参数方程
参数方程

x 3 cos y 2 sin
由于点P在圆上,所以可设P(3+cosθ,2+sinθ), (1) x2+y2 = (3+cosθ)2+(2+sinθ)2 =14+4 sinθ +6cosθ=14+2 sin(θ +ψ). 13 (其中tan ψ =3/2)
∴ x2+y2 的最大值为14+2 13 ,最小值为14- 2 (2) x+y= 3+cosθ+ 2+sinθ=5+ sin( θ + 2
13 。
) 4
∴ x+y的最大值为5+ 2 ,最小值为5 - 2 。
(3)
4 2 sin( ) 3 cos 2 sin 1 4 d 2 2
解:设M的坐标为(x,y), 圆x2+y2=16 的参数方程为 x =4cosθ y =4sinθ ∴可设点P坐标为(4cosθ,4sinθ)
y
P
M
O
A x
x =6+2cosθ 由中点公式得:点M的轨迹方程为 y =2sinθ ∴点M的轨迹是以(6,0)为圆心、2为半径的圆。
例2. 如图,已知点P是圆x2+y2=16上的一个动点, 点A是x轴上的定点,坐标为(12,0).当点P在圆 上运动时,线段PA中点M的轨迹是什么?
(3)参数方程与普通方程的互化
x2+y2=r2
( x a) ( y b) r
2 2 2
数学的参数方程公式有哪些

数学的参数方程公式有哪些直线参数方程是高中数学在解析几何这一模块中非常重要的知识点,也是整个高中数学的一大难题,接下来为你整理了数学参数方程公式,一起来看看吧。
数学参数方程公式数学参数方程概念一般在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:x=f(t),y=g(t),并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数。
圆的参数方程x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标r为圆半径θ为参数椭圆的参数方程x=a cosθ y=b sinθ a为长半轴长b为短半轴长θ为参数双曲线的参数方程x=a secθ (正割) y=b tanθ a为实半轴长b为虚半轴长θ为参数抛物线的参数方程x=2pt y=2pt p表示焦点到准线的距离t为参数直线的参数方程x=x'+tcosa y=y'+tsina , x', y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.数学学习技巧一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用“不清楚立即翻书”之举。
认真独立完成作业,勤于思考,对于有些题目,由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
参数方程_精品文档

参数方程参数方程是一种数学中常用的表示曲线的方法,它是通过一组参数来描述曲线上的点的位置。
与直角坐标系中的函数表示方式不同,参数方程给出的是曲线上每一个点在某个参数下的坐标值。
参数方程的一般形式为:x = f(t) y = g(t)其中,x 和 y 是曲线上某一点的坐标,t 是参数。
通过改变参数 t 的取值,可以得到曲线上的不同点坐标,从而描绘出整个曲线。
参数方程的表示形式参数方程的表示形式可以有多种,常见的包括:•二维参数方程:x = f(t), y = g(t)•三维参数方程:x = f(t), y = g(t), z = h(t)以二维参数方程为例,可以通过给定不同的参数 t 的取值范围,来绘制出对应的曲线。
参数 t 通常是一个连续的变化的数值,可以是时间、角度或其他物理量。
通过改变参数t,我们可以得到曲线上的点的坐标变化情况,从而得到曲线的形状。
参数方程的应用参数方程在数学和物理中有广泛的应用,特别是在几何学、物理学和计算机图形学中。
在几何学中,参数方程可以用来表示各种曲线,例如抛物线、椭圆、双曲线等,通过调整参数的取值范围,可以绘制出不同形状的曲线。
参数方程还可以用来表示曲线的长度、曲率等几何性质。
在物理学中,参数方程可以用来描述物体的运动轨迹。
例如,一个抛出的物体在空中的运动可以用参数方程来表示。
通过改变参数 t 的取值,可以得到物体在不同时刻的位置坐标,从而得到物体的运动轨迹。
在计算机图形学中,参数方程可以用来生成各种图形。
通过给定不同的参数t,可以计算出曲线上的点的坐标,然后将这些点连接起来,就可以生成各种精美的图形,如曲线、曲面等。
参数方程的优缺点参数方程相较于直角坐标系的表示方法,有一些明显的优点和缺点。
优点:•对于复杂的曲线,参数方程可以更加简洁地描述其形状。
•参数方程可以处理直角坐标系中无法表示的曲线,如极坐标系下的曲线。
缺点:•参数方程需要额外的参数 t,增加了计算的复杂度。
参数方程知识点总结

千里之行,始于足下。
参数方程知识点总结
参数方程是指将一个曲线或者曲面的坐标用参数表示的方式。
参数方程常用于描述复杂的曲线和曲面,同时也可以方便地进行计算和分析。
以下是参数方程的一些基本知识点总结:
1. 参数方程的定义:参数方程是一组函数,用参数表示曲线或曲面上的坐标点,通常用向量形式表示。
例如,对于二维曲线,可以表示为 x = f(t), y = g(t),其中 t 是参数,x 和 y 是曲线上的点的坐标。
2. 参数化空间曲线:参数化空间曲线是指通过参数方程定义的曲线。
通过改变参数 t 的取值范围,可以得到曲线上的不同点。
3. 参数方程的参数选择:参数的选择通常可以根据具体的问题和需求进行灵活选择。
常见的参数选择可以是距离、时间、角度等。
不同参数选择可能会产生不同的参数方程,因此要根据具体问题确定合适的参数。
4. 参数方程和函数方程的关系:参数方程和函数方程是可以相互转化的。
对于简单的函数方程,可以化简为参数方程;而对于参数方程,可以将其通过消元等方法转化为函数方程。
5. 参数方程的图像表示:参数方程可以通过计算不同参数下的坐标点来绘制曲线或曲面的图像。
常见的绘图方法包括使用计算机软件、手工绘图等。
6. 参数方程的应用:参数方程在计算几何、物理学、工程学等领域有广泛的应用。
例如,参数方程可以用于描述曲线的弧长、速度、加速度等性质,并进行相关计算和分析。
第1页/共2页
锲而不舍,金石可镂。
总而言之,参数方程是一种描述曲线或曲面的坐标表示方法,具有灵活性和计算简便性,并在不同领域中起到重要的应用作用。
第2讲 参数方程

第2讲 参数方程一、知识梳理1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数,从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.2.直线、圆和圆锥曲线的参数方程名称普通方程参数方程直线 y -y 0=k (x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数)圆 (x -x 0)2+(y -y 0)2=R 2⎩⎪⎨⎪⎧x =x 0+R cos θy =y 0+R sin θ (θ为参数且0≤θ<2π)椭圆x 2a 2+y 2b 2=1(a >b >0)⎩⎪⎨⎪⎧x =a cos t y =b sin t (t 为参数且0≤t <2π)抛物线 y 2=2px (p >0)⎩⎪⎨⎪⎧x =2pt2y =2pt(t 为参数) 1.直线参数方程的三个应用及一个易错点 (1)三个应用:已知直线l 经过点M 0(x 0,y 0),倾斜角为α,点M (x ,y )为l 上任意一点,则直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).①若M 1,M 2是直线l 上的两个点,对应的参数分别为t 1,t 2,则|M 0M 1→| |M 0M 2→|=|t 1t 2|,|M 1M 2→|=|t 2-t 1|=(t 2+t 1)2-4t 1t 2;②若线段M 1M 2的中点为M 3,点M 1,M 2,M 3对应的参数分别为t 1,t 2,t 3,则t 3=t 1+t 22;③若直线l 上的线段M 1M 2的中点为M 0(x 0,y 0),则t 1+t 2=0,t 1t 2<0.(2)一个易错点:在使用直线参数方程的几何意义时,要注意参数前面的系数应该是该直线倾斜角的正余弦值.否则参数不具备该几何含义.2.掌握圆的参数方程的两种应用(1)解决与圆上的动点有关的距离取值范围以及最大值和最小值问题,通常可以转化为点与圆、直线与圆的位置关系.(2)求距离的问题,通过设圆的参数方程,就转化为求三角函数的值域问题. 二、教材衍化1.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上解析:选B.由⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.2.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.解析:直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,所以椭圆C 的右顶点坐标为(3,0),若直线l 过点(3,0),则3-a =0, 所以a =3. 答案:3一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏常见误区|K(1)不注意互化的等价性致误; (2)直线参数方程中参数t 的几何意义不清致误; (3)交点坐标计算出错致错.1.若曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos 2θ,y =sin 2θ(θ为参数),则曲线C 上的点的轨迹是( ) A .直线x +2y -2=0 B .以(2,0)为端点的射线 C .圆(x -1)2+y 2=1D .以(2,0)和(0,1)为端点的线段解析:选D.将曲线C 的参数方程化为普通方程得x +2y -2=0(0≤x ≤2,0≤y ≤1).故选D.2.已知直线⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数)上两点A ,B 对应的参数值是t 1,t 2,则|AB |=( )A .|t 1+t 2|B .|t 1-t 2|C.a 2+b 2|t 1-t 2| D .|t 1-t 2|a 2+b 2解析:选 C.依题意,A (x 0+at 1,y 0+bt 1),B (x 0+at 2,y 0+bt 2),则|AB |=[x 0+at 1-(x 0+at 2)]2+[y 0+bt 1-(y 0+bt 2)]2=a 2+b 2|t 1-t 2|.故选C.3.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t 2,y =22t(t 为参数),则C 1与C 2交点的直角坐标为________.解析:由ρ(cos θ+sin θ)=-2,得x +y =-2 ①.又⎩⎪⎨⎪⎧x =t 2,y =22t ,消去t ,得y 2=8x ②. 联立①②得⎩⎪⎨⎪⎧x =2,y =-4,即交点坐标为(2,-4).答案:(2,-4)参数方程与普通方程的互化(自主练透) 1.将下列参数方程化为普通方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). 解:(1)由t 2-1≥0⇒t ≥1或t ≤-1⇒0<x ≤1或-1≤x <0.由⎩⎨⎧x =1t①,y =1tt 2-1②,①式代入②式得x 2+y 2=1.其中⎩⎪⎨⎪⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)由x =2+sin 2θ,0≤sin 2θ≤1 ⇒2≤2+sin 2θ≤3⇒2≤x ≤3,⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ⇒⎩⎪⎨⎪⎧x -2=sin 2θ,y =-1+1-2sin 2θ⇒ ⎩⎪⎨⎪⎧x -2=sin 2θ,y =-2sin 2θ⇒2x +y -4=0(2≤x ≤3). 2.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线.解:曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,所以曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是中心为坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等.对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.参数方程的应用(师生共研)(2020·安徽宣城模拟)在直角坐标系xOy 中,圆O 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =4+t (t 为参数).(1)若直线l 与圆O 相交于A ,B 两点,求弦长|AB |,若点P (2,4),求|P A |·|PB |的值; (2)以该直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2cos θ+23sin θ,圆O 和圆C 的交点为P ,Q ,求弦PQ 所在直线的直角坐标方程.【解】 (1)由直线l 的参数方程⎩⎪⎨⎪⎧x =2+t ,y =4+t (t 为参数),消去参数t 可得x -y +2=0,即直线l 的普通方程为x -y +2=0.圆O 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),根据sin 2θ+cos 2θ=1消去参数θ,可得x 2+y 2=4,所以圆心O 到直线l 的距离d =22=2,故弦长|AB |=2r 2-d 2=2 2.把直线l 的参数方程标准化可得⎩⎨⎧x =2+22t ,y =4+22t ,将其代入圆O 的方程x 2+y 2=4得t 2+62t +16=0,设A ,B 两点对应的参数分别为t 1,t 2, 所以|P A |·|PB |=|t 1t 2|=16.(2)圆C 的极坐标方程为ρ=2cos θ+23sin θ,利用ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y ,可得圆C 的普通方程为x 2+y 2=2x +23y .因为圆O 的直角坐标方程为x 2+y 2=4,所以弦PQ 所在直线的直角坐标方程为4=2x +23y ,即x +3y -2=0.(1)解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有关的问题,如最值、范围等.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. ①弦长l =|t 1-t 2|;②弦M 1M 2的中点⇒t 1+t 2=0; ③|M 0M 1||M 0M 2|=|t 1t 2|.1.(2020·日照模拟)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3,直线l 过点P (0,-3)且倾斜角为π3.(1)求曲线C 的直角坐标方程和直线l 的参数方程;(2)设直线l 与曲线C 交于A ,B 两点,求|P A |+|PB |的值. 解:(1)曲线C :ρ=4cos ⎝⎛⎭⎫θ-π3⇒ρ=4cos θcos π3+4sin θsin π3, 所以ρ2=2ρcos θ+23ρsin θ, 即x 2+y 2=2x +23y ,得曲线C 的直角坐标方程为(x -1)2+(y -3)2=4.直线l 的参数方程为⎩⎨⎧x =12t ,y =-3+32t(t 为参数).(2)将⎩⎨⎧x =12t ,y =-3+32t(t 为参数)代入曲线C 的直角坐标方程,得⎝⎛⎭⎫12t -12+⎝⎛⎭⎫32t -232=4,整理得t 2-7t +9=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=7,t 1t 2=9,所以t 1>0,t 2>0,所以|P A |+|PB |=t 1+t 2=7.2.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17=|5sin (θ+φ)-a -4|17,φ满足tan φ=34.当-a -4≤0,即a ≥-4时,d 的最大值为a +917 .由题设得a +917=17,所以a =8;当-a -4>0,即a <-4时,d 的最大值为-a +117,由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.参数方程与极坐标方程的综合应用(师生共研)(2020·淄博模拟)在平面直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎨⎧x =3+t cos α,y =2+t sin α(α为参数).在以坐标原点O 为极点,以x 轴正半轴为极轴建立的极坐标系中,曲线C 的极坐标方程为ρ=21+3cos 2θ,直线l 与曲线C 相交于不同的两点A ,B .(1)若α=π6,求直线l 的普通方程和曲线C 的直角坐标方程;(2)若|OP |为|P A |与|PB |的等比中项,其中P (3,2),求直线l 的斜率. 【解】 (1)因为α=π6,所以直线l 的参数方程为⎩⎨⎧x =3+32t ,y =2+12t (t 为参数).消t 可得直线l 的普通方程为x -3y +3=0. 因为曲线C 的极坐标方程ρ=21+3cos 2θ可化为ρ2(1+3cos 2θ)=4,所以曲线C 的直角坐标方程为4x 2+y 2=4. (2)设直线l 上两点A ,B 对应的参数分别为t 1,t 2,将⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α代入曲线C 的直角坐标方程4x 2+y 2=4可得4(3+t cos α)2+(2+t sin α)2=4,化简得(4cos 2α+sin 2α)t 2+(83cos α+4sin α)t +12=0, 因为|P A |·|PB |=|t 1t 2|=124cos 2α+sin 2α,|OP |2=7, 所以124cos 2α+sin 2α=7,解得tan 2α=165. 因为Δ=(83cos α+4sin α)2-48(4cos 2α+sin 2α)>0 即2sin α(23cos α-sin α)>0,可知tan α>0, 解得tan α=455,所以直线l 的斜率为455.(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.1.(2020·河南省第五次测评)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =5cos α,y =2+5sin α(α为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2:ρ2=4ρcos θ-3.(1)求C 1的普通方程和C 2的直角坐标方程;(2)若曲线C 1与C 2交于A ,B 两点,A ,B 的中点为M ,点P (0,-1),求|PM |·|AB |的值. 解:(1)曲线C 1的普通方程为x 2+(y -2)2=5.由ρ2=x 2+y 2,ρcos θ=x ,得曲线C 2的直角坐标方程为x 2+y 2-4x +3=0.(2)将两圆的方程x 2+(y -2)2=5与x 2+y 2-4x +3=0作差得直线AB 的方程为x -y -1=0.点P (0,-1)在直线AB 上,设直线AB 的参数方程为⎩⎨⎧x =22t ,y =-1+22t (t 为参数),代入x 2+y 2-4x +3=0化简得t 2-32t +4=0,所以t 1+t 2=32,t 1t 2=4. 因为点M 对应的参数为t 1+t 22=322,所以|PM |·|AB |=⎪⎪⎪⎪⎪⎪t 1+t 22·|t 1-t 2|=322×(t 1+t 2)2-4t 1t 2=322×18-4×4=3. 2.(2019·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t 2,y =4t 1+t 2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcosθ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 解:(1)因为-1<1-t 21+t 2≤1,且x 2+⎝⎛⎭⎫y 22=⎝ ⎛⎭⎪⎫1-t 21+t 22+4t 2(1+t 2)2=1, 所以C 的直角坐标方程为x 2+y 24=1(x ≠-1). l 的直角坐标方程为2x +3y +11=0.(2)由(1)可设C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为|2cos α+23sin α+11|7=4cos ⎝⎛⎭⎫α-π3+117.当α=-2π3时,4cos ⎝⎛⎭⎫α-π3+11取得最小值7,故C 上的点到l 距离的最小值为7.[基础题组练]1.(2020·安徽巢湖模拟)在平面直角坐标系xOy 中,已知直线l :⎩⎨⎧x =-12t ,y =3+32t (t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4sin(θ+π3). (1)求曲线C 的直角坐标方程.(2)设点M 的直角坐标为(0,3),直线l 与曲线C 的交点为A ,B ,求|MA |+|MB |的值. 解:(1)把ρ=4sin ⎝⎛⎭⎫θ+π3,展开得ρ=2sin θ+2 3 cos θ,两边同乘ρ得ρ2=2ρsin θ+23ρcos θ ①.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入①, 即得曲线C 的直角坐标方程为x 2+y 2-23x -2y =0 ②.(2)将⎩⎨⎧x =-12t ,y =3+32t代入②式,得t 2+33t +3=0,点M 的直角坐标为(0,3).设这个方程的两个实数根分别为t 1,t 2, 则t 1+t 2=-33,t 1·t 2=3, 所以t 1<0,t 2<0.则由参数t 的几何意义即得|MA |+|MB |=|t 1+t 2|=3 3.2.(2020·太原模拟)在直角坐标系中,圆C 的参数方程为:⎩⎨⎧x =1+2cos α,y =3+2sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆C 的极坐标方程;(2)若直线l :⎩⎪⎨⎪⎧x =t cos φ,y =t sin φ(t 为参数)被圆C 截得的弦长为23,求直线l 的倾斜角.解:(1)圆C :⎩⎪⎨⎪⎧x =1+2cos α,y =3+2sin α,消去参数α得(x -1)2+(y -3)2=4,即x 2+y 2-2x -23y =0,因为ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ.所以ρ2-2ρcos θ-23ρsin θ=0,ρ=4cos ⎝⎛⎭⎫θ-π3. (2)因为直线l :⎩⎪⎨⎪⎧x =t cos φ,y =t sin φ的极坐标方程为θ=φ,当θ=φ时ρ=4cos ⎝⎛⎭⎫φ-π3=2 3. 即cos ⎝⎛⎭⎫φ-π3=32, 所以φ-π3=π6或φ-π3=-π6.所以φ=π2或φ=π6,所以直线l 的倾斜角为π6或π2.3.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t -1,y =-4t -2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=21-cos θ.(1)求曲线C 2的直角坐标方程;(2)设M 1是曲线C 1上的点,M 2是曲线C 2上的点,求|M 1M 2|的最小值. 解:(1)因为ρ=21-cos θ,所以ρ-ρcos θ=2, 即ρ=ρcos θ+2.因为x =ρcos θ,ρ2=x 2+y 2,所以x 2+y 2=(x +2)2,化简得y 2-4x -4=0. 所以曲线C 2的直角坐标方程为y 2-4x -4=0.(2)因为⎩⎪⎨⎪⎧x =2t -1,y =-4t -2,所以2x +y +4=0.所以曲线C 1的普通方程为2x +y +4=0.因为M 1是曲线C 1上的点,M 2是曲线C 2上的点,所以|M 1M 2|的最小值等于点M 2到直线2x +y +4=0的距离的最小值. 不妨设M 2(r 2-1,2r ),点M 2到直线2x +y +4=0的距离为d ,则d =2|r 2+r +1|5=2⎣⎡⎦⎤⎝⎛⎭⎫r +122+345≥325=3510, 当且仅当r =-12时取等号.所以|M 1M 2|的最小值为3510.4.在直角坐标系中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)写出曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN 的中点为P ,求|AP ||AM |·|AN |的值.解:(1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2θ4=1.因为曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ, 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2θ4=1;曲线D 的直角坐标方程为x 2+y 2+2x-23y =0.(2)点A ⎝⎛⎭⎫22,π4,则⎩⎨⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sinπ3(t 为参数),代入x 29+y 24=1中可得,314t 2+(8+183)t +16=0,设M ,N 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[综合题组练]1.(2020·广州模拟)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =2+7cos α,y =7sin α(α为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=8cos θ,直线l 的极坐标方程为θ=π3(ρ∈R ).(1)求曲线C 1的极坐标方程与直线l 的直角坐标方程;(2)若直线l 与曲线C 1,C 2在第一象限分别交于A ,B 两点,P 为曲线C 2上的动点,求△P AB 面积的最大值.解:(1)依题意得,曲线C 1的普通方程为(x -2)2+y 2=7,曲线C 1的极坐标方程为ρ2-4ρcos θ-3=0.直线l 的直角坐标方程为y =3x .(2)曲线C 2的直角坐标方程为(x -4)2+y 2=16, 设A ⎝⎛⎭⎫ρ1,π3,B ⎝⎛⎭⎫ρ2,π3, 则ρ21-4ρ1cos π3-3=0,即ρ21-2ρ1-3=0, 得ρ1=3或ρ1=-1(舍),又ρ2=8cos π3=4,则|AB |=|ρ2-ρ1|=1.C 2(4,0)到l 的距离d =|43|4=23,以AB 为底边的△P AB 的高的最大值为4+23,则△P AB 的面积的最大值为12×1×(4+23)=2+ 3.2.(2020·南昌模拟)在直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρcos θ-ρsin θ=2,曲线C 的极坐标方程为ρsin 2θ=2P cos θ(P >0).(1)求直线l 过点(-2,-4)的参数方程;(2)已知直线l 与曲线C 交于N ,Q 两点,M (-2,-4),且|NQ |2=|MN |·|MQ |,求实数P 的值.解:(1)将x =ρcos θ,y =ρsin θ代入直线l 的极坐标方程,得直线l 的直角坐标方程为x -y -2=0.所以直线l 过点(-2,-4)的参数方程为⎩⎨⎧x =-2+22t ,y =-4+22t (t 为参数).(2)由ρsin 2θ=2P cos θ(P >0), 得(ρsin θ)2=2Pρcos θ(P >0),将ρcos θ=x ,ρsin θ=y 代入,得y 2=2Px (P >0).将直线l 的参数方程与曲线C 的直角坐标方程联立,得t 2-22(4+P )t +8(4+P )=0,(*)Δ=8P (4+P )>0.设点N ,Q 分别对应参数t 1,t 2,恰好为上述方程的根, 则|MN |=t 1,|MQ |=t 2,|NQ |=|t 1-t 2|.由题设得(t 1-t 2)2=|t 1t 2|,即(t 1+t 2)2-4t 1t 2=|t 1t 2|. 由(*)得t 1+t 2=22(4+P ),t 1t 2=8(4+P )>0, 则有(4+P )2-5(4+P )=0,得P =1或P =-4.因为P >0,所以P =1.3.(2020·栖霞模拟)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =2sin t (t 为参数,a >0),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=-4 2. (1)设P 是曲线C 上的一个动点,当a =23时,求点P 到直线l 的距离的最小值; (2)若曲线C 上所有的点都在直线l 的右下方,求实数a 的取值范围.解:(1)由ρcos ⎝⎛⎭⎫θ+π4=-42,得到ρ(cos θ-sin θ)=-8, 因为ρcos θ=x ,ρsin θ=y , 所以直线l 的普通方程为x -y +8=0.设P (23cos t ,2sin t ),则点P 到直线l 的距离d =|23cos t -2sin t +8|2=|4sin ⎝⎛⎭⎫t -π3-8|2=22|sin ⎝⎛⎭⎫t -π3-2|, 当sin ⎝⎛⎭⎫t -π3=1时,d min =22, 所以点P 到直线l 的距离的最小值为2 2.(2)设曲线C 上任意点P (a cos t ,2sin t ),由于曲线C 上所有的点都在直线l 的右下方, 所以a cos t -2sin t +8>0对任意t ∈R 恒成立. a 2+4sin(t -φ)<8,其中cos φ=2a 2+4,sin φ=a a 2+4.从而a 2+4<8.由于a >0,解得0<a <215. 即a ∈(0,215).4.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos(θ+π4)=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.解:(1)由⎩⎪⎨⎪⎧x =-5+2cos t ,y =3+2sin t ,消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2. 由ρcos (θ+π4)=-2,得ρcos θ-ρsin θ=-2,所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝⎛⎭⎫2,π2, 设点P 的坐标为(-5+2cos t ,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=|-6+2cos ⎝⎛⎭⎫t +π4|2.所以d min =42=22,又|AB |=2 2. 所以△P AB 面积的最小值是S =12×22×22=4.。
参数方程的概念(课件)

对于参数方程 x = a*cos(t), y = a*sin(t) (其中 t 为参数),可 以通过分离参数 t,得到简单 方程 tan(t) = y/x,进而求解 x 和 y。
参数代入法
01 总结词
通过将参数方程中的参数代入 到已知的函数或表达式中,求 解未知数。
02
详细描述
参数代入法的基本思想是将参 数方程中的参数代入到已知的 函数或表达式中,从而得到一 个关于未知数的简单方程。这 个简单方程通常比较容易求解 ,从而得到原参数方程的解。
在计算机图形学中,参数方程被广泛应用于动画制作和游戏开发 等领域。
在经济学中的应用
在经济学中,参数方程可以用来描述经济数据的趋势和变化规律。
在生物学中的应用
在生物学中,参数方程可以用来描述生物种群的增长规律和生态系 统的平衡状态。
03
参数方程的求解方法
消去参数法
总结词
通过消去参数,将参数方程转化为普通方程,从 而求解未知数。
通过参数的变化,可以描述曲线的几 何性质和动态变化。
x=x(t), y=y(t) 或 x=x(t), y=y(t), z=z(t),其中 t 是参数。
参数方程的表示形式
平面参数方程
在平面直角坐标系中,如果用参数 t 表示曲线上点的横坐标和纵坐标,则平面 参数方程可以表示为 x=x(t), y=y(t)。
2. 通过代数方法消去 参数 t;
3. 得到直角坐标方程 。
02
参数方程的应用
在几何图形中的应用
描述平面曲线
参数方程可以用平面曲线的几何 性质和形状,通过参数的变化来 描述曲线上的点。
旋转和放缩
通过参数方程,我们可以方便地 实现图形的旋转和放缩,从而得 到不同角度和大小的图形。
数学的参数方程公式有哪些

数学的参数方程公式有哪些数学中的参数方程是描述曲线的一种方式,它使用一个或多个变量(参数)来表示曲线上的点的位置。
参数方程可以用来描述平面曲线、空间曲线以及曲线家族等等。
以下是一些常见的参数方程公式:1.平面曲线的参数方程:- 直线:x = at + c,y = bt + d(a, b为常数,(c, d)为直线上的一点)- 圆:x = a + rcos(t),y = b + rsin(t)((a, b)为圆心坐标,r为半径)- 抛物线:x = at^2,y = bt(a, b为常数)- 椭圆:x = acos(t),y = bsin(t)((a, b)为椭圆的半长轴和半短轴长度)- 双曲线:x = asec(t),y = btan(t)((a, b)为双曲线参数)2.空间曲线的参数方程:- 螺线:x = a*cos(t),y = a*sin(t),z = bt((a, b)为常数)- 柱面:x = a*cos(t),y = a*sin(t),z = bt((a, b)为常数)- 锥面:x = ar*cos(t),y = ar*sin(t),z = bz((a, b)为常数)3.曲线家族的参数方程:- 三角函数族:x = a*sin(nt + b),y = c*cos(mt + d)((a, b, c, d)为常数- 椭圆族:x = a*cos(t),y = b*sin(t + c)((a, b, c)为常数)- 抛物线族:x = at^2,y = bt + c((a, b, c)为常数)在实际应用中,参数方程可以用来描述复杂的曲线,例如心形线、阿基米德螺线、贝塞尔曲线等等。
此外,参数方程还可用于描述空间曲线的轨迹、运动学问题以及动力学系统等。
高中数学参数方程

高中数学参数方程一、前言在高中数学中,参数方程是一个非常重要的概念,也是数学与实际问题相结合的杰出体现。
掌握参数方程的基本概念和求解方法对于高中学生的数学学习和理解具有重大的帮助。
本文将从参数方程的基本概念、常用的图形、求解方法和应用等方面进行详细介绍,帮助学生全面掌握该概念。
二、参数方程的基本概念1. 参数方程的定义参数方程是一种通过给定的参数变量,用参数的函数表示一个曲线或者一个曲面的方法。
在参数方程中,通常用参数t表示自变量。
例如,设有一条曲线C,可以用如下的参数方程表示:x=f(t), y=g(t)上述的式子就是一条经过点(x,y)的曲线C的参数方程。
参数t常常被称为参数变量,它是曲线C上的自变量。
2. 参数方程的优点与直角坐标系下表示曲线的函数相比,参数方程的优点在于它可以更加灵活地表示一些曲线,如椭圆、双曲线、螺线等等。
同时,参数方程也可以用来表示高维度的曲面,如三维曲面、四维曲面等等。
此外,参数方程在图像处理、计算机动画、自动控制、机器人控制等领域中也有广泛的应用。
三、参数方程的常用图形1. 抛物线抛物线是参数方程中最常见的图形之一。
抛物线的参数方程通常为:x = t, y = t^2其中,t是参数变量。
2. 椭圆椭圆是平面直角坐标系下的二次曲线,也可以用参数方程表示。
椭圆的参数方程通常为:x = a*cos(t), y = b*sin(t)其中,a和b分别是椭圆的长轴和短轴长度。
3. 双曲线双曲线也是平面直角坐标系下的二次曲线,与椭圆不同的是,它有两个分离的实部,能够在极值点处取到无穷大值。
双曲线的参数方程通常为:x = a*cosh(t), y = b*sinh(t)其中,a和b分别是双曲线的横轴和纵轴长度。
4. 螺线螺线是一种等腰斜螺线(又称Archimedean螺线),由希腊数学家阿基米德研究而得名。
螺线的参数方程通常为:x = a*cos(t), y = a*sin(t) + bt其中,a和b分别是螺线的宽度和高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.了解参数方程,了解参数的意义,能选择适当的参数写出直线、圆和圆锥曲线的参数方程;2.掌握参数方程与普通方程的互化3.了解平摆线、渐开线的生成过程,并能推导出它们的参数方程,了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用。
重点:掌握参数方程与普通方程的互化,掌握直线和圆的参数方程及椭圆的参数方程,并能利用它们解决一些应用问题。
难点:理解参数方程的概念及转化方法,建立参数方程时恰当的选择参数,以及利用参数建立点的轨迹方程。
学习策略:掌握参数方程与普通方程的互化。
化参数方程为普通方程的基本思想是消参法,化普通方程为参数方程的基本思路是引入参数。
参数方程与普通方程的互化,要注意参数的范围。
借助三角函数理解椭圆、双曲线的参数方程的推导,明确其中参数的几何意义,体会利用参数方程解决问题的优越性。
对于直线的参数方程,要恰当的选择参数,利用参数的几何意义解决问题,尤其是直线与圆锥曲线的位置关系问题,如交点轨迹,中点弦、弦长等问题,要灵活应用代入法、交轨法来处理。
知识要点梳理:知识点一:参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数,即,并且对于的每一个允许值,方程组所确定的点都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).相对于参数方程来说,直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。
知识点二:参数方程与普通方程的互化1.参数方程化为普通方程(1)把参数方程化为普通方程的基本思想是消去参数。
(2)根据参数方程的结构特征,选取适当的消参方法.消参的常用方法有:代入消参法、加减消参法、三角恒等式消参法、平方和(差)消参法;乘法消参法;混合消参法等.2.普通方程化为参数方程(1)把曲线的普通方程化为参数方程的基本思路是引入参数,即选定合适的参数t,先确定一个关系式,再代入普通方程求得另一个关系式。
(2)一般地,常选择的参数有角度,斜率,时间等。
注意:互化要确保参数方程与普通方程互化前后的等价性。
注意方程中的参数的变化范围,必须使坐标x,y的取值范围在互化前后保持不变,否则,互化就是不等价的。
知识点二:常见曲线的参数方程1.直线的参数方程(1)经过定点,倾斜角为的直线的参数方程为:(为参数);我们把这一形式称为直线参数方程的标准形式。
参数的几何意义:参数表示直线上以定点为起点,任意一点M(x,y)为终点的有向线段的长度再加上表示方向的正负号,也即,表示直线上任一点M到定点的距离。
当点在上方时,;当点在下方时,;当点与重合时,;特别:若直线的倾角时,直线的参数方程为.(2)过定点,且其斜率为的直线的参数方程为:(为参数,为常数,);其中的几何意义为:若是直线上一点,则。
2.圆的参数方程(1)已知圆心为,半径为的圆的参数方程为:(是参数,);特别:当圆心在原点时,半径为的圆的参数方程为:(是参数)。
(2)参数的几何意义:表示轴的正方向到连接圆心和圆上任意一点的半径所成的角。
注意:圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特点,圆的参数方程则直接指出圆上点的横、纵坐标的特点。
3.椭圆的参数方程(1)椭圆()的参数方程为(为参数)。
(2)参数的几何意义:参数表示椭圆上某一点的离心角。
如图所示,点对应的离心角为(过作轴,交大圆即以为直径的圆于),切不可认为是。
注意:从数的角度理解,椭圆的参数方程实际上是关于椭圆的一组三角代换。
椭圆上任意一点可设成,为解决有关椭圆问题提供了一条新的途径。
4.双曲线的参数方程双曲线(,)的参数方程为:(为参数,且)。
参数的几何意义:参数表示双曲线上某一点的离心角。
双曲线(,)上任意一点的坐标可设为。
5.抛物线的参数方程抛物线()的参数方程为(是参数)。
参数的几何意义:抛物线上一点(除顶点)与其顶点连线的斜率的倒数,即。
6.圆的渐开线与摆线的参数方程:(1)圆的渐开线的参数方程(是参数);(2)摆线的参数方程(是参数)。
规律方法指导1.参数方程作为选考内容,试题内容涉及参数方程与普通方程的互化,直线、圆和圆锥曲线的参数方程以及在解题中的应用等。
由于该内容在高考试题的特殊位置,常常仅以填空选择题的形式出现,一般为容易题或中等题,以考察基础知识,基本运算为主。
2.加强消参的技巧性学习,注意等价性,消参常用的方法有代入法、三角法、加减法等。
3.从数的角度理解,圆与椭圆的参数方程实际上是一组三角代换,为解决有关圆、椭圆问题提供了一条新的途径.经典例题透析类型一:参数方程与普通方程互化1.已知圆的方程是,将它表示为圆的参数方程形式。
思路点拨:将圆的方程配方得圆的标准方程,然后利用平方和公式进行三角代换转化为参数方程。
解析:配方得圆的标准方程令,得圆的参数方程为(为参数).总结升华:圆与椭圆的普通方程转化为圆与椭圆的参数方程一般都是利用进行三角代换。
举一反三:【变式1】已知圆的方程是,将它表示为圆的参数方程形式。
【答案】配方得圆的标准方程,令,得圆的参数方程为(为参数).【变式2】已知椭圆的方程为,将它表示为椭圆的参数方程形式。
【答案】变形得,令,得椭圆的参数方程为(为参数).2.把下列参数方程化为普通方程(1) (,为参数);; (2) (,为参数);(3)(,为参数);; (4) (为参数).思路点拨:(1)将第二个式子变形后,把第一个式子代入消参;(2)利用三角恒等式进行消参;(3)观察式子的结构,注意到两式中分子分母的结构特点,因而可以采取加减消参的办法;或把用表示,反解出后再代入另一表达式即可消参;(4)此题是(3)题的变式,仅仅是把换成而已,因而消参方法依旧,但需要注意、的范围. 解析:(1)∵,把代入得又∵,,∴,,∴所求方程为(,)(2)∵,把代入得.又∵,∴,.∴所求方程为(,).(3)法一:,又,,∴所求方程为(,).法二:由得,代入得,∴(余略).(4)又得,∴,又,当时,;当时,,从而.故所求方程为()总结升华:1.消参的方法主要有代入消参,加减消参,比值消参,平方消参,利用恒等式消参等。
2.消参过程中应注意等价性,即应考虑变量的取值范围,一般来说应分别给出、的范围.在这过程中实际上是求函数值域的过程,因而可以综合运用求值域的各种方法.举一反三:【变式1】把参数方程化为普通方程是_______________________.【答案】∵,把代入得又∵,,∴,,∴所求方程为(,)【变式2】化下列参数方程为普通方程。
(1)(t为参数) ;(2)(t为参数).【答案】(1)由得,代入化简得.∵,∴,.故所求方程为(,)(2)两个式子相除得,代入得,即.∵,故所求方程为().类型二:曲线的参数方程3.已知曲线的参数方程为(、为常数)。
(1)当为常数(),为参数()时,说明曲线的类型;(2)当为常数且,为参数时,说明曲线的类型。
思路点拨:通过消参,化为普通方程,再做判断。
解析:(1)方程可变形为(为参数,为常数)取两式的平方和,得曲线是以为圆心,为半径的圆。
(2)方程变形为(为参数,为常数),两式相除,可得,即,曲线是过点且斜率的直线。
总结升华:从本例可以看出:某曲线的参数方程形式完全相同,但选定不同的字母为参数,则表示的意义也不相同,表示不同曲线。
因此在表示曲线的参数方程时,一般应标明选定的字母参数。
举一反三:【变式1】已知圆锥曲线方程为。
(1)若为参数,为常数,求此曲线的焦点到准线距离。
(2)若为参数,为常数,求此曲线的离心率。
【答案】(1)方程可化为消去,得:∴曲线是抛物线,焦点到准线距离即为。
(2)方程化为,消去,得,∴曲线为椭圆,其中,,,从而。
【变式2】已知椭圆的参数方程为(为参数),求出此椭圆的长轴长,短轴长,焦点坐标,离心率和准线方程.【答案】把消去参数得∴,,得.∴,.即:椭圆的长轴长为26,短轴长为10,焦点坐标为(0,-12)和(0,12),离心率为,准线方程为:和.【变式3】圆的半径为________;【答案】其中,,∴半径为5。
4.求直线的斜率。
解析:∴总结升华:过定点,且其斜率为的直线的参数方程为:(为参数,为常数,);其中的几何意义为:若是直线上一点,则。
举一反三:【变式1】直线: (t为参数)的倾斜角为()。
A、;B、;C、D、【答案】,相除得,∴倾斜角为,选C。
【变式2】为锐角,直线的倾斜角()。
A、;B、C、;D、【答案】,相除得,∵,∴倾角为,选C。
5.已知曲线C的参数方程为(t为参数)(1)判断点P1(1,2),P2(0,1)与曲线C的位置关系(2)点Q(2,a)在曲线C上,求a的值.(3)化为普通方程,并作图(4)若t≥0,化为普通方程,并作图.解析:(1)若点P在曲线上,则可以用参数t表示出x, y,即可以求出相应t值.所以,令,;∴t无解,∴点P1不在曲线C上.同理,令,∴点P2在曲线C上.(2)∵Q在曲线C上,∴.(3)将代入y=3t2+1,如图.(4)∵t≥0, ∴x=2t≥0,y=3t2+1≥1,消去t,,∴t≥0时,曲线C的普通方程为(x≥0, y≥1).如图:总结升华:在(4)中,曲线C的普通方程的范围也可以只写出x≥0, 但不能写成y≥1,这是因为是关于x的自变量,y为因变量的函数,由x的范围可以确定y的取值范围,但反过来不行.即:所得曲线方程为y=f(x)或x=g(y)形式时,可以只写出自变量的范围,但对于非函数形式的方程,即F(x,y)=0,一般来说,x,y的范围都应标注出来.举一反三:【变式1】下列在曲线上的点是()A.B.C.D.【答案】B转化为普通方程:,当时,【变式2】参数方程(为参数,表示的曲线为()。
A、双曲线一支,且过点B、抛物线的一部分,且过点C、双曲线一支,且过点;D、抛物线的一部分,且过点【答案】,且,因而选B。
【变式3】曲线与坐标轴的交点是()A.; B.; C.; D.【答案】B当时,,而,即,得与轴的交点为;当时,,而,即,得与轴的交点为【变式4】若点在以点为焦点的抛物线上,则等于(; )A.B. C.D.【答案】C抛物线为,准线为,为到准线的距离,即为类型三:参数方程的应用6.已知点是圆上的动点,(1)求的取值范围;(2)若恒成立,求实数的取值范围。
解析:(1)设圆的参数方程为,(2)总结升华:利用圆锥曲线的参数方程求最值,一般来说都是先把所求的量表示成关于参数的函数,然后利用三角函数的有界性或者函数的性质求最值。
举一反三:【变式1】点是椭圆上的一个动点,则的最大值为___________。
【答案】;椭圆方程化为,设,【变式2】已知实数x, y满足,求:(1)x2+y2的最大值;(2)x+y的最小值.【答案】原方程配方得,表示以为圆心,2为半径的圆.用参数方程表示为:(为参数,0≤<2).(1)∴当,即时,(x2+y2)max=16.(2)∴当,即时,.【变式3】椭圆内接矩形面积的最大值为___________.【答案】设椭圆上第一象限的点,则当且仅当时,取最大值,此时点.7.P是椭圆上的点,求P到直线的距离的最大值与最小值,并求出达到最值时P点的坐标.思路点拨:利用参数方程求最值。