:由幂函数的单调性比较大小【典例3-1】(2024·天津红桥·二模)若132()3a =,122log 5b =,143c -=,则a ,b ,c 的大小关系为()A .a b c >>B .b c a >>C .b a c >>D .a b c<<【答案】C 【解析】112221log log 152b =>=,111121411214321631[()()()818122()()]333c a ==>===,而1312()3a =<,所以a ,b ,c 的大小关系为b a c >>.故选:C【典例3-2】设232555322555a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,则,,a b c 大小关系是.【答案】a c b>>【解析】因为()25f x x =在()0,∞+单调增,所以22553255⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即a c >,因为()25xg x ⎛⎫= ⎪⎝⎭在(),-∞+∞单调减,所以32552255⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即,c b >综上,a c b >>.故答案为:a c b >>.【方法技巧】在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.【变式3-1】(2024·河北衡水·三模)已知1log 14a <,114a⎛⎫< ⎪⎝⎭,141a <,则实数a 的取值范围为()A .10,4⎛⎫⎪⎝⎭B .()0,1C .()1,+¥D .1,14⎛⎫ ⎪⎝⎭【答案】A 【解析】由1log 14a<,得1a >或10a 4<<,由114a⎛⎫< ⎪⎝⎭,得0a >,由141a <,得01a <<,∴当1log 14a <,114a⎛⎫< ⎪⎝⎭,141a <同时成立时,取交集得10a 4<<,故选:A.【变式3-2】已知πe a =,e πb =,eπc =,则这三个数的大小关系为.(用“<”连接)【答案】c b a<<【解析】由ln πa =,ln eln πb =,令ln ()xf x x=且[e,)x ∈+∞,则21ln ()0x f x x -'=≤,所以()f x 在[e,)x ∈+∞上递减,则ln e ln ππeln πe π>⇒>,即ln ln a b >,所以b a <,由e πb =,πe ]c =,只需比较π与π的大小,根据x y =与y x =,相交于(2,2),(4,4)两点,图象如下,由2π4<<,结合图知ππ>,故πe e []πb c ==>,综上,c b a <<.故答案为:c b a<<【变式3-3】已知幂函数()f x的图象过点()()()1122121,,,,,024P x y Q x y x x ⎛<< ⎝⎭是函数图象上的任意不同两点,则下列结论中正确的是()A .()()1122x f x x f x >B .()()1221x f x x f x <C .()()1221f x f x x x >D .()()1212f x f x x x <【答案】D【解析】设幂函数()f x x α=,因为()f x的图象经过点124⎛ ⎝⎭,则124α⎛⎫= ⎪⎝⎭,解得32α=,所以()32f x x =.因为函数()32f x x =在定义域()0,∞+内单调递增,则当120x x <<时,()()120f x f x <<,所以()()1122x f x x f x <,且()()1221f x f x x x <,故选项A,C 错误;又因为函数()12f x x x=单调递增,则当120x x <<时,()()1212f x f x x x <,且()()2112x f x x f x <,故选项D 正确,选项B 错误.故选:D.【变式3-4】(2024·高三·河北邢台·期中)已知函数()()2231mm f x m m x+-=--是幂函数,且在()0,∞+上单调递减,若,a b ∈R ,且0,a b a b <<<,则()()f a f b +的值()A .恒大于0B .恒小于0C .等于0D .无法判断【答案】B【解析】由211m m --=得2m =或1m =-,2m =时,3()f x x =在R 上是增函数,不合题意,1m =-时,3()-=f x x ,在(0,)+∞上是减函数,满足题意,所以3()-=f x x ,0,a b a b <<<,则0b a >->,()()f a f b ->,3()f x x =-是奇函数,因此()()f a f a -=-,所以()()f a f b ->,即()()0f a f b +<,故选:B.题型四:二次函数的解析式【典例4-1】(2024·高三·海南海口·开学考试)已知二次函数()f x 的图象经过点()4,3,在x 轴上截得的线段长为2,并且对任意x ∈R ,都有()()22f x f x -=+,则()f x =.【答案】243x x -+【解析】因为()()22f x f x -=+对x ∈R 恒成立,所以()y f x =的图象关于2x =对称.又()y f x =的图象在x 轴上截得的线段长为2,所以()0f x =的两根为211-=或213+=,所以二次函数()f x 与x 轴的两交点坐标为()1,0和()3,0,因此设()()()13f x a x x =--.又点()4,3在()y f x =的图象上,所以33a =,则1a =,故()()()21343f x x x x x =--=-+.故答案为:243x x -+【典例4-2】写出同时满足下列条件①②③的一个函数()f x =.①()f x 是二次函数;②(1)xf x +是奇函数;③()f x x在(0,)+∞上是减函数.【答案】22x x-+【解析】因为()f x 是二次函数,所以令2()2f x x x =-+,()0x ≠,令()()()23(1)121g x xf x x x x x x ⎡⎤=+=-+++=-+⎣⎦,()()()3g x x x g x -=---=-,故满足条件②;令()222()x f x h x x x xx+===-+-在(0,)+∞上是减函数,满足条件③,故答案为:22x x-+【方法技巧】求二次函数解析式的三个技巧(1)已知三个点的坐标,选择一般式.(2)已知顶点坐标、对称轴、最大(小)值等,选择顶点式.(3)已知图象与x 轴的两交点的坐标,选择零点式.【变式4-1】已知函数()2f x ax bx c =++(0a ≠)的图象关于y 轴对称,且与直线y x =相切,写出满足上述条件的一个函数()f x =.【答案】214x +(答案不唯一)【解析】已知()()20f x ax bx c a =++≠,∵()f x 的图象关于y 轴对称,∴对称轴02bx a=-=,∴0b =,∴()2f x ax c =+,联立2y ax c y x⎧=+⎨=⎩,整理得2ax c x +=,即20ax x c -+=,∵()f x 的图象与直线y x =相切,∴140ac ∆=-=,∴14ac =,当1a =时,14c =.∴满足条件的二次函数可以为()214f x x =+.故答案为:214x +.【变式4-2】已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,二次函数的解析式是.【答案】f (x )=-4x 2+4x +7.【解析】法一(利用“一般式”解题)设f (x )=ax 2+bx +c (a ≠0).由题意得2421,1,48,4a b c a b c ac b a⎧⎪++=-⎪⎪-+=-⎨⎪-⎪=⎪⎩解得4,4,7.a b c =-⎧⎪=⎨⎪=⎩∴所求二次函数为f (x )=-4x 2+4x +7.法二(利用“顶点式”解题)设f (x )=a (x -m )2+n (a ≠0).因为f (2)=f (-1),所以抛物线的对称轴为2(1)122x +-==,所以m =12.又根据题意,函数有最大值8,所以n =8,所以y =f (x )=21(82a x -+.因为f (2)=-1,所以21(2812a -+=-,解得a =-4,所以f (x )=214(82x --+=-4x 2+4x +7.法三(利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1)(a ≠0),即f (x )=ax 2-ax -2a -1.又函数有最大值8,即24(21)()84a a a a----=.解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7.故答案为:f (x )=-4x 2+4x +7.【变式4-3】已知函数2()(2)(0)f x mx m x n m =+-+>,当11x -≤≤时,都有()1f x ≤恒成立,则1=3f ⎛⎫⎪⎝⎭.【答案】79-【解析】因为当11x -≤≤时,都有()1f x ≤恒成立,所以(0)1(1)1f f ⎧≤⎪⎨≤⎪⎩,即121n n ⎧≤⎪⎨+≤⎪⎩,所以1131n n -≤≤⎧⎨-≤≤-⎩,解得1n =-,所以(0)1,(1)1f f =-=,由()f x 图象可知,要满足题意,则图象的对称轴为直线x =0,所以20m -=,解得m =2,所以2()21f x x =-,所以117=21399f ⎛⎫⨯-=- ⎪⎝⎭.故答案为:79-【变式4-4】已知()f x 是二次函数,()20f -=,且()2422x x f x +≤≤,则()10f =.【答案】36【解析】法一:由()20f -=,可设()()()()2222f x x ax b ax a b x b =++=+++,则由()2f x x ≥得()22220ax a b x b ++-+≤,所以0a ≥且2(22)8a b ab +-≤,整理后即为2244844a b ab a b +≤++-,由()242x f x +≤得()()22142440a x a b x b -+++-≤,若210a -=则必有420a b +=,此时与2(22)8a b ab +-≤矛盾,所以210a -≤且()()2(42)42144a b a b +≤--,整理后为2244844a b ab a b +≤--+,与2244844a b ab a b +≤++-相加即得2244a b ab +≤,即2(2)0a b -≤,所以2a b =,所以()()()222(2)f x x ax a a x =++=+,又由于在原不等式中令2x =可得()424f ≤≤,所以()24f =,由此解得14a =.所以()()21(2),10364f x x f =+=.法二:()()2241202(2)22x x f x f x x x +≤≤⇒≤-≤-,令()()2g x f x x =-,则()()24,20g g -==,设()()()()20g x a x x m a =--≠.若2m ≠,则()()()()'22122202x x g x g a m =⎡⎤--=-'=-≠⎢⎥⎣⎦,于是()20a m ->时,存在02x <使得()()2001202x g x --<,矛盾;()20a m -<时,存在02x >使得()()2001202x g x --<,矛盾;故2m =,令2x =-,则()116244a g a =-=⇒=.于是()()22112(2)2(2)44f xg x x x x x =+=-+=+,进而()1036f =.故答案为:36.题型五:二次函数的图象、单调性与最值【典例5-1】已知()1()()f x x a x b =---,并且m 、n 是方程()0f x =的两根,则实数a 、b 、m 、n 的大小关系可能是()A .m a b n <<<B .a m n b <<<C .a m b n <<<D .m a n b<<<【答案】A【解析】设()()()g x x a x b =---,又()1()()f x x a x b =---,分别画出这两个函数的图象,其中()f x 的图象可看成是由()g x 的图象向上平移1个单位得到,如图,由图可知:m a b n <<<.故选:A .【典例5-2】(2024·高三·江苏苏州·期中)满足2{}{,}x m x n y y x m x n ≤≤==≤≤的实数对m ,n 构成的点(,)m n 共有()A .1个B .2个C .3个D .无数个【答案】C【解析】由2{}{,}x m x n y y x m x n ≤≤==≤≤,又20y x =≥,则0m ≥,所以2y x =在[,]m n 单调递增,故值域为[(),()]f m f n ,即,m n 是2x x =的两根,解得120,1x x ==,当0m n ==时,点(,)m n 为(0,0),当1m n ==时,点(,)m n 为(1,1),当0,1m n ==时,点(,)m n 为(0,1).故选:C【方法技巧】解决二次函数的图象、单调性与最值常用的方法是数形结合.【变式5-1】(2024·全国·模拟预测)若函数2()(2)1f x x m x =--+在11,22⎡⎤-⎢⎥⎣⎦上单调,则实数m 的取值范围为()A .19,13,22⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦B .19,23,22⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ C .19,13,22⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦D .19,23,22⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦【答案】C【解析】令()()221g x x m x =--+,则21,22102m g -⎧≥⎪⎪⎨⎛⎫⎪≥ ⎪⎪⎝⎭⎩或21,22102m g -⎧≥⎪⎪⎨⎛⎫⎪-≤ ⎪⎪⎝⎭⎩或21,22102m g -⎧≤-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩或21,2210,2m g -⎧≤-⎪⎪⎨⎛⎫⎪≤ ⎪⎪⎝⎭⎩解得392m ≤≤或112m -≤≤,即实数m 得取值范围为1[,1][3,]229- .故选:C .【变式5-2】(2024·高三·山东济宁·期中)函数()f x =的单调递增区间为()A .1,4⎛⎤-∞ ⎥⎝⎦B .(,1)-∞-C .3,2⎡⎫+∞⎪⎢⎣⎭D .1,4⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】由题意,令223t x x =--=()()2310x x -+≥,即1x ≤-或32x ≥,根据二次函数性质知:223t x x =--在(,1]-∞-上递减,在3,+2⎡⎫∞⎪⎢⎣⎭上递增又y 在定义域上递增,故()f x 3,+2⎡⎫∞⎪⎢⎣⎭.故选:C【变式5-3】(2024·广东珠海·模拟预测)已知函数()221f x x mx x =+-+在区间[)2,+∞上是增函数,则实数m 的取值范围是.【答案】[)2,-+∞【解析】二次函数()()221f x x m x =+-+的图象开口向上,对称轴为直线22m x -=-,因为函数()f x 在区间[)2,+∞上是增函数,则222m --≤,解得2m ≥-.因此,实数m 的取值范围是[)2,-+∞.故答案为:[)2,-+∞.【变式5-4】若函数()2224,02,0x x x f x x x ⎧-+>=⎨≤⎩在区间()1,32a a --上有最大值,则实数a 的取值范围是.【答案】[0,1)【解析】令()224g x x x =-+,0x >,所以()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,又(1)2(1)f f ==-,作出函数()f x的大致图象,由于函数()2224,02,0x x x f x x x ⎧-+>=⎨≤⎩在区间()1,32a a --上有最大值,结合图象,由题意可得321111a a ->⎧⎨-≤-<⎩,解得01a ≤<,所以实数a 的取值范围是[0,1),故答案为:[0,1)题型六:二次函数定轴动区间和动轴定区间问题【典例6-1】已知函数2()2(0)f x x ax a =->.(1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值.【解析】(1)当3a =时,不等式5()7f x -<<,即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x ,所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃.(2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥,若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥,所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.【典例6-2】已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.【解析】函数()222211y x ax x a a =++=++-的图象为对称轴为x a =-,开口向上的抛物线,当12a -≤时,即12a ≥-时,此时2x =离对称轴更远,所以当2x =时有最大值,最大值为45a +,由已知454a +=,故14a =-,当12a ->时,即12a <-时,此时=1x -离对称轴更远,所以当=1x -时有最大值,最大值为22a -,由已知224a -=,故1a =-,所以14a =-或1a =-.【方法技巧】“动轴定区间”、“定轴动区间”型二次函数最值的方法:(1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果得到最终答案.【变式6-1】已知函数()2f x x ax =+,其中a 是实数.(1)()f x 在区间[]1,2-上的最大值记为()M a ,求()M a 的表达式;(2)()f x 在区间[]1,2-上的最小值记为()m a ,求()m a 的表达式;(3)若()()3M a m a -=,求实数a 的值.【解析】(1)()222()24a x a f x x ax =+=+-,对称轴为2a x =-,当122a -≤,即1a ≥-时,()(2)42M a f a ==+,当122a ->,即1a <-时,()(1)1M a f a =-=-,综上,()42,11,1a a M a a a +≥-⎧=⎨-<-⎩.(2)当12a-≤-,即2a ≥时,函数()f x 在区间[]1,2-上单调递增,()(1)1m a f a =-=-,当22a-≥,即4a ≤-时,函数()f x 在区间[]1,2-上单调递减,()(2)42m a f a ==+,当122a -<-<,即42a -<<时,()2()24a a m a f =-=-,综上,()242,4,4241,2a a am a a a a +≤-⎧⎪⎪=--<<⎨⎪-≥⎪⎩.(3)当4a ≤-时,()1M a a =-,()42m a a =+,由()()3M a m a -=,得()1423a a --+=,解得2a =-(舍);当41a -<<-时,()1M a a =-,()24a m a =-,由()()3M a m a -=,得2134a a -+=,即2480a a --=,解得2a =-2=+a ;当12a -≤<时,()42M a a =+,()24a m a =-,由()()3M a m a -=,得()24234aa ++=,即2840a a ++=,解得4a =--4a =-+当2a ≥时,()42M a a =+,()1m a a =-,由()()3M a m a -=,得()()4213a a +--=,解得0a =(舍),综上,2a =-4-+题型七:二次方程实根的分布及条件【典例7-1】若关于x 的一元二次方程()23180x a x a +-++=有两个不相等的实根12,x x ,且121,1x x <>.则实数a 的取值范围为.【答案】2a <-【解析】令函数2()(31)8f x x a x a =+-++,依题意,()0f x =的两个不等实根12,x x 满足121,1x x <>,而函数()f x 图象开口向上,因此(1)0f <,则21(31)180a a +-⨯++<,解得2a <-,所以实数a 的取值范围为2a <-.故答案为:2a <-【典例7-2】方程()2110mx m x --+=在区间()0,1内有两个不同的根,m 则的取值范围为.【答案】3m >+【解析】令()()211f x mx m x =--+,图象恒过点()0,1,方程()211mx m x --+=0在区间()0,1内有两个不同的根,()()2010********Δ0m m m m m f m m >⎧⎧⎪>-⎪⎪<<⎪⎪∴⇒>⎨⎨⎪⎪>-->⎪⎪⎩>⎪⎩,解得3m >+故答案为:3m >+【方法技巧】结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.【变式7-1】(2024·四川雅安·模拟预测)已知关于x 的方程()20,x bx c b c R ++=∈在[]1,1-上有实数根,且满足033b c ≤+≤,则b 的取值范围是.【答案】[]0,2【解析】问题等价于()()2,g x bx c h x x =+=-在[]1,1-上有公共点.()[]330,3g b c =+∈ ,设(3,0),(3,3)C D ,(3)3g b c =+,点(3,(3))g 在线段CD 上,()y g x ∴=的图象是过线段CD 和抛物线AB 弧上各一点的直线(如图),其中()()()()1,1,1,1,3,0,3,3A B C D ---.∴[]max min 2;00,2.BD CO b k b k b ====⇒∈故答案为:[0,2].【变式7-2】关于x 的方程2(3)0x m x m +-+=满足下列条件,求m 的取值范围.(1)有两个正根;(2)一个根大于1,一个根小于1;(3)一个根在(2,0)-内,另一个根在(0,4)内;(4)一个根小于2,一个根大于4;(5)两个根都在(0,2)内.【解析】(1)令2()(3)f x x m x m =+-+,设()0f x =的两个根为12,x x .由题得()12122300Δ340x x m x x m m m ⎧+=->⎪⎪=>⎨⎪=--≥⎪⎩,解得01m <≤.(2)若方程2(3)0x m x m +-+=的一个根大于1,一个根小于1,则(1)220f m =-<,解得1m <(3)若方程2(3)0x m x m +-+=一个根在(2,0)-内,另一个根在(0,4)内,则(2)100(0)0(4)540f m f m f m -=->⎧⎪=<⎨⎪=+>⎩,解得405m -<<(4)若方程2(3)0x m x m +-+=的一个根小于2,一个根大于4,则(2)320(4)540f m f m =-<⎧⎨=+<⎩,解得45<-m (5)若方程2(3)0x m x m +-+=的两个根都在(0,2)内,则()()()22320003022Δ340f m f m m m m ⎧=->⎪=>⎪⎪-⎨<-<⎪⎪=--≥⎪⎩,解得213m <≤题型八:二次函数最大值的最小值问题【典例8-1】已知函数2()f x x ax b =++在区间[0,4]上的最大值为M ,当实数a ,b 变化时,M 最小值为.【答案】2【解析】22()4(4)4[(4)]f x x x a x b x x a x b =-+++=---+-,上述函数可理解为当横坐标相同时,函数2()4g x x x =-,[0x ∈,4]与函数()(4)h x a x b =-+-,[0x ∈,4]图象上点的纵向距离,则M 即为函数2()4g x x x =-与函数()(4)h x a x b =-+-图象上点的纵向距离的最大值中的最小值,作出函数(),()g x h x图象,如图,由图象可知,当函数()h x 的图象刚好为=2y -时此时4,2a b =-=,M 取得最小值为2.故答案为:2【典例8-2】已知函数(),,f x ax b a b =-∈R ,若对任意的[]00,4x ∈,使得()0f x M ≥,求实数M 的取值范围是.【答案】1,4⎛⎤-∞ ⎥⎝⎦2,t x t ==,则()()[]()2,0,2f x g t at t b t ==-+-∈,取三点控制得()()()012g M g M g M ⎧≥⎪≥⎨⎪≥⎩,进而142b M a b M a b M⎧≥⎪-+-≥⎨⎪-+-≥⎩,化简得33444442b Ma b M a b M ⎧≥⎪-+-≥⎨⎪-+-≥⎩,可得8344442M b a b a b ≤+-+-+-+-,即()()83444422M b a b a b ≤+-+---+-=,解得14M ≤.故答案为:1,4⎛⎤-∞ ⎥⎝⎦【方法技巧】解决二次函数最大值的最小值问题常用方法是分类讨论、三点控制、四点控制.【变式8-1】二次函数()f x 为偶函数,()11f =,且()232f x x x +≤恒成立.(1)求()f x 的解析式;(2)R a ∈,记函数()()21h x f x ax =-+在[]0,1上的最大值为()T a ,求()T a 的最小值.【解析】(1)依题设()2f x ax c =+,由()11f =,得1a c +=,()232f x x x +≤,得()23210a x x a -++-≥恒成立,∴30Δ44(1)(3)0a a a ->⎧⎨=---≤⎩,得()220a -≤,所以2a =,又1a c +=,所以1c =-,∴()221f x x =-;(2)由题意可得:()222h x x ax =-,[]0,1x ∈,若0a ≤,则()222h x x ax =-,则()h x 在[0,1]上单调递增,所以()()122T a h a ==-;若0a >,当12a≥,即2a ≥时,()h x 在[0,1]上单调递增,()()122T a h a ==-当12a <,只须比较222a a h ⎛⎫= ⎪⎝⎭与()122h a =-的大小,由()22202a a -->,得:21a <<,此时()22a T a =,02a <≤时,2222a a -≤,此时()22T a a =-,综上,()222,2,22222,2a a aT a a a a -≥⎧⎪⎪=<<⎨⎪⎪-<⎩,2a ≥时,()2T a ≥,22a <<时,()62T a -<<,2a ≤时,()6T a -,综上可知:()T a的最小值为6-【变式8-2】已知函数()(2)||(R)f x x x a a =-+∈,(1)当1a =-时,①求函数()f x 单调递增区间;②求函数()f x 在区间74,4⎡⎤-⎢⎥⎣⎦的值域;(2)当[3,3]x ∈-时,记函数()f x 的最大值为()g a ,求()g a 的最小值.【解析】(1)当1a =-时,函数()(2)|1|f x x x =--,当1x >时,函数2()(2)(1)32f x x x x x =--=-+,此时,函数()f x 在3,2⎡⎫+∞⎪⎢⎣⎭上单调递增,当1x ≤时,函数2()(2)(1)32f x x x x x =--=-+-,此时,函数()f x 在(],1-∞上单调递增,所以函数()f x 单调递增区间为(],1-∞和3,2⎡⎫+∞⎪⎢⎣⎭;因为函数()f x 单调递增区间为(],1-∞和3,2⎡⎫+∞⎪⎢⎣⎭,所以函数()f x 在区间[]4,1-上单调递增,在区间31,2⎛⎫⎪⎝⎭上单调递减,在区间37,24⎡⎤⎢⎥⎣⎦上单调递增,所以min 3()min (4),()2f x f f ⎧⎫=-⎨⎬⎩⎭,max 7()max (1),()4f x f f ⎧⎫=⎨⎬⎩⎭,因为(4)(42)(14)30f -=--+=-,1((2)()43331222f -=-=-,(1)(12)(11)0f =--=,3()(2)()167771444f ==---,所以函数()f x 在区间74,4⎡⎤-⎢⎥⎣⎦的值域为[]30,0-;(2)由已知可得,()()()()()()()22222,222,x x a x a x a x a f x x x a x a x a x a ⎧-+=+--≥-⎪=⎨--+=-+-+<-⎪⎩,当3a -≥时,即3a ≤-时,2()(2)2f x x a x a =-+-+,对称轴为2522a x -=≥,当232a-≥时,即4a ≤-时,函数()f x 在区间[3,3]-上单调递增,所以()(3)3g a f a ==--,当52322a -≤<时,即43a -<≤-时,函数()f x 在区间23,2a -⎡⎫-⎪⎢⎣⎭上单调递增,在区间2,32a -⎛⎤ ⎥⎝⎦上单调递减,所以242244()()a a g a f a ++=-=,当2a -≤时,即2a ≥-时,若[3,2]x ∈-,()0f x ≤,若[2,3]x ∈,()0f x >,因为当(]2,3x ∈时,2()(2)2f x x a x a =+--,对称轴为222ax -=≤,所以函数()f x 在区间(]2,3上单调递增,所以()(3)3g a f a ==+,当23a <-<,即32a -<<-时,此时25222a -<<,函数()f x 在区间23,2a -⎡⎫-⎪⎢⎣⎭上单调递增,在区间2,2a a -⎛⎫- ⎪⎝⎭上单调递减,在区间(],3a -上单调递增,所以()()2244max 3,max 3,24a a a g x f f a ⎧⎫⎧⎫-++⎛⎫==+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭若24434a a a +++≥,即2a -≤<-时,()3g a a =+,若24434a a a +++<,即3a -≤<-时,244()4a a g a ++=,综上所述,23,44(),443,4a a a a g a a a a ⎧+≥-⎪++⎪=-<<-⎨⎪--≤-⎪⎩,函数()3g a a =--在区间(],4-∞-上单调递减,函数244()4a a g a ++=在区间(4,--上单调递减,函数()3g a a =+在区间)⎡-+∞⎣上单调递增,所以min 33()(g a g -=-=-=【变式8-3】(2024·高三·江苏南通·开学考试)记函数()2f x x ax =-在区间[]0,1上的最大值为()g a ,则()g a 的最小值为()A.3-B1-C .14D .1【答案】A【解析】以下只分析函数()2f x x ax =-在[]0,1x ∈上的图象及性质,分类讨论如下:①当0a ≤时,函数()22=f x x ax x ax =--在区间[]0,1上单调递增,即()()11g a f a ==-,此时()g a 单调递减,()()min 01g a g ==;②当01a <≤时,()222,1=,0x ax a x f x x ax ax x x a ⎧-<≤=-⎨-≤<⎩,所以()()2max 1,max 1,24a a g a f f a ⎧⎫⎧⎫⎛⎫==-⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,易知当0222a <≤-时,()2114a a g a a -≥⇒=-,当221a <≤,()22144a a a g a -<⇒=,此时()()()()2min22222212223224g a g ===--=-③当1a >时,()22=f x x ax ax x =--,即()()2max 1,max 1,24a a g a f f a ⎧⎫⎧⎫⎛⎫==-⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,易知当12a <≤时,()22144a a a g a -≤⇒=,当2a <,()2114a a g a a ->⇒=-,此时()()min 114g a g ==;而113224>>-()g a 的最小值为322-.故选:A1.(2023年新课标全国Ⅰ卷数学真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【解析】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞.故选:D2.(2023年天津高考数学真题)设0.50.60.51.01, 1.01,0.6a b c ===,则,,a b c 的大小关系为()A .a b c <<B .b a c <<C .c b a <<D .c a b<<【答案】D【解析】由 1.01x y =在R 上递增,则0.50.61.01 1.01a b =<=,由0.5y x =在[0,)+∞上递增,则0.50.51.010.6a c =>=.所以b a c >>.故选:D3.(2011年普通高等学校招生全国统一考试文科数学(陕西卷))函数13y x =的图象是A .B.C .D .【答案】B【解析】函数图象上的特殊点(1,1),故排除A,D;由特殊点(8,2),11(,)82,可排除C.故选B.1.画出函数y的图象,并判断函数的奇偶性,讨论函数的单调性.【解析】xyx≥==<y∴=设()f x y==()f x的定义域为R.()()f x f x-===,()y f x∴==.当[0,)x∈+∞时,y=设任意的12,[0,)x x∈+∞,且12x x<,则12y y-= 12,[0,)x x∈+∞,且12,x x≥12120,0,0x x y y>-<∴-<即12y y<. y∴[0,)+∞上为增函数.当(,0]x∈-∞时,y=设任意的12,(,0]x x ∈-∞,且12x x <,则12y y -===12,(,0]x x ∈-∞,且12,0x x <>,21120.0x x y y ->∴->即12y y >.y ∴(,0]-∞上是减函数.2.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率v ,(单位:3/cm s )与管道半径r (单位:cm )的四次方成正比.(1)写出气体流量速率v ,关于管道半径r 的函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为3400/cm s ,求该气体通过半径为r 的管道时,其流量速率v 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率(精确到31/cm s ).【解析】(1)设比例系数为k ,气体的流量速率v 关于管道半径r 的函数解析式为4v kr =.(2)将3r =与400v =代入4v kr =中,有44003k =⨯.解得40081k =,所以,气体通过半径为r 的管道时,其流量速率v 的表达式为440081v r =.(3)当=5r 时,43400250000530868181/s v cm =⨯=≈.所以,当气体81通过的管道半径为5cm 时,该气体的流量速率约为33086/cm s .3.试用描点法画出函数2()f x x -=的图象,求函数的定义域、值域;讨论函数的单调性、奇偶性,并证明.【解析】21()f x x =.列表:x…-3-2-1123…()f x …1914111419…描点,连线.图象如图所示.定义域:{|0}x x ≠,值域:{|0}y y >.2()f x x -=在(,0)-∞上是增函数,在(0,)+∞上是减函数.证明如下:设任意的12,(,0)x x ∈-∞,且12x x <.则()()()()222121211222222212121211x x x x x x f x f x x x x x x x +---=-==.22121212210,0,0,0x x x x x x x x <<∴+<>-> .。
【优化探讨】2021高考数学 2-4 二次函数与幂函数提素能高效训练 新人教A版 理 (1)

"【优化探讨】2021高考数学 2-4 二次函数与幂函数提素能高效训练 新人教A 版 理"[A 组 基础演练·能力提升]一、选择题1.二次函数y =-x 2+4x +t 图象的极点在x 轴上,那么t 的值是( ) A .-4 B .4 C .-2 D .2 解析:二次函数的图象极点在x 轴上,∴Δ=0, 可得t =-4. 答案:A2.已知函数y =x a ,y =x b ,y =x c 的图象如下图,那么a ,b ,c 的大小关系为( ) A .c<b<a B .a<b<c C .b<c<aD .c<a<b解析:由幂函数的图象特点知,c<0,a>0,b>0.由幂函数的性质知,当x>1时,指数大的幂函数的函数值就大,那么a>b. 综上所述,可知c<b<a. 答案:A3.已知函数f(x)=x 2+bx +c 且f(1+x)=f(-x),那么以下不等式中成立的是( ) A .f(-2)<f(0) <f(2) B .f(0)<f(-2)<f(2) C .f(0)<f(2)<f(-2) D .f(2)<f(0)<f(-2)解析:∵f(1+x)=f(-x),∴(x +1)2+b(x +1)+c =x 2-bx +c. ∴x 2+(2+b)x +1+b +c =x 2-bx +c. ∴2+b =-b ,即b =-1.∴f(x)=x 2-x +c ,其图象的对称轴为x =12. ∴f(0)<f(2)<f(-2).答案:C4.(2021年惠州模拟)已知幂函数y =f(x)的图象过点⎝ ⎛⎭⎪⎪⎫12,22,那么log 4f(2)的值为( )B .-14C .2D .-2解析:设f(x)=x a ,由其图象过点⎝ ⎛⎭⎪⎪⎫12,22得⎝ ⎛⎭⎪⎫12a =22=⎝ ⎛⎭⎪⎫1212⇒a =12,故log 4f(2)=log 4212=14.应选A.答案:A5.幂函数y =xm 2-2m -3(m ∈Z)的图象如下图,那么m 的值为( ) A .-1<m<3 B .0 C .1D .2解析:从图象上看,由于图象只是原点,且在第一象限下降,故m 2-2m -3<0,即-1<m<3;又从图象看,函数是偶函数,故m 2-2m -3为负偶数,将m =0,1,2别离代入,可知当m =1时,m 2-2m -3=-4,知足要求.答案:C6.设函数g(x)=x 2-2(x ∈R),f(x)=⎩⎪⎨⎪⎧g x +x +4,x<g x ,g x -x ,x≥g x ,那么f(x)的值域是( ) ∪(1,+∞) B .[0,+∞)∪(2,+∞)解析:令x<g(x),即x 2-x -2>0,解得x<-1或x>2; 令x≥g(x),即x 2-x -2≤0,解得-1≤x≤2.故函数f(x)=⎩⎪⎨⎪⎧x 2+x +2,x<-1或x>2,x 2-x -2,-1≤x≤2.当x<-1或x>2时,函数f(x)>(-1)2+(-1)+2=2;当-1≤x≤2时,函数f ⎝ ⎛⎭⎪⎫12≤f(x)≤f(-1),即-94≤f(x)≤0.故函数f(x)的值域是⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)答案:D 二、填空题7.假设二次函数f(x)=ax 2+2x +c 的值域是[0,+∞),那么a +c 的最小值为________. 解析:由已知a>0,4ac -44a =0,∴ac =1,c>0. ∴a +c≥2ac =2.当且仅当a =c =1时,取等号.∴a +c 的最小值为2. 答案:28.已知函数f(x)=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,那么a 的值为________. 解析:f(x)=-(x -a)2+a 2-a +1, 当a>1时,y max =a ;当0≤a≤1时,y max =a 2-a +1; 当a<0时,y max =1-a.依照已知条件:⎩⎪⎨⎪⎧ a>1,a =2,或⎩⎪⎨⎪⎧ 0≤a≤1,a 2-a +1=2或⎩⎪⎨⎪⎧a<0,1-a =2,解得a =2,或a =-1. 答案:2或-19.当x≥0,y≥0,且x +2y =1,那么2x +3y 2的最小值为________. 解析:由x≥0,y≥0,x =1-2y≥0知0≤y≤12,令t =2x +3y 2=3y 2-4y +2,∴t =3⎝ ⎛⎭⎪⎫y -232+23.在⎣⎢⎡⎦⎥⎤0,12上递减,当y =12时,t 取到最小值,t min =34.答案:34三、解答题10.已知函数f(x)=(m 2-m -1)x -5m -3,m 为何值时,f(x)是幂函数,且在(0,+∞)上是增函数?解析:∵函数f(x)=(m 2-m -1)x -5m -3是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,-5m -3=-13,函数y =x -13在(0,+∞)上是减函数; 当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1.11.(2021年玉林模拟)是不是存在实数a ,使函数f(x)=x 2-2ax +a 的概念域为[-1,1]时,值域为[-2,2]?假设存在,求a 的值;假设不存在,说明理由.解析:f(x)=x 2-2ax +a =(x -a)2+a -a 2. 当a<-1时,f(x)在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧f -1=1+3a =-2,f 1=1-a ,解得a =-1(舍去); 当-1≤a≤0时,⎩⎪⎨⎪⎧f a =a -a 2=-2,f 1=1-a =2,解得a =-1.当0<a≤1时,⎩⎪⎨⎪⎧f a =a -a 2=-2,f -1=1+3a =2,a 不存在.当a>1时,f(x)在[-1,1]上为减函数,∴⎩⎪⎨⎪⎧f -1=1+3a =2,f 1=1-a ,a 不存在. 综上可知a =-1.12.(能力提升)已知f(x)=-4x 2+4ax -4a -a 2在区间[0,1]内有最大值-5,求a 的值及函数表达式f(x).解析:∵f(x)=-4⎝ ⎛⎭⎪⎫x -a 22-4a ,∴抛物线极点坐标为⎝ ⎛⎭⎪⎫a 2,-4a .①当a2≥1,即a≥2时,f(x)取最大值-4-a 2.令-4-a 2=-5,得a 2=1,a =±1<2(舍去); ②当0<a 2<1,即0<a<2时,x =a2时,f(x)取最大值为-4a.令-4a =-5,得a =54∈(0,2);③当a2≤0,即a≤0时,f(x)在[0,1]内递减,∴x =0时,f(x)取最大值为-4a -a 2,令-4a -a 2=-5,得a 2+4a -5=0,解得a =-5,或a =1,其中-5∈(-∞,0],a =1(舍去).综上所述,a =54或a =-5时,f(x)在[0,1]内有最大值-5.∴f(x)=-4x 2+5x -10516或f(x)=-4x 2-20x -5. [B 组 因材施教·备选练习]1.设函数f(x)=x -1x ,对任意x ∈[1,+∞),f(2mx)+2mf(x)<0恒成立,那么实数m 的取值范围是( )解析:对任意x ∈[1,+∞),f(2mx)+2mf(x)<0恒成立,即2mx -12mx +2m ⎝ ⎛⎭⎪⎫x -1x <0在x ∈[1,+∞)上恒成立,即8m 2x 2-1+4m 22mx <0在x ∈[1,+∞)上恒成立,故m<0,因为8m 2x 2-(1+4m 2)>0在x ∈[1,+∞)上恒成立,因此x 2>1+4m 28m 2在x ∈[1,+∞)上恒成立,因此1>1+4m 28m 2,解得m<-12或m>12(舍去),故m<-12.答案:A2.已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),那么h(x)A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:画出y =|f(x)|=|2x -1|与y =g(x)=1-x 2的图象,它们交于A 、B 两点(B 点在A 点右边).由规定可知,在A 点左侧、B 点右边,|f(x)|≥g(x),故h(x)=|f(x)|;在A 、B 之间,|f(x)|<g(x),故h(x)=-g(x).因此h(x)有最小值-1,无最大值.答案:C3.(2021年济南模拟)已知二次函数f(x)=ax 2+bx +c 知足f(0)=f(1)=0,且f(x)的最小值是-14.(1)求f(x)的解析式;(2)设函数h(x)=ln x -2x +f(x),假设函数h(x)在区间⎣⎢⎡⎦⎥⎤12,m -1上是单调函数,求实数m 的取值范围.解析:(1)∵f(0)=0,∴c =0,∵f(1)=0,∴b =-a , ∴f(x)=ax 2-ax =a⎝ ⎛⎭⎪⎫x -122-a4, 又f(x)的最小值为-14,∴-a 4=-14,∴a =1,b =-1.∴f(x)=x 2-x.(2)由(1)得h(x)=ln x -2x +x 2-x =ln x +x 2-3x(x>0), ∴h′(x)=1x +2x -3=2x -1x -1x.易知函数h(x)的单调递增区间为⎝ ⎛⎭⎪⎫0,12,()1,+∞,单调递减区间为⎣⎢⎡⎦⎥⎤12,1. ∴⎩⎪⎨⎪⎧m -1>12,m -1≤1,∴32<m≤2.。
2021版新高考数学(文科)一轮复习集训8 幂函数与二次函数

幂函数与二次函数建议用时:45分钟一、选择题1.已知幂函数f (x )=(m 2-3m +3)x m +1为偶函数,则m =( ) A .1 B .2 C .1或2D .3A [∵函数f (x )为幂函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件;当m =2时,幂函数f (x )=x 3为奇函数,不满足条件,故选A.]2.已知幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫2,14,则函数g (x )=f (x )+x 24的最小值为( )A .1B .2C .4D .6A [设幂函数f (x )=x α.∵f (x )的图象过点⎝ ⎛⎭⎪⎫2,14,∴2α=14,解得α=-2.∴函数f (x )=x -2,其中x ≠0. ∴函数g (x )=f (x )+x 24=x -2+x 24 =1x 2+x 24≥21x 2·x 24=1,当且仅当x =±2时, g (x )取得最小值1.]3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )A B C DC [若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b2a <0,而二次函数的对称轴在y 轴的右侧,故可排除B.故选C.]4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0A [由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b2a =2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选A.]5.设x =0.20.3,y =0.30.2,z =0.30.3,则x ,y ,z 的大小关系为( ) A .x <z <y B .y <x <z C .y <z <xD .z <y <xA [由函数y =0.3x 在R 上单调递减,可得y >z .由函数y =x 0.3在(0,+∞)上单调递增,可得x <z .所以x <z <y .]二、填空题6.已知函数f (x )=x 2+2ax +3,若y =f (x )在区间[-4,6]上是单调函数,则实数a 的取值范围为________.(-∞,-6]∪[4,+∞) [由于函数f (x )的图象开口向上,对称轴是x =-a , 所以要使f (x )在[-4,6]上是单调函数, 应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.]7.已知二次函数y =f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________.f (x )=-4x 2-12x +40 [设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0),方程a ⎝ ⎛⎭⎪⎫x +322+49=0的两个实根分别为x 1,x 2,则|x 1-x 2|=14-1a =7,所以a =-4,所以f (x )=-4x 2-12x +40.]8.已知函数f (x )=a 2x +3a x -2(a >1),若在区间[-1,1]上f (x )≤8 恒成立,则a 的最大值为________.2 [令a x=t ,因为a >1,x ∈[-1,1],所以1a ≤t ≤a ,原函数化为g (t )=t 2+3t -2,显然g (t )在上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以a 的最大值为2.]三、解答题9.求函数f (x )=-x (x -a )在x ∈[-1,1]上的最大值.[解] 函数f (x )=-⎝ ⎛⎭⎪⎫x -a 22+a24的图象的对称轴为x =a 2,应分a 2<-1,-1≤a 2≤1,a2>1,即a <-2,-2≤a ≤2和a >2三种情形讨论.(1)当a <-2时,由图1可知f (x )在[-1,1]上的最大值为f (-1)=-1-a =-(a +1).(2)当-2≤a ≤2时,由图2可知f (x )在[-1,1]上的最大值为f ⎝ ⎛⎭⎪⎫a 2=a24.(3)当a >2时,由图3可知f (x )在[-1,1]上的最大值为f (1)=a -1.图1 图2 图3综上可知,f (x )max =⎩⎪⎨⎪⎧-(a +1),a <-2,a 24,-2≤a ≤2,a -1,a >2.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.[解] (1)设f (x )=ax 2+bx +1(a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x . 所以,2a =2且a +b =0,解得a =1,b =-1, 因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立, 即x 2-3x +1>m 在区间[-1,1]上恒成立. 所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54,因为g (x )在[-1,1]上的最小值为g (1)=-1, 所以m <-1.故实数m 的取值范围为(-∞,-1).1.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C .(-6,+∞)D .(-∞,-6)A [不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max , 令f (x )=x 2-4x -2,x ∈(1,4), 所以f (x )<f (4)=-2,所以a <-2.]2.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的是( ) A .②④ B .①④ C .②③D .①③B [因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确; 对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象,当x =-1时,y >0,即a -b +c >0,③错误; 由对称轴为x =-1知,b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.] 3.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈时,n ≤f (x )≤m 恒成立,则m -n 的最小值为________.1 [当x <0时,-x >0,f (x )=f (-x )=(x +1)2,因为x ∈,所以f (x )min =f (-1)=0,f (x )max =f (-2)=1,所以m ≥1,n ≤0,m -n ≥1.所以m -n 的最小值是1.]4.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. [解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴为x =-32∈[-2,3], ∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15, ∴函数f (x )的值域为.(2)∵函数f (x )的对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意. 综上可知,a =-13或-1.1.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.[由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈,故当m ∈时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]2.是否存在实数a ∈[-2,1],使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2]?若存在,求a 的值;若不存在,请说明理由.[解] f (x )=(x -a )2+a -a 2,当-2≤a <-1时,f (x )在[-1,1]上为增函数, ∴由⎩⎨⎧f (-1)=-2,f (1)=2,得a =-1(舍去);当-1≤a ≤0时,由⎩⎨⎧f (a )=-2,f (1)=2,得a =-1;当0<a ≤1时,由⎩⎨⎧f (a )=-2,f (-1)=2,得a 不存在;综上可得,存在实数a 满足题目条件,a =-1.快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。
高考数学一轮复习 第二篇 函数及其性质 专题2.4 幂函数与二次函数练习(含解析)-人教版高三全册数

专题2.4幂函数与二次函数【考试要求】1.通过具体实例,结合y =x ,y =1x,y =x 2,y =x ,y =x 3的图象,理解它们的变化规律,了解幂函数;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题. 【知识梳理】 1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式: 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质函数 y =ax 2+bx +c (a >0) y =ax 2+bx +c (a <0)图象 (抛物线)定义域R【微点提醒】1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的X 围有关.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时恒有f (x )>0,当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)函数y =2x 13是幂函数.( )(2)当n >0时,幂函数y =x n在(0,+∞)上是增函数.( ) (3)二次函数y =ax 2+bx +c (x ∈R )不可能是偶函数.( )(4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b24a.( )【答案】 (1)× (2)√ (3)× (4)×【解析】 (1)由于幂函数的解析式为f (x )=x α,故y =2x 13不是幂函数,(1)错. (3)由于当b =0时,y =ax 2+bx +c =ax 2+c 为偶函数,故(3)错.(4)对称轴x =-b 2a ,当-b 2a 小于a 或大于b 时,最值不是4ac -b24a,故(4)错.【教材衍化】2.(必修1P79T1改编)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A.12B.1C.32D.2 【答案】 C【解析】 因为f (x )=k ·x α是幂函数,所以k =1.又f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,所以α=12,所以k +α=1+12=32. 3.(必修1P44A9改编)若函数f (x )=4x 2-kx -8在[-1,2]上是单调函数,则实数k 的取值X 围是________. 【答案】 (-∞,-8]∪[16,+∞)【解析】 由于函数f (x )的图象开口向上,对称轴是x =k8,所以要使f (x )在[-1,2]上是单调函数,则有k8≤-1或k8≥2,即k ≤-8或k ≥16. 【真题体验】4.(2016·全国Ⅲ卷)已知a =243,b =323,c =2513,则( ) A.b <a <c B.a <b <c C.b <c <a D.c <a <b 【答案】 A【解析】 因为a =243=423,b =323,c =523又y =x 23在(0,+∞)上是增函数,所以c >a >b .5.(2019·某某中学月考)若存在非零的实数a ,使得f (x )=f (a -x )对定义域上任意的x 恒成立,则函数f (x )可能是( )A.f (x )=x 2-2x +1 B.f (x )=x 2-1 C.f (x )=2xD.f (x )=2x +1 【答案】 A【解析】 由存在非零的实数a ,使得f (x )=f (a -x )对定义域上任意的x 恒成立,可得函数图象的对称轴为x =a2≠0.只有选项A 中,f (x )=x 2-2x +1关于x =1对称.6.(2019·某某检测)幂函数f (x )=(m 2-4m +4)·x m 2-6m +8在(0,+∞)上为增函数,则m 的值为________.【答案】 1【解析】 由题意知⎩⎪⎨⎪⎧m 2-4m +4=1,m 2-6m +8>0,解得m =1.【考点聚焦】考点一 幂函数的图象和性质【例1】 (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )(2)若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( ) A.a <b <c B.c <a <b C.b <c <a D.b <a <c 【答案】 (1)C (2)D【解析】 (1)设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数,当0<x <1时,其图象在直线y =x 的上方,对照选项,C 正确.(2)因为y =x 23在第一象限内是增函数,所以a =⎝ ⎛⎭⎪⎫1223>b =⎝ ⎛⎭⎪⎫1523,因为y =⎝ ⎛⎭⎪⎫12x 是减函数,所以a =⎝ ⎛⎭⎪⎫1223<c =⎝ ⎛⎭⎪⎫1213,所以b <a <c .【规律方法】 1.对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定. 2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.【训练1】 (1)(2019·某某二模)已知点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b的图象上,则函数f (x )是( )A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数(2)(2018·某某卷)已知α∈⎩⎨⎧-2,-1,-12,⎭⎬⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______. 【答案】 (1)A (2)-1【解析】 (1)由题意得a -1=1,且12=a b ,因此a =2且b =-1.故f (x )=x -1是奇函数,但在定义域(-∞,0)∪(0,+∞)不是单调函数.(2)由题意知α可取-1,1,3.又y =x α在(0,+∞)上是减函数,∴α<0,取α=-1. 考点二 二次函数的解析式【例2】 (一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式. 【答案】见解析【解析】法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a=8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+(-1)2=12,所以m =12. 又根据题意,函数有最大值8,所以n =8,所以y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4, 所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-(-a )24a =8.解得a =-4或a =0(舍).故所求函数的【解析】式为f (x )=-4x 2+4x +7.【规律方法】求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:【训练2】已知二次函数f(x)的图象经过点(4,3),它在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)=________.【答案】x2-4x+3【解析】因为f(2-x)=f(2+x)对x∈R恒成立,所以y=f(x)的图象关于x=2对称.又y=f(x)的图象在x轴上截得的线段长为2,所以f(x)=0的两根为2-22=1或2+22=3.所以二次函数f(x)与x轴的两交点坐标为(1,0)和(3,0).因此设f(x)=a(x-1)(x-3).又点(4,3)在y=f(x)的图象上,所以3a=3,则a=1.故f(x)=(x-1)(x-3)=x2-4x+3.考点三二次函数的图象及应用【例3】 (1)对数函数y=log a x(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是( )(2)设函数f(x)=x2+x+a(a>0),已知f(m)<0,则( )A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0【答案】(1)A (2)C【解析】 (1)若0<a <1,则y =log a x 在(0,+∞)上单调递减,y =(a -1)x 2-x 开口向下,其图象的对称轴在y 轴左侧,排除C ,D.若a >1,则y =log a x 在(0,+∞)上是增函数,y =(a -1)x 2-x 图象开口向上,且对称轴在y 轴右侧,因此B 项不正确,只有选项A 满足.(2)因为f (x )的对称轴为x =-12,f (0)=a >0,所以f (x )的大致图象如图所示.由f (m )<0,得-1<m <0,所以m +1>0,所以f (m +1)>f (0)>0.【规律方法】1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是抛物线上关于对称轴对称的两个点,常取与x 轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件. 【训练3】 一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )【答案】 C【解析】 A 中,由一次函数y =ax +b 的图象可得a >0,此时二次函数y =ax 2+bx +c 的图象应该开口向上,A 错误;B 中,由一次函数y =ax +b 的图象可得a >0,b >0,此时二次函数y =ax 2+bx +c 的图象应该开口向上,对称轴x =-b2a <0,B 错误;C 中,由一次函数y =ax +b 的图象可得a <0,b <0,此时二次函数y =ax 2+bx +c的图象应该开口向下,对称轴x =-b2a<0,C 正确;D 中,由一次函数y =ax +b 的图象可得a <0,b <0,此时二次函数y =ax 2+bx +c 的图象应该开口向下,D 错误.考点四二次函数的性质角度1 二次函数的单调性与最值【例4-1】已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)某某数a的取值X围,使y=f(x)在区间[-4,6]上是单调函数.【答案】见解析【解析】(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4,故a的取值X围是(-∞,-6]∪[4,+∞).角度2 二次函数的恒成立问题【例4-2】(2019·某某“超级全能生”模拟)已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值X围是( )A.[-2,2]B.[1,2]C.[2,3]D.[1,2]【答案】 B【解析】由于f(x)=x2-2tx+1的图象的对称轴为x=t,又y=f(x)在(-∞,1]上是减函数,所以,t≥1.则在区间[0,t+1]上,f(x)max=f(0)=1,f(x)min=f(t)=t2-2t2+1=-t2+1,要使对任意的x1,x2∈[0,t+1],都有|f(x1)-f(x2)|≤2,只需1-(-t2+1)≤2,解得-2≤t≤ 2.又t≥1,∴1≤t≤ 2.【规律方法】 1.二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想求解. 2.由不等式恒成立求参数取值X 围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a≥f(x)恒成立⇔a ≥f(x)max ,a≤f(x)恒成立⇔a ≤f(x)min. 【训练4】 已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值X 围. 【答案】见解析【解析】(1)由题意知⎩⎪⎨⎪⎧a >0,-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎪⎨⎪⎧a =1,b =2.所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞), 单调递减区间为(-∞,-1].(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立, 令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,故k 的取值X 围是(-∞,1). 【反思与感悟】1.幂函数y =x α(α∈R )图象的特征α>0时,图象过原点和(1,1)点,在第一象限的部分“上升”;α<0时,图象不过原点,经过(1,1)点在第一象限的部分“下降”,反之也成立.2.求二次函数的解析式就是确定函数式f (x )=ax 2+bx +c (a ≠0)中a ,b ,c 的值.应根据题设条件选用适当的表达形式,用待定系数法确定相应字母的值.3.二次函数与一元二次不等式密切相关,借助二次函数的图象和性质,可直观地解决与不等式有关的问题.4.二次函数的单调性与对称轴紧密相连,二次函数的最值问题要根据其图象以及所给区间与对称轴的关系确定.【易错防X】1.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.2.对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2019·某某联考)下列命题正确的是( )A.y=x0的图象是一条直线B.幂函数的图象都经过点(0,0),(1,1)C.若幂函数y=xα是奇函数,则y=xα是增函数D.幂函数的图象不可能出现在第四象限【答案】 D【解析】A中,点(0,1)不在直线上,A错;B中,y=xα,当α<0时,图象不过原点,B错;C中,当α<0时,y=xα在(-∞,0),(0,+∞)上为减函数,C错.幂函数图象一定过第一象限,一定不过第四象限,D正确.2.若函数f(x)=x2+ax+b的图象与x轴的交点为(1,0)和(3,0),则函数f(x)( )A.在(-∞,2]上递减,在[2,+∞)上递增B.在(-∞,3)上递增C.在[1,3]上递增D.单调性不能确定【答案】 A【解析】由已知可得该函数图象的对称轴为x=2,又二次项系数为1>0,所以f(x)在(-∞,2]上是递减的,在[2,+∞)上是递增的.3.(2019·某某区模拟)已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为( )A.1B.0C.-1D.2【答案】 A【解析】f(x)=-x2+4x+a=-(x-2)2+a+4,∴函数f(x)=-x2+4x+a在[0,1]上单调递增,∴当x=0时,f(x)取得最小值,当x=1时,f(x)取得最大值,∴f(0)=a=-2,f(1)=3+a=3-2=1.4.(2019·某某一中)已知函数y=ax2+bx-1在(-∞,0]是单调函数,则y=2ax+b的图象不可能是( )【答案】 B【解析】①当a=0,b≠0时,y=2ax+b的图象可能是A;②当a>0时,-b2a≥0⇒b≤0,y=2ax+b的图象可能是C;③当a<0时,-b2a≥0⇒b≥0,y=2ax+b的图象可能是D.5.已知p:|m+1|<1,q:幂函数y=(m2-m-1)x m在(0,+∞)上单调递减,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 B【解析】p:由|m+1|<1得-2<m<0,∵幂函数y=(m2-m-1)x m在(0,+∞)上单调递减,∴m2-m-1=1,且m<0,解得m=-1.∴p是q的必要不充分条件.二、填空题6.已知函数f (x )为幂函数,且f (4)=12,则当f (a )=4f (a +3)时,实数a 等于________.【答案】 15【解析】 设f (x )=x α,则4α=12,所以α=-12.因此f (x )=x -12,从而a -12=4(a +3)-12,解得a =15.7.(2019·某某质检)若二次函数f (x )=ax 2-x +b (a ≠0)的最小值为0,则a +4b 的取值X 围是________. 【答案】 [2,+∞)【解析】 依题意,知a >0,且Δ=1-4ab =0,∴4ab =1,且b >0. 故a +4b ≥24ab =2,当且仅当a =4b ,即a =1,b =14时等号成立.所以a +4b 的取值X 围是[2,+∞).8.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值X 围是________.【答案】 [0,4]【解析】 由题意可知函数f (x )的图象开口向下,对称轴为x =2(如图),若f (a )≥f (0),从图象观察可知0≤a ≤4. 三、解答题9.已知幂函数f (x )=(m -1)2xm 2-4m +2在(0,+∞)上单调递增,函数g (x )=2x-k . (1)求m 的值;(2)当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,设p :x ∈A ,q :x ∈B ,若p 是q 成立的必要条件,某某数k 的取值X 围. 【答案】见解析【解析】(1)依题意得:(m -1)2=1⇒m =0或m =2,当m =2时,f (x )=x -2在(0,+∞)上单调递减,与题设矛盾,舍去,∴m =0. (2)由(1)得,f (x )=x 2,当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4), 当x ∈[1,2)时,g (x )∈[2-k ,4-k ), 即B =[2-k ,4-k),因p 是q 成立的必要条件,则B ⊆A ,则⎩⎪⎨⎪⎧2-k≥1,4-k≤4,即⎩⎪⎨⎪⎧k≤1,k≥0,得0≤k≤1. 故实数k 的取值X 围是[0,1].10.已知奇函数y =f (x )定义域是R ,当x ≥0时,f (x )=x (1-x ). (1)求出函数y =f (x )的解析式;(2)写出函数y =f (x )的单调递增区间.(不用证明,只需直接写出递增区间即可) 【答案】见解析【解析】(1)当x <0时,-x >0, 所以f (-x )=-x (1+x ). 又因为y =f (x )是奇函数, 所以f (x )=-f (-x )=x (1+x ).综上f (x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,x (1+x ),x <0.(2)函数y =f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-12,12.【能力提升题组】(建议用时:20分钟)11.(2019·某某模拟)幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a,y =x b的图象三等分,即有BM =MN =NA ,那么a -1b=( )A.0B.1C.12D.2【答案】 A【解析】BM =MN =NA ,点A (1,0),B (0,1),所以M ⎝ ⎛⎭⎪⎫13,23,N ⎝ ⎛⎭⎪⎫23,13, 将两点坐标分别代入y =x a ,y =x b,得a =log 1323,b =log 2313,∴a -1b =log 1323-1log2313=0.12.已知函数f (x )=x 2+ax +b (a ,b ∈R ),若存在非零实数t ,使得f (t )+f ⎝ ⎛⎭⎪⎫1t =-2成立,则a 2+4b 2的最小值为( ) A.165B.145C.16D.4 【答案】 A【解析】 由f (t )+f ⎝ ⎛⎭⎪⎫1t =-2知,存在实数t ≠0,使⎝⎛⎭⎪⎫t +1t 2+a ⎝ ⎛⎭⎪⎫t +1t +2b =0成立,又a 2+4b 2的几何意义为坐标原点与点(a ,2b )的距离的平方,记2b =m ,u =t +1t,则u 2≥4.故⎝ ⎛⎭⎪⎫t +1t 2+a ⎝ ⎛⎭⎪⎫t +1t +2b =0,即ua +m +u 2=0,其表示动点(a ,m )的轨迹,设为直线l ,则原点与点(a ,m )的距离的最小值为原点到直线l的距离,故a 2+4b 2≥⎝ ⎛⎭⎪⎫u 2u 2+12=⎝⎛⎭⎪⎫u 2+1-1u 2+12≥165.13.已知函数f (x )=mx 2+(2-m )x +n (m >0),当-1≤x ≤1时,|f (x )|≤1恒成立,则f ⎝ ⎛⎭⎪⎫23=________.【答案】 -19【解析】 当x∈[-1,1]时,|f(x)|≤1恒成立.∴⎩⎪⎨⎪⎧|f (0)|≤1⇒|n|≤1⇒-1≤n≤1;|f (1)|≤1⇒|2+n|≤1⇒-3≤n≤-1, 因此n =-1,∴f (0)=-1,f (1)=1.由f (x )的图象可知:要满足题意,则图象的对称轴为直线x =0, ∴2-m =0,m =2,∴f (x )=2x 2-1,∴f ⎝ ⎛⎭⎪⎫23=-19.14.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,某某数m 的取值X 围. 【答案】见解析【解析】(1)设f (x )=ax 2+bx +1(a ≠0),则f (x +1)-f (x )=2x ,得2ax +a +b =2x . 所以,2a =2且a +b =0,解得a =1,b =-1, 又f (0)=1,所以c =1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立; 即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54,因为g (x )在[-1,1]上的最小值为g (1)=-1, 所以m <-1.故实数m 的取值X 围为(-∞,-1). 【新高考创新预测】15.(思维创新)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 有关,但与b 无关 C.与a 无关,且与b 无关 D.与a 无关,但与b 有关 【答案】 B【解析】 设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.。
2021年高考数学大一轮复习 2.4二次函数与幂函数课时作业 理

2021年高考数学大一轮复习 2.4二次函数与幂函数课时作业 理一、选择题1.已知幂函数f (x )=x α的图象过点(4,2),若f (m )=3,则实数m 的值为( ) A. 3 B .±3 C .±9D .9解析:由已知条件可得4α=22α=2,所以α=12,则f (x )=x 12=x ,故f (m )=m =3⇒m =9,选D.答案:D2.当α∈⎩⎨⎧⎭⎬⎫-1,12,1,3时,幂函数y =x α的图象不可能经过的象限是( ) A .第二象限 B .第三象限 C .第四象限D .第二、四象限解析:画出函数图象即可. 答案:D3.若x ∈(0,1),则下列结论正确的是( ) A .lg x >x 12 >2xB .2x>lg x >x12C .x12>2x>lg xD .2x>x12>lg x解析:当x ∈(0,1)时,2x ∈(1,2),x12 ∈(0,1),lg x ∈(-∞,0),所以2x>x12 >lg x . 答案:D4.已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,则它的图象是( )解析:∵a>b>c,a+b+c=0,∴a>0,c<0.答案:D5.定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2-x,则当x∈[-2,-1]时,f(x)的最小值为( )A.-116B.-18C.-14D.0解析:设x∈[-2,-1],则x+2∈[0,1],则f(x+2)=(x+2)2-(x+2),又f(x+2)=f[(x+1)+1]=2f(x+1)=4f(x),∴f(x)=14(x2+3x+2),∴当x=-32时,取到最小值为-116.答案:A6.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是( ) A.a<-2 B.a>-2C.a>-6 D.a<-6解析:不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max,令g(x)=x2-4x-2,x∈(1,4),所以g(x)≤g(4)=-2,所以a<-2.答案:A二、填空题7.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析:由f(x)的定义域为R,值域为(-∞,4],可知b≠0,∴f(x)为二次函数,f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.∵f(x)为偶函数,∴其对称轴为x=0,∴-(2a+ab)=0,解得a=0或b=-2.若a=0,则f(x)=bx2,与值域是(-∞,4]矛盾,∴a≠0,b=-2,又f(x)的最大值为4,∴2a2=4,∴f(x)=-2x2+4.答案:-2x2+48.已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.解析:因为f (x )的值域为[0,+∞),所以Δ=0,即a 2=4b ,所以x 2+ax +a 24-c <0的解集为(m ,m +6),易得m ,m +6是方程x 2+ax +a 24-c =0的两根,由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m m +6=a 24-c ,解得c =9.答案:99.已知函数f (x )=x 2-2x ,g (x )=ax +2(a >0),对任意的x 1∈[-1,2]都存在x 0∈[-1,2],使得g (x 1)=f (x 0),则实数a 的取值范围是________.解析:当x 0∈[-1,2]时,由f (x )=x 2-2x 得f (x 0)∈[-1,3],又对任意的x 1∈[-1,2]都存在x 0∈[-1,2],使得g (x 1)=f (x 0),∴当x 1∈[-1,2]时,g (x 1)∈[-1,3].当a >0时,⎩⎪⎨⎪⎧-a +2≥-1,2a +2≤3,解得a ≤12.综上所述,实数a 的取值范围是⎝ ⎛⎦⎥⎤0,12.答案:⎝ ⎛⎦⎥⎤0,12三、解答题10.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 解:(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],∴f (x )min =f ⎝ ⎛⎭⎪⎫-32 =94-92-3=-214,f (x )max =f (3)=15, ∴函数f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)函数f (x )的对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3, ∴6a +3=1,即a =-13满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意.综上可知a =-13或-1.11.已知函数f (x )=x 2-2ax +5(a >1).(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.解:(1)∵f (x )=(x -a )2+5-a 2(a >1), ∴f (x )在[1,a ]上是减函数. 又定义域和值域均为[1,a ]. ∴⎩⎪⎨⎪⎧f 1=a ,fa =1,即⎩⎪⎨⎪⎧1-2a +5=a ,a 2-2a 2+5=1,解得a =2.(2)∵f (x )在区间(-∞,2]上是减函数,∴a ≥2. 又x =a ∈[1,a +1],且(a +1)-a ≤a -1, ∴f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2.∵对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4, ∴f (x )max -f (x )min ≤4,得-1≤a ≤3.又a ≥2,∴2≤a ≤3.故实数a 的取值范围是[2,3].1.幂函数y =x -1,y =x m 与y =x n在第一象限内的图象如上图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<mC .-1<m <0<nD .-1<n <0<m <1解析:在第一象限作出幂函数y =x ,y =x 0的图象,在(0,1)内作直线x =x 0与各图象的交点,由“点低指数大”,如上图,知-1<n <0<m <1,故选D.答案:D2.对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是( )A .(-2,1)B .[0,1]C .[-2,0)D .[-2,1)解析:当x 2-1-(4+x )≥1时,x ≥3或x ≤-2;当x 2-1-(4+x )<1时-2<x <3,故f (x )=⎩⎪⎨⎪⎧4+x ,x ≥3或x ≤-2x 2-1,-2<x <3,f (x )的图象如下图所示,y =f (x )+k 的图象与x 轴有三个不同交点转化为y =f (x )与y=-k 有三个不同交点,由图可知-1<-k ≤2,故-2≤k <1.答案:D3.若函数f(x)=ax2+20x+14(a>0)对任意实数t,在闭区间[t-1,t+1]上总存在两实数x1、x2,使得|f(x1)-f(x2)|≥8成立,则实数a的最小值为________.解析:由题意可得,当x∈[t-1,t+1]时,[f(x)max-f(x)min]min≥8,又在二次函数的图象上,区间[t-1,t+1]离对称轴越远,f(x)max-f(x)min越大,所以当[t-1,t+1]关于对称轴对称时,f(x)max-f(x)min取得最小值,为f(t+1)-f(t)=a≥8,所以实数a的最小值为8.答案:84.已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.(1)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;(2)若p和q是方程f(x)-g(x)=0的两根,且满足0<p<q<1a,证明:当x∈(0,p)时,g(x)<f(x)<p-a.解:(1)设函数g(x)图象与x轴的交点坐标为(a,0),又∵点(a,0)也在函数f(x)的图象上,∴a3+a2=0.而a≠0,∴a=-1.(2)由题意可知f(x)-g(x)=a(x-p)(x-q).∵0<x<p<q<1a,∴a(x-p)(x-q)>0,∴当x∈(0,p)时,f(x)-g(x)>0,即f(x)>g(x).又f(x)-(p-a)=a(x-p)(x-q)+x-a-(p-a)=(x-p)(ax-aq+1),x-p<0,且ax-aq+1>1-aq>0,∴f(x)-(p-a)<0,∴f(x)<p-a,综上可知,g(x)<f(x)<p-a.[ •31201 79E1 秡F33880 8458 葘36474 8E7A 蹺22271 56FF 囿25396 6334 挴32625 7F71 罱R 38429 961D 阝36921 9039 逹X。
高考数学一轮复习 第2章 函数、导数及其应用 2.4 二次函数与幂函数课件 文

12/7/2021
第三十九页,共六十四页。
角度 2 二次函数的最值问题
典例 已知函数 f(x)=x2-2(a+2)x+a2,g(x)=-x2
+ 2(a - 2)x - a2 + 8. 设 H1(x) = max{f(x) , g(x)} , H2(x) =
12, 22,则 k+α=(
)
A.12
B.1
3 C.2 解析
D.2 由幂函数的定义知 k=1.又 f12= 22,所以12α=
22,解得 12/7/2021 α=12,从而 k+α=32.故选 C.
第十四页,共六十四页。
(2)函数 f(x)=x2-ax-a 在[0,2]上的最大值为 1,则实数
a 等于( )
∴f(x)max=f(0)=1-a,由 1-a=2,得 a=-1; ②当 0<a≤1 时,函数 f(x)=-x2+2ax+1-a 在区间[0, a]上是增函数,在[a,1]上是减函数, ∴f(x)max=f(a)=-a2+2a2+1-a=a2-a+1,
12/7/2021
第三十三页,共六十四页。
由 a2-a+1=2,解得 a=1+2 5或 a=1-2 5, ∵0<a≤1,∴两个值都不满足; ③当 a>1 时,函数 f(x)=-x2+2ax+1-a 在区间[0,1] 上是增函数, ∴f(x)max=f(1)=-1+2a+1-a=a,∴a=2. 综上可知,a=-1 或 a=2.故选 D.
12/7/2021
根据幂函数的性质逐项验证.
第十八页,共六十四页。
1
解析 由函数 f(x)=x 2 ,知: 在 A 中,f(x)≥0 恒成立,故 A 错误; 在 B 中,∀x∈[0,+∞),f(x)≥0,故 B 正确; 在 C 中,∀x1,x2∈[0,+∞),x1≠x2,都有fxx11- -fx2x2 >0,故 C 错误; 在 D 中,当 x1=0 时,不存在 x2∈[0,+∞)使得 f(x1)>f(x2),故 D 不成立.故选 B.
2021高考浙江版数学一轮讲义:第二章 § 2.4 二次函数和幂函数 Word版含解析

§ 2.4二次函数和幂函数1.幂函数(1)定义:形如①y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x 12,y=x-1.(2)性质a.幂函数在(0,+∞)上都有定义;b.当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;c.当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数的三种表示形式a.一般式:②f(x)=ax2+bx+c(a≠0);b.顶点式:③f(x)=a(x-h)2+k(a≠0);c.两根式:④f(x)=a(x-x1)(x-x2)(a≠0).(3)二次函数的图象和性质解析式f(x)=ax2+bx+c(a>0) f(x)=ax2+bx+c(a<0)图象定义域(-∞,+∞)(-∞,+∞)值域[4ac-b2,+∞)(-∞,4ac-b2]单调性在[-b2a,+∞)上单调递增,在-∞,-b2a 上单调递减在-∞,- b2a上单调递增,在-b2a,+∞上单调递减奇偶性当b=0时为偶函数,当b≠0时为非奇非偶函数解析式f(x)=ax2+bx+c(a>0) f(x)=ax2+bx+c(a<0)顶点坐标(-b,4ac-b2)对称性图象关于直线x=-b2a对称(4)若二次函数y=f(x)=ax2+bx+c(a≠0)满足f(x1)=f(x2),则图象关于直线⑤x=x1+x22对称;若二次函数y=f(x)=ax2+bx+c(a≠0)满足f(x+m)=f(-x+n),则图象关于直线⑥x=m+n2对称.1.(教材习题改编)下图是①y=x a;②y=x b;③y=x c在第一象限的图象,则a,b,c的大小关系为( )A.c<b<aB.a<b<cC.b<c<aD.a<c<b1.答案 D2.函数f(x)=(m2-m-1)x m是幂函数,且在x∈(0,+∞)上为增函数,则实数m的值是( )A.-1B.2C.3D.-1或22.答案 B3.(2018浙江温州高三月考)已知函数f(x)=x2+x+c,若f(0)>0, f(p)<0,则必有( )A. f(p+1)>0B. f(p+1)<0C. f(p+1)=0D. f(p+1)的符号不能确定 3.答案 A4.(教材习题改编)已知幂函数y=f(x)的图象过点(2,√22),则此函数的解析式为 ;在区间上递减.4.答案 y=x -12;(0,+∞)5.已知函数f(x)=x 2-2ax-3在区间[1,2]上具有单调性,则实数a 的取值范围是 . 5.答案 (-∞,1]∪[2,+∞)考点一 二次函数的解析式典例1 已知二次函数f(x)满足f(2)=-1, f(-1)=-1,且f(x)的最大值是8,试求出此二次函数的解析式.解析 解法一:(利用“一般式”解题)设f(x)=ax 2+bx+c(a≠0). 由题意得{4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得{a =-4,b =4,c =7. ∴所求二次函数的解析式为f(x)=-4x 2+4x+7.解法二:(利用“顶点式”解题)设f(x)=a(x-m)2+n(a≠0). ∵f(2)=f(-1),∴抛物线的对称轴为x=2-12=12,∴m=12.又函数有最大值8,∴n=8,∴f(x)=a (x -12)2+8, ∵f(2)=-1,∴a (2-12)2+8=-1, 解得a=-4,∴f(x)=-4(x -12)2+8=-4x 2+4x+7. 解法三:(利用“两根式”解题)由已知可得f(x)+1=0的两根为x 1=2,x 2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0), 即f(x)=ax 2-ax-2a-1.又函数有最大值8, ∴4a (-2a -1)-(-a )24a=8.解得a=-4或a=0(舍).∴所求函数的解析式为f(x)=-4x 2+4x+7.1-1 已知二次函数f(x)的图象经过点(4,3),且截x 轴所得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),求二次函数 f(x)的解析式.解析 ∵f(2-x)=f(2+x)对x∈R 恒成立, ∴f(x)的图象的对称轴为直线x=2. 又∵f(x)的图象截x 轴所得的线段长为2, ∴f(x)=0的两根为x=1和x=3.设f(x)的解析式为f(x)=a(x-1)(x-3)(a≠0), ∵f(x)的图象过点(4,3),∴3a=3,a=1.∴二次函数f(x)的解析式为f(x)=(x-1)·(x -3), 即f(x)=x 2-4x+3.考点二 二次函数的图象与性质命题方向一 二次函数图象识别问题典例2 (2019镇海中学模拟)一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图象大致是( )答案 C解析若a>0,则一次函数y=ax+b为增函数,二次函数y=ax2+bx+c的图象开口向上,故可排除A;若a<0,则一次函数y=ax+b为减函数,二次函数y=ax2+bx+c的图象开口向下,故可排除D;<0,而二次函数图象的对称轴在y轴的右侧,对于选项B,由一次函数的图象可知a>0,b>0,则-b2a故应排除B,故选C.方法指导识别二次函数图象应学会“三看”2-1 函数y=1-|x-x2|的图象大致是( )答案 C 当x=-1时,y=1-|-1-1|=-1,所以排除A,D,当x=2时,y=1-|2-4|=-1,所以排除B,故选C.命题方向二二次函数的单调性问题典例3 已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)求使y=f(x)在区间[-4,6]上是单调函数的实数a的取值范围;(2)当a=-1时,求f(|x|)的单调区间.解析(1)函数f(x)=x2+2ax+3的图象的对称轴为直线x=-2a=-a,2要使f(x)在[-4,6]上为单调函数,只需-a≤-4或-a≥6,解得a≥4或a≤-6.故a的取值范围是(-∞,-6]∪[4,+∞).(2)当a=-1时,f(|x|)=x2-2|x|+3={x2+2x+3=(x+1)2+2,x≤0, x2-2x+3=(x-1)2+2,x>0,其图象如图所示.∵x∈[-4,6],∴f(|x|)在区间[-4,-1)和[0,1)上为减函数,在区间[-1,0)和[1,6]上为增函数.◆探究1 若函数f(x)=x2+2ax+3在[-4,+∞)上为增函数,求实数a的取值范围.解析∵f(x)=x2+2ax+3在[-4,+∞)上为增函数,∴-a≤-4,即a≥4.◆探究2 若函数f(x)=x2+2ax+3的单调增区间为[-4,+∞),求a为何值.解析∵f(x)=x2+2ax+3的单调增区间为[-4,+∞),∴-a=-4,即a=4.方法技巧研究二次函数单调性的思路(1)二次函数的单调性在其图象对称轴的两侧不同,因此研究二次函数的单调性时要依据其图象的对称轴进行分类讨论.(2)若已知f(x)=ax2+bx+c(a>0)在区间A上单调递减(单调递增),则A⊆(-∞,-b2a](A⊆[-b2a,+∞)).2-2 (2019浙江模拟)已知函数f(x)=x2-2tx+1在(-∞,1]上递减,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围是( )A.[-√2,√2]B.[1,√2]C. [2,3]D.[1,2]答案 B 对任意的x 1,x 2∈[0,t+1],总有|f(x 1)-f(x 2)|≤2转化为f(x)max -f(x)min ≤2. 由f(x)在(-∞,1]上是减函数,得--2t 2≥1,即t≥1,从而有t-0≥t+1-t,故f(x)在[0,1+t]上的最大值为1,最小值为1-t 2,故有1-(1-t 2)≤2,解得-√2≤t≤√2,又t≥1,所以1≤t≤√2.故选B.命题方向三 二次函数的最值问题典例4 (2019浙江名校新高考研究联盟高三第一次联考)设函数f(x)=|x 2+a|+|x+b|(a,b∈R),当x∈[-2,2]时,记f(x)的最大值为M(a,b),则M(a,b)的最小值为 .答案258解析 去绝对值得f(x)=±(x 2+a)±(x+b),根据二次函数的性质可得,f(x)在[-2,2]上的最大值为f(-2), f(2),f (-12)或f (12),所以M(a,b)≥f(-2)=|4+a|+ |-2+b|,M(a,b)≥f(2)=|4+a|+|2+b|, M(a,b)≥f (12)=|14+a|+|12+b|, M(a,b)≥f (-12)=|14+a|+|-12+b|, 上面四个式子相加可得4M(a,b)≥2(|4+a |+|14+a|)+|2-b|+|2+b|+|12+b|+|12-b| ≥2×|4-14|+(|2+2|+|12+12|)=252, 即M(a,b)≥258,所以M(a,b)的最小值为258. 方法点拨二次函数最值问题的类型及求解策略(1)类型:①对称轴、区间都是固定的;②对称轴动、区间固定;③对称轴定、区间变动.(2)求解策略:抓住“三点一轴”数形结合,三点指区间的两个端点和顶点,一轴指对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可解决.变式练(2019台州中学月考)若函数f(x)=x2-2x+1在区间[a,a+2]上的最小值为4,则a的取值集合为( )A.{-3,-1}B.{-1,3}C.{-3,3}D.{-1,-3,3}答案 C f(x)=x2-2x+1=(x-1)2,故函数图象的对称轴是x=1.因为f(x)在区间[a,a+2]上的最小值为4,所以当1≤a时,ymin=f(a)=(a-1)2=4,解得a=-1(舍去)或a=3,当a+2≤1,即a≤-1时,ymin=f(a+2)=(a+1)2=4,解得a=1(舍去)或a=-3,当a<1<a+2,即-1<a<1时,ymin=f(1)=0≠4,不符合题意.故a的取值集合为{-3,3}.深化练已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,求实数a的取值范围.解析由题可知2ax2+2x-3<0在[-1,1]上恒成立.当a=0时,符合题意;当a≠0时,x=0时,有-3<0恒成立;x≠0时,a<32(1x-13)2-16,因为1x∈(-∞,-1]∪[1,+∞),当1x =1,即x=1时,不等式右边取最小值12.所以a<12,且a≠0.综上,实数a的取值范围是(-∞,12).命题方向四一元二次不等式恒成立问题典例5 已知a∈R,函数f(x)={x 2+2x +a -2,x ≤0,-x 2+2x -2a ,x >0.若对任意x∈[-3,+∞), f(x)≤|x|恒成立,则a 的取值范围是 .答案 [18,2]解析 ①当x∈[-3,0]时,因为f(x)≤|x|恒成立,所以x 2+2x+a-2≤-x,参变量分离得a≤-x 2-3x+2,令y=-x 2-3x+2=-(x +32)2+174,所以当x=0或x=-3时,y 取得最小值,为2,所以a≤2.②当x∈(0,+∞)时,因为f(x)≤|x|恒成立,所以-x 2+2x-2a≤x,参变量分离得a≥-12x 2+12x,令y=-12x 2+12x=-12(x -12)2+18,所以当x=12时,y 取得最大值,为18,所以a≥18.由①②可得18≤a≤2. 规律总结由不等式恒成立求参数的取值范围的思路1.一般有两个解题思路:一是分离参数;二是不分离参数.2.两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据:(1)a≥f(x)恒成立⇔a≥f(x)max ;(2)a≤f(x)恒成立⇔a≤f(x)min .2-3 已知函数f(x)={x 2+2x +a -1,-3≤x ≤0,-x 2+2x -a ,0<x ≤3.当a=0时, f(x)的最小值等于 ;若对任意x∈[-3,3], f(x)≤|x|恒成立,则实数a 的取值范围是 .答案 -3;[14,1] 解析 当a=0时,f(x)={x 2+2x -1,-3≤x ≤0,-x 2+2x ,0<x ≤3.-3≤x≤0时, f(x)=(x+1)2-2, 得当x=-1时, f(x)有最小值-2, 0<x≤3时, f(x)=-(x-1)2+1, 得当x=3时, f(x)有最小值-3, 所以,当a=0时, f(x)的最小值等于-3.由对任意x∈[-3,3], f(x)≤|x|恒成立, 知 ①-3≤x≤0时,x 2+2x+a-1≤-x 恒成立, 即a≤-x 2-3x+1恒成立, 令g(x)=-x 2-3x+1=-(x +32)2+134,则-3≤x≤0时,g(x)的最小值为g(0)=g(-3)=1, 所以a≤1.②0<x≤3时,-x 2+2x-a≤x 恒成立, 即a≥-x 2+x 恒成立, 令h(x)=-x 2+x=-(x -12)2+14,则当0<x≤3时,h(x)的最大值为h (12)=14, 所以a≥14.综上,实数a 的取值范围是[14,1].考点三 二次函数的综合问题典例6 (2019鄞州中学高三月考)已知函数f(x)=x 2+ax+3. (1)当a=-4时,求函数f(x)的零点;(2)若函数f(x)对任意x∈R 都有f(1+x)=f(1-x)恒成立,求函数f(x)的解析式; (3)若函数f(x)在区间[-1,1]上的最小值为-3,求实数a 的值. 解析 (1)当a=-4时, f(x)=x 2-4x+3=(x-1)(x-3), 由f(x)=0可得x=1或x=3, 所以函数f(x)的零点为1和3.(2)由于f(1+x)=f(1-x)对任意x∈R 恒成立,所以函数f(x)图象的对称轴为直线x=1,即-a2=1,解得a=-2,故函数f(x)的解析式为f(x)=x 2-2x+3.(3)函数f(x)=x 2+ax+3图象的对称轴为直线x=-a2, 当-a2≥1,即a≤-2时, f(x)在[-1,1]上单调递减, 所以f(x)min =f(1)=a+4=-3,解得a=-7,符合题意;当-1<-a2<1,即-2<a<2时, f(x)在[-1,-a2]上单调递减,在(-a2,1]上单调递增, 所以f(x)min =f (-a2)=4×3-a 24=-3,解得a=±2√6,与-2<a<2矛盾,舍去;当-a2≤-1,即a≥2时, f(x)在[-1,1]上单调递增, 所以f(x)min =f(-1)=4-a=-3,解得a=7,符合题意. 综上所述,a=-7或a=7. 规律总结二次函数的综合问题中,最典型的就是二次函数与不等式的综合问题,其中又以三个“二次”问题最为典型,也就是二次函数、二次方程和二次不等式的综合问题.它们常结合在一起,而二次函数又是其核心,所以,利用二次函数的图象(数形结合)是探求这类问题的基本策略.如一元二次方程根的分布问题常借助二次函数图象,从开口方向、对称轴、判别式、端点函数值四方面入手处理.3-1 (2018浙江杭州第二中学热身)已知函数f(x)=x 2-2mx+m+2,g(x)=mx-m,若存在x 0∈R,使得f(x 0)<0且g(x 0)<0同时成立,则实数m 的取值范围是 .答案 (3,+∞)解析 当m>0,x<1时,g(x)<0, 所以f(x)<0在(-∞,1)有解, 则{f (1)<0,m ≥1或{0<m <1,Δ>0, 即m>3或{0<m <1,m 2-m -2>0(无解),故m>3.当m<0,x>1时,g(x)<0,所以f(x)<0在(1,+∞)有解, 所以{f (1)<0,m <0,此不等式组无解.综上,m 的取值范围是(3,+∞).考点四 幂函数的图象与性质典例7 已知幂函数f(x)=x -m 2-2m+3(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数,则f(2)的值为 .答案 16解析 根据幂函数的性质可得-m 2-2m+3>0,即m 2+2m-3<0,解得-3<m<1,又m∈Z,故m 的可能取值为-2,-1,0.当m=-2时,-m 2-2m+3=3,不符合题意;当m=-1时,-m 2-2m+3=4,符合题意;当m=0时,-m 2-2m+3=3,不符合题意.所以f(x)=x 4,所以f(2)=24=16. 方法指导研究幂函数时,要从熟记五个基本幂函数的图象开始,理清幂函数y=x α(α∈R)的相关性质,再辅之以数形结合的方法,这类问题就会迎刃而解.如果不是基本的幂函数,那么通常先将负指数幂化为正指数幂,再将分数指数幂化为根式(幂指数是负整数时化为分式),然后根据得到的根式(分式)研究幂函数的性质.幂函数的定义域就是使这些根式或分式有意义的自变量的集合,直接利用定义判断其奇偶性和单调性.4-1 若函数f(x)是幂函数,则f(1)= ,若满足f(4)=8f(2),则f (13)= . 答案 1;127解析 设f(x)=x α(α∈R), 则f(1)=1.由f(4)=8f(2)得4α=8×2α, 则2α=α+3,∴α=3,则f(x)=x 3,则f (13)=127.A 组 基础题组1.幂函数f(x)的图象过点(2,√22),则f(8)=( )A.14 B.√24 C.12D.√21.答案 B2.函数f(x)=2x 2-mx+3在(-∞,-1]上单调递减,在(-1,+∞)上单调递增,则f(2)=( ) A.10 B.14 C.19 D.20 2.答案 C3.函数y=√2的值域为( ) A.[0,4] B.(-∞,4]C.[0,+∞)D.[0,2]3.答案 D4.已知a∈{-1,2,12,3,13},若f(x)=x a 为奇函数,且在(0,+∞)上单调递增,则实数a 的值是( ) A.-1或3B.13或3C.-1,13或3 D.13,12或3 4.答案 B5.已知函数f(x)=x 2+(a+1)x+ab,若不等式f(x)≤0的解集为{x|-1≤x≤4},则a+2b 的值为( ) A.-2 B.3C.-3D.25.答案 A 依题意,知-1,4为方程x 2+(a+1)x+ab=0的两个根,所以{-1+4=-(a +1),-1×4=ab ,解得{a =-4,b =1,所以a+2b 的值为-2,故选A. 6.(2019绍兴一中月考)命题“ax 2-2ax+3>0恒成立”是假命题,则实数a 的取值范围是( ) A.a<0或a≥3 B.a≤0或a≥3 C.a<0或a>3D.0<a<36.答案 A 若ax 2-2ax+3>0恒成立,则a=0或{a >0,Δ=4a 2-12a <0,可得0≤a<3,故当命题“ax 2-2ax+3>0恒成立”是假命题时,a<0或a≥3.7.二次函数f(x)=x 2+2ax+b 在[-1,+∞)上单调递增,则实数a 的取值范围是 . 7.答案 [1,+∞)解析 二次函数f(x)=x 2+2ax+b 的图象的对称轴为直线x=-a,∵f(x)在[-1,+∞)上单调递增,∴-a≤-1,即a≥1.8.幂函数f(x)=(m 2-3m+3)x m 的图象关于y 轴对称,则实数m= . 8.答案 2解析 ∵函数f(x)=(m 2-3m+3)x m 是幂函数,∴m 2-3m+3=1, 解得m=1或m=2.当m=1时,函数f(x)=x 的图象不关于y 轴对称,舍去; 当m=2时,函数f(x)=x 2的图象关于y 轴对称, ∴实数m=2.9.(2019浙江台州高三上期末)已知f(x)={x +3,x <0,x 2+x -1,x ≥0,则f(2)= ;不等式f(x)>f(1)的解集为 . 9.答案 5;(-2,0)∪(1,+∞) 解析 f(2)=22+2-1=5.f(x)>f(1)等价于{x <0,x +3>1或{x ≥0,x 2+x -1>1,解得-2<x<0或x>1,故不等式的解集为(-2,0)∪(1,+∞).10.对于定义在R 上的函数f(x),若实数x 0满足f(x 0)=x 0,则称x 0是函数f(x)的一个不动点.若函数f(x)=x 2+ax+1没有不动点,则实数a 的取值范围是 . 10.答案 (-1,3)解析 问题等价于方程x 2+ax+1=x 无解,即x 2+(a-1)x+1=0无解,∴Δ=(a -1)2-4<0⇒-1<a<3. 11.设二次函数f(x)=ax 2+2bx+c(c>b>a),其图象过点(1,0),且与直线y=-a 有交点. (1)求证:0≤ba <1;(2)若直线y=-a 与函数y=|f(x)|的图象从左到右依次交于A,B,C,D 四点,且线段AB,BC,CD 能构成钝角三角形,求b a 的取值范围.11.解析 (1)证明:由题意知,a+2b+c=0,又c>b>a, 所以a<0,c>0.由c=-a-2b>b>a,得-13<b a <1.因为函数y=f(x)的图象与直线y=-a 有交点, 所以方程ax 2+2bx+c+a=0有实根, 故Δ=4b 2-4a(c+a)=4b 2+8ab≥0, 所以4(b a )2+8·ba ≥0, 解得ba ≤-2或ba ≥0, 综上可得,0≤ba <1.(2)易知A,D 关于对称轴对称,B,C 关于对称轴对称, 所以|AB|=|CD|, 设|AB|=|CD|=m,|BC|=n,因为线段AB,BC,CD 能构成钝角三角形, 所以{m +m >n ,m 2+m 2<n 2,解得n<2m<√2n,故 2n<2m+n<(√2+1)n,所以2|BC|<|AD|<(√2+1)|BC|.设x 1,x 2是方程ax 2+2bx+c+a=0的两个根, 所以|x 1-x 2|=|BC|=√4(b a )2+8·ba . 设x 3,x 4是方程ax 2+2bx+c-a=0的两个根,所以|x 3-x 4|=|AD|=√4(b a )2+8·ba +8. 所以2√4(b a )2+8·ba<√4(b a )2+8·ba +8<(√2+1)√4(b a )2+8·ba ,解得-1+√24<ba <-1+√153. B 组 提升题组1.设函数f(x)=x 2+ax+b(a,b∈R)的两个零点分别为x 1,x 2,若|x 1|+|x 2|≤2,则( ) A.|a|≥1B.|b|≤1C.|a+2b|≥2D.|a+2b|≤21.答案 B 由根与系数的关系知b=x 1x 2,所以|b|=|x 1||x 2|≤(|x 1|+|x 2|2)2≤1(当且仅当|x 1|=|x 2|时,等号成立),故选B.2.设抛物线y=ax 2+bx+c(a>0)与x 轴有两个交点A,B,顶点为C,设Δ=b 2-4ac,∠ACB=θ,则cos θ= ( ) A.Δ-4Δ+4 B.√Δ-√Δ+2 C.Δ+4Δ-4 D.√Δ+2√Δ-22.答案 A 如图所示.∵|AB|=√(x 1+x 2)2-4x 1x 2=√(-b a )2-4·c a =√Δa , ∴|AD|=√Δ2a ,而|CD|=|4ac -b 24a |=Δ4a ,∴|AC|2=|AD|2+|CD|2=Δ4a 2+Δ216a 2=Δ2+4Δ16a 2, ∴cos θ=|AC |2+|BC |2-|AB |22|AC |·|BC |=1-|AB |22|AC |2=1-Δa 22·Δ2+4Δ16a 2=Δ-4Δ+4,故选A.3.下图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出下面四个结论:①b 2>4ac;②2a -b=1;③a -b+c=0;④5a<b.其中正确的结论是( )A.②④B.①④C.②③D.①③3.答案 B 因为二次函数的图象与x 轴交于两点,所以b 2-4ac>0,即b 2>4ac,①正确;因为图象的对称轴为直线x=-1,即-b2a =-1,所以2a-b=0,②错误;由题图可知,当x=-1时,y>0,即a-b+c>0,③错误;由对称轴为直线x=-1知b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确,故选B.4.若f(x)=x 2+ax+b(a,b∈R),x∈[-1,1],且|f(x)|的最大值为12,则4a+3b= . 4.答案 -32 解析 由题意可知,{ |f (-1)|≤12,|f (0)|≤12,|f (1)|≤12,即{ |1-a +b |≤12,|b |≤12,|1+a +b |≤12,而|1-a+b|+|1+a+b|≥2|1+b|, 所以2|1+b|≤1,解得-32≤b≤-12,又|b|≤12等价于-12≤b≤12, 所以b=-12, 所以{|12-a|≤12,|12+a|≤12, 解得a=0. 故4a+3b=-32.5.(2019镇海中学月考)已知函数f(x)=x 2-2ax+5(a>1). (1)若f(x)的定义域和值域均是[1,a],求实数a 的值;(2)若f(x)在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a+1],总有|f(x 1)-f(x 2)|≤4,求实数a 的取值范围;(3)若f(x)在[1,3]上有零点,求实数a 的取值范围. 5.解析 (1)易知f(x)在[1,a]上单调递减, 所以{f (1)=a ,f (a )=1,所以a=2.(2)若f(x)在区间(-∞,2]上是减函数,则a≥2,所以当x∈[1,a+1]时, f(x)min =f(a)=5-a 2,f(x)max =f(1)=6-2a, 因为对任意的x 1,x 2∈[1,a+1],总有|f(x 1)-f(x 2)|≤4, 即f(x)max -f(x)min ≤4,即6-2a-5+a 2≤4, 所以a 2-2a-3≤0,得-1≤a≤3. 所以2≤a≤3.(3)f(x)=x 2-2ax+5(a>1)在[1,3]上有零点, 即x 2-2ax+5=0在[1,3]上有解, 所以2a=x+5x 在[1,3]上有解,令h(x)=x+5x ,易知h(x)=x+5x 在[1,√5]上是减函数,在[√5,3]上是增函数, 因为h(1)=6,h(√5)=2√5,h(3)=143,所以2√5≤h(x)≤6,所以2√5≤2a≤6,所以√5≤a≤3.(2019浙江,16,4分)已知a∈R,函数f(x)=ax 3-x.若存在t∈R,使得|f(t+2)-f(t)|≤23,则实数a 的最大值是 . 答案 43解析 |f(t+2)-f(t)|≤23⇔|a(t+2)3-(t+2)-(at 3-t)|≤23⇔|6at 2+12at+8a-2|≤23⇔|3at 2+6at+4a-1|≤13⇔-13≤3at 2+6at+4a-1≤13⇔23≤a(3t 2+6t+4)≤43, ∵3t 2+6t+4=3(t+1)2+1≥1,∴若存在t∈R,使不等式成立,则需a>0, 故a(3t 2+6t+4)∈[a,+∞),∴只需[a,+∞)∩[23,43]≠⌀即可,∴0<a ≤43, 故a 的最大值为43.。
2021年新高考数学一轮复习题型归纳与达标检测:8 二次函数与幂函数 试题(学生版)

『高考复习·精推资源』『题型归纳·高效训练』高考复习·归纳训练
精品资源·备战高考2高考复习·归纳训练
精品资源·备战高考3《二次函数与幂函数》达标检测
[A组]—应知应会1.(2019秋•泰州期末)已知幂函数的图象过点,则该函数的单调递减区间为 yx1(,4)2()A.B.C.,D.(,)(,0)[0)(0,)2.(2019秋•路南区校级期末)函数在区间上是增函数,则实数的取值范围是 2(2)yxax(4,)a()
A.B.C.D.2a„2a…6a„6a…3.(2020春•诸暨市校级期中)若不等式的解集为,则的取值范围是 2(2)2(2)40axaxRa()
A.B.C.D.2a„22a„22a2a
4.(2020•五华区校级模拟)函数满足,且,则与2()fxxbxc(1)(1)fxfx(0)3f()xfb的大小关系是 ()xfc()
A.与有关,不确定B.x
()()xxfbfc…
C.D.()()xxfbfc()()xxfbfc„5.(2019秋•崇川区校级月考)已知函数,,,且最大值为(a),则实2()21fxxax[1x]a()fxf数的取值范围为 a()
A.,B.,,C.,D.,(4](1][2)[2)[4)高考复习·归纳训练精品资源·备战高考46.(2019秋•贵州期末)已知函数,若对于任意的实数,,,,时,2()2fxxxk1x2x3x4[1x2]恒成立,则实数的取值范围为 1234()()()()fxfxfxfxk
()
A.,B.,C.D.2(3)3(2)2(,)33(,)
2
7.(2019秋•鄞州区校级期中)设二次函数,若函数与函数有相同的最2()()fxxbxbR()fx(())ffx小值,则实数的取值范围是 b()
A.,,B.,C.,D.,(0][2)(0](2][2)8.(多选)(2019春•日照期末)如图是二次函数图象的一部分,图象过点,且对2yaxbxc(3,0)A称轴为,则以下选项中正确的为 1x()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品资源·备战高考
4
高考复习·归纳训练
A.②④ C.②③
B.①④ D.①③
命题角度 2 二次函数的单调性
【题型要点】 研究二次函数单调性的思路
(1)二次函数的单调性在其图象对称轴的两侧不同,因此研究二次函数的单调性时要依据其图象的对称轴进 行分类讨论.
(2)若已知 f(x)=ax2+bx+c(a>0)在区间 A 上单调递减(单调递增),则
命题角度 3 二次函数的最值
【题型要点】二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴 指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.
【例 5】已知 f(x)=-4x2+4ax-4a-a2 在[0,1]内的最大值为-5,则 a 的值为( )
A⊆
,
b 2a
A
b 2a
,
,即区间
A
一定在函数图象对称轴的左侧(右侧).
【例 3】(2020·河南中原名校联考)已知函数 f(x)=2ax2+4(a-3)x+5 在区间(-∞,3)上是减函数,则 a 的取 值范围是( )
A. 0,3 4
B.
0,3 4
C.
x2+(a-3)x+1 在区间[-1,+∞)上是单调递减的,则实数 a 的取值范围是________.
题型一 求二次函数的解析式 .........................................................................................................................1 题型二 二次函数的图象与性质 .........................................................................................................................3
5
5
A.4
B.1 或4
精品资源·备战高考
5
5 C.-1 或4
5 D.-5 或4
『高考复习·精推资源』
『题型归纳·高效训练』
高考复习·归纳训练
精品资源·备战高考
2
高考复习·归纳训练
2021 年高考理科数学一轮复习:题型全归纳与高效训练突破
专题 2.4 二次函数与幂函数
目录 一、题型全归纳 ...........................................................................................................................................................1
【例 1】已知 abc>0,则二次函数 f(x)=ax2+bx+c 的图象可能是( )
【例 2】如图是二次函数 y=ax2+bx+c 图象的一部分,图象过点 A(-3,0),对称轴为直线 x=-1.给出下 面四个结论:
①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b. 其中正确的结论是( )
命题角度 1 二次函数的图象 ....................................................................................................................3 命题角度 2 二次函数的单调性 ................................................................................................................5 命题角度 3 二次函数的最值 ....................................................................................................................6 命题角度 4 与二次函数有关的恒成立问题 ............................................................................................7 题型三 分类讨论思想在二次函数问题中的应用 .............................................................................................8 题型四 幂函数的图象与性质 ...........................................................................................................................9 二、高效训练突破 .....................................................................................................................................................11
与 x 轴两交点的坐标
两根式 y=a(x-x1)(x-x2)(a≠0)
【例 1】已知二次函数 f(x)满足 f(2)=-1,f(-1)=-1,且 f(x)的最大值是 8,试确定此二次函数的解析 式.
题型二 二次函数的图象与性质
命题角度 1 二次函数的图象 【题型要点】识别二次函数图象应学会“三看”
一、题型全归纳
题型一 求二次函数的解析式
【题型要点】用待定系数法求二次函数的解析式
(1)关键:恰当选取二次函数解析式的形式
(2)选法
已知条件
解析式的形式
三点坐标
一般式 y=ax2+bx+c(a≠0)
精品资源·备战高考
3
高考复习·归纳训练
顶点坐标 对称轴 最大(小)值
顶点式 y=a(x-h)2+k(a≠0)