操作系统实验
操作系统实验二实验报告

操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。
通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。
三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。
2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。
3、为新进程指定可执行文件的路径、命令行参数、进程属性等。
4、编写代码来等待新进程的结束,并获取其退出代码。
(二)进程同步实验1、设计一个生产者消费者问题的模型。
2、使用信号量来实现生产者和消费者进程之间的同步。
3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。
4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。
(三)进程通信实验1、选择使用管道来实现进程之间的通信。
2、创建一个匿名管道,父进程和子进程分别读写管道的两端。
3、父进程向管道写入数据,子进程从管道读取数据并进行处理。
四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。
通过观察进程的创建和执行过程,加深了对进程概念的理解。
(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。
分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。
(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。
数据能够准确地在进程之间传递,验证了管道通信的有效性。
五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。
通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。
(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。
操作系统安全实验1实验报告

操作系统安全实验1实验报告一、实验目的本次操作系统安全实验的主要目的是让我们深入了解操作系统的安全机制,通过实际操作和观察,掌握一些常见的操作系统安全配置和防护方法,提高对操作系统安全的认识和应对能力。
二、实验环境本次实验使用的操作系统为Windows 10 和Linux(Ubuntu 2004),实验设备为个人计算机。
三、实验内容与步骤(一)Windows 10 操作系统安全配置1、账户管理创建新用户账户,并设置不同的权限级别,如管理员、标准用户等。
更改账户密码策略,包括密码长度、复杂性要求、密码有效期等。
启用账户锁定策略,设置锁定阈值和锁定时间,以防止暴力破解密码。
2、防火墙配置打开 Windows 防火墙,并设置入站和出站规则。
允许或阻止特定的应用程序通过防火墙进行网络通信。
3、系统更新与补丁管理检查系统更新,安装最新的 Windows 安全补丁和功能更新。
配置自动更新选项,确保系统能够及时获取并安装更新。
4、恶意软件防护安装并启用 Windows Defender 防病毒软件。
进行全盘扫描,检测和清除可能存在的恶意软件。
(二)Linux(Ubuntu 2004)操作系统安全配置1、用户和组管理创建新用户和组,并设置相应的权限和归属。
修改用户密码策略,如密码强度要求等。
2、文件系统权限管理了解文件和目录的权限设置,如读、写、执行权限。
设置特定文件和目录的权限,限制普通用户的访问。
3、 SSH 服务安全配置安装和配置 SSH 服务。
更改 SSH 服务的默认端口号,增强安全性。
禁止 root 用户通过 SSH 登录。
4、防火墙配置(UFW)启用 UFW 防火墙。
添加允许或拒绝的规则,控制网络访问。
四、实验结果与分析(一)Windows 10 操作系统1、账户管理成功创建了具有不同权限的用户账户,并能够根据需求灵活调整权限设置。
严格的密码策略有效地增加了密码的安全性,减少了被破解的风险。
账户锁定策略在一定程度上能够阻止暴力破解攻击。
操作系统实验报告

篇一:操作系统实验报告完全版《计算机操作系统》实验报告班级:姓名:学号:实验一进程控制与描述一、实验目的通过对windows 2000编程,进一步熟悉操作系统的基本概念,较好地理解windows 2000的结构。
通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟悉操作系统的进程概念,理解windows 2000中进程的“一生”。
二、实验环境硬件环境:计算机一台,局域网环境;软件环境:windows 2000 professional、visual c++6.0企业版。
三、实验内容和步骤第一部分:程序1-1windows 2000 的gui 应用程序windows 2000 professional下的gui应用程序,使用visual c++编译器创建一个gui应用程序,代码中包括了winmain()方法,该方法gui类型的应用程序的标准入口点。
:: messagebox( null, “hello, windows 2000” , “greetings”,mb_ok) ;/* hinstance */ , /* hprevinstance */, /* lpcmdline */, /* ncmdshow */ )return(0) ; }在程序1-1的gui应用程序中,首先需要windows.h头文件,以便获得传送给winmain() 和messagebox() api函数的数据类型定义。
接着的pragma指令指示编译器/连接器找到user32.lib库文件并将其与产生的exe文件连接起来。
这样就可以运行简单的命令行命令cl msgbox.cpp来创建这一应用程序,如果没有pragma指令,则messagebox() api函数就成为未定义的了。
这一指令是visual studio c++ 编译器特有的。
接下来是winmain() 方法。
其中有四个由实际的低级入口点传递来的参数。
操作系统实验

操作系统实验操作系统实验是计算机科学与技术领域非常重要的一门实验课程。
通过操作系统实验,学生可以深入了解操作系统的基本原理和实践技巧,掌握操作系统的设计和开发方法。
本文将介绍操作系统实验的一般内容和实验室环境要求,并详细说明一些常见的操作系统实验内容。
一、实验内容1. 实验环境搭建:操作系统实验通常在实验室中进行。
为了完成实验,学生需要搭建一个操作系统实验环境。
实验环境通常由一个或多个计算机节点组成,每个计算机节点需要安装操作系统实验所需要的软件和驱动程序。
2. 操作系统整体结构分析:学生首先需要通过文献研究和课堂学习,了解操作系统的整体结构和基本原理。
在实验中,学生需要分析和理解操作系统的各个模块之间的功能和相互关系。
3. 进程管理实验:进程是操作系统中最基本的运行单位。
在这个实验中,学生可以通过编写程序并使用系统调用来实现进程的创建、销毁和调度。
学生需要熟悉进程状态转换和调度算法,理解进程间通信和同步机制。
4. 内存管理实验:内存管理是操作系统中非常重要的一个模块。
学生需要实现虚拟内存管理、页面置换算法以及内存分配和回收策略。
通过这个实验,学生可以深入了解虚拟内存管理的原理和实际应用。
5. 文件系统实验:文件系统是操作系统中负责管理文件和目录的模块。
在这个实验中,学生需要实现基本的文件系统功能,如文件的创建、读取和修改。
学生还可以实现进程间的文件共享和保护机制。
6. 设备管理实验:设备管理是操作系统中与硬件设备交互的一个重要模块。
在这个实验中,学生需要实现设备的初始化、打开和关闭功能。
学生还可以实现设备驱动程序,完成对硬件设备的控制。
二、实验室环境要求1. 计算机硬件:实验室需要配备一定数量的计算机节点。
每个计算机节点需要具备足够的计算能力和内存容量,以满足操作系统实验的要求。
2. 操作系统软件:实验室中的计算机节点需要安装操作系统软件,通常使用Linux或者Windows操作系统。
此外,还需要安装相关的开发工具和编程语言环境。
操作系统原理实验

操作系统原理实验一、实验目的本实验旨在通过实际操作,加深对操作系统原理的理解,掌握操作系统的基本功能和调度算法。
二、实验环境1. 操作系统:Windows 102. 虚拟机软件:VirtualBox3. 实验工具:C语言编译器(如gcc)、汇编语言编译器(如nasm)、调试器(如gdb)三、实验内容1. 实验一:进程管理在这个实验中,我们将学习如何创建和管理进程。
具体步骤如下:a) 创建一个C语言程序,实现一个简单的计算器功能。
该计算器能够进行基本的加减乘除运算。
b) 使用fork()系统调用创建一个子进程,并在子进程中执行计算器程序。
c) 使用wait()系统调用等待子进程的结束,并获取子进程的退出状态。
2. 实验二:内存管理在这个实验中,我们将学习如何进行内存管理。
具体步骤如下:a) 创建一个C语言程序,模拟内存分配和释放的过程。
该程序能够动态地分配和释放内存块。
b) 使用malloc()函数分配一块内存,并将其用于存储数据。
c) 使用free()函数释放已分配的内存块。
3. 实验三:文件系统在这个实验中,我们将学习如何进行文件系统的管理。
具体步骤如下:a) 创建一个C语言程序,实现一个简单的文件系统。
该文件系统能够进行文件的创建、读取、写入和删除操作。
b) 使用open()系统调用打开一个文件,并进行读取和写入操作。
c) 使用unlink()系统调用删除一个文件。
四、实验步骤1. 安装虚拟机软件VirtualBox,并创建一个虚拟机。
2. 在虚拟机中安装操作系统Windows 10。
3. 在Windows 10中安装C语言编译器、汇编语言编译器和调试器。
4. 根据实验内容,编写相应的C语言程序并保存。
5. 在命令行中使用gcc编译C语言程序,并生成可执行文件。
6. 运行可执行文件,观察程序的执行结果。
7. 根据实验要求,进行相应的操作和测试。
8. 完成实验后,整理实验报告,包括实验目的、实验环境、实验内容、实验步骤和实验结果等。
计算机操作系统实验二

计算机操作系统实验二一、实验目的本实验旨在通过实际操作,深入理解和掌握计算机操作系统中的进程与线程管理。
通过实验,我们将了解进程的创建、执行、阻塞、唤醒等状态以及线程的创建、同步、通信等操作。
同时,通过实验,我们将学习如何利用进程和线程提高程序的并发性和效率。
二、实验内容1、进程管理a.进程的创建与执行:通过编程语言(如C/C++)编写一个程序,创建一个新的进程并执行。
观察和记录进程的创建、执行过程。
b.进程的阻塞与唤醒:编写一个程序,使一个进程在执行过程中发生阻塞,并观察和记录阻塞状态。
然后,通过其他进程唤醒该进程,并观察和记录唤醒过程。
c.进程的状态转换:根据实际操作,理解和分析进程的状态转换(就绪状态、阻塞状态、执行状态)以及转换的条件和过程。
2、线程管理a.线程的创建与同步:编写一个多线程程序,创建多个线程并观察和记录线程的创建过程。
同时,使用同步机制(如互斥锁或信号量)实现线程间的同步操作。
b.线程的通信:通过消息队列或其他通信机制,实现多个线程间的通信。
观察和记录线程间的通信过程以及通信对程序执行的影响。
c.线程的状态转换:根据实际操作,理解和分析线程的状态转换(新建状态、就绪状态、阻塞状态、终止状态)以及转换的条件和过程。
三、实验步骤1、按照实验内容的要求,编写相应的程序代码。
2、编译并运行程序,观察程序的执行过程。
3、根据程序的输出和实际操作情况,分析和理解进程与线程的状态转换以及进程与线程管理的相关原理。
4、修改程序代码,尝试不同的操作方式,观察程序执行结果的变化,进一步深入理解和掌握进程与线程管理。
5、完成实验报告,总结实验过程和结果,提出问题和建议。
四、实验总结通过本次实验,我们深入了解了计算机操作系统中的进程与线程管理原理和实践操作。
在实验过程中,我们不仅学习了如何利用编程语言实现进程和线程的操作,还通过实际操作观察和分析了进程与线程的状态转换以及进程与线程管理的基本原理。
华科操作系统实验报告

华科操作系统实验报告一、实验目的操作系统是计算机系统的核心组成部分,对于理解计算机的工作原理和提高计算机应用能力具有重要意义。
本次华科操作系统实验的主要目的是通过实际操作和实践,深入理解操作系统的基本概念、原理和功能,掌握操作系统的核心技术和应用方法,提高我们的实践能力和问题解决能力。
二、实验环境本次实验使用的操作系统为Windows 10 和Linux(Ubuntu 2004),开发工具包括 Visual Studio Code、GCC 编译器等。
实验硬件环境为个人计算机,配置为英特尔酷睿 i7 处理器、16GB 内存、512GB 固态硬盘。
三、实验内容1、进程管理进程创建与销毁进程调度算法模拟进程同步与互斥2、内存管理内存分配与回收算法实现虚拟内存管理3、文件系统文件操作与管理文件系统的实现与优化4、设备管理设备驱动程序编写设备分配与回收四、实验步骤及结果1、进程管理实验进程创建与销毁首先,使用 C 语言编写程序,通过系统调用创建新的进程。
在程序中,使用 fork()函数创建子进程,并在子进程和父进程中分别输出不同的信息,以验证进程的创建和执行。
实验结果表明,子进程和父进程能够独立运行,并输出相应的信息。
进程调度算法模拟实现了先来先服务(FCFS)、短作业优先(SJF)和时间片轮转(RR)三种进程调度算法。
通过模拟多个进程的到达时间、服务时间和优先级等参数,计算不同调度算法下的平均周转时间和平均等待时间。
实验结果显示,SJF 算法在平均周转时间和平均等待时间方面表现较好,而 RR 算法能够提供较好的响应时间和公平性。
进程同步与互斥使用信号量和互斥锁实现了进程的同步与互斥。
编写了生产者消费者问题的程序,通过信号量控制生产者和消费者对缓冲区的访问,避免了数据竞争和不一致的情况。
实验结果表明,信号量和互斥锁能够有效地实现进程间的同步与互斥,保证程序的正确性。
2、内存管理实验内存分配与回收算法实现实现了首次适应(First Fit)、最佳适应(Best Fit)和最坏适应(Worst Fit)三种内存分配算法。
实验1 操作系统环境(一)

实验1 操作系统环境(一)引言概述:
在进行操作系统环境的实验前,我们需要对操作系统环境有一个清晰的了解。
本文档将通过五个大点来详细介绍操作系统环境的相关内容。
1. 操作系统环境的定义
- 操作系统环境是指操作系统与硬件设备之间的交互界面,提供了用户与计算机系统进行交互的能力。
它包含了操作系统的安装、配置和功能设置等操作。
2. 操作系统环境的基本组成
- 操作系统环境由操作系统核心、系统资源管理器和应用程序接口组成。
操作系统核心负责处理计算机硬件与软件的交互,系统资源管理器管理系统的资源分配,应用程序接口(API)提供了应用程序与操作系统之间的交互接口。
3. 操作系统环境的安装与配置
- 操作系统环境的安装包括操作系统的选择、引导程序的设置和分区排布等步骤。
配置操作系统环境时,我们需要设置系统时间、语言、网络和用户等参数,以适应不同的应用需求。
4. 操作系统环境的功能设置
- 操作系统环境的功能设置包括对操作系统进行优化和调整,以提高计算机系统的性能和稳定性。
此外,还可以设置电源管理、网络共享和用户权限等功能,以满足不同用户的需求。
5. 操作系统环境的更新与维护
- 操作系统环境的更新是指为了修复漏洞、增加新功能和提高系统性能,在操作系统发布之后进行的升级操作。
维护操作系统环境包括对系统的备份和还原、磁盘清理和错误修复等操作,以保证系统的稳定和安全。
总结:
操作系统环境是操作系统与计算机硬件之间的交互界面,包含了安装与配置、基本组成、功能设置以及更新与维护等方面。
熟悉操作系统环境的相关内容,对于正确操作和提高计算机系统性能至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作系统上机报告姓名:张宇尘学号:11070218学院:计算机学院完成日期:2013年11月目录实验一 LINUX入门 (2)实验二进程管理 (3)实验三线程的管理 (8)实验四利用信号量实现进程控制 (12)实验五基于消息队列和共享内存的进程间控制 (17)收获和体会 (24)实验一:LINUX入门一、实验目的:了解UNIX/LINUX运行环境,熟悉UNIX/LINUX的常用基本命令,熟悉和掌握UNIX/LINUX 下c语言程序的编写、编译、调试和运行方法。
二、实验内容:熟悉UNIX/LINUX的常用基本命令如ls、who、pwd、ps等。
练习UNIX/LINUX的文本行编辑器vi的使用方法熟悉UNIX/LINUX下c语言编译器cc/gcc的使用方法。
用vi编写一个简单的显示“Hello,World!”c语言程序,用gcc编译并观察编译后的结果,然后运行它。
三、实验要求:按照要求编写程序,放在相应的目录中,编译成功后执行,并按照要求分析执行结果,并写出实验报告。
四、实验设计:代码:#include "stdio.h"void main(){printf("helloworld\n");}五、实验测试结果:实验二:进程管理一、实验目的:加深对进程概念的理解,明确进程与程序的区别;进一步认识并发执行的实质。
二、实验内容:(1)进程创建编写一段程序,使用系统调用 fork()创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示“a“;子进程分别显示字符”b“和字符“c”。
试观察记录屏幕上的显示结果,并分析原因。
(2)进程控制修改已编写的程序,将每一个进程输出一个字符改为每一个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。
( 3)进程的管道通信编写程序实现进程的管道通信。
使用系统调用 pipe()建立一个管道,二个子进程P1 和P2 分别向管道各写一句话:Child 1 is send ing a message!Child 2 is sending a message!父进程从管道中读出二个来自子进程的信息并显示(要求先接收 P1,再接收 P2)。
三、实验要求:按照要求编写程序,放在相应的目录中,编译成功后执行,并按照要求分析执行结果,并写出实验报告。
四、实验设计:代码:(1)进程创建:#include <stdio.h>#include <stdlib.h>#include <sys/types.h>#include <unistd.h>#include <string.h>#include <errno.h>#define INPUT 0#define OUTPUT 1int main() {int file_descriptors[2];pid_t pid; // process IDpid_t pid2;char * msg = "child1.";char * msg2 = "child2.";char buf[256];int returned_count;int result;result = pipe(file_descriptors);if (result == -1) {perror("Failed in calling pipe");}pid = fork();if (pid == -1) {perror("Failed in calling fork");exit(1);} else if (pid == 0) {printf("bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbbbbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbb\n");close(file_descriptors[INPUT]);write(file_descriptors[OUTPUT], msg, 1 + strlen(msg));close(file_descriptors[OUTPUT]);exit(0);} else {printf("aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa\n");close(file_descriptors[OUTPUT]);returned_count = read(file_descriptors[INPUT], buf, sizeof (buf));close(file_descriptors[INPUT]);}pid2=fork();if (pid2 == -1) {perror("Failed in calling fork");exit(1);} else if (pid2 == 0) {printf("cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc cccccccccc\n");close(file_descriptors[INPUT]);write(file_descriptors[OUTPUT], msg, 1 + strlen(msg));close(file_descriptors[OUTPUT]);exit(0);} else {close(file_descriptors[OUTPUT]);returned_count = read(file_descriptors[INPUT], buf, sizeof (buf));close(file_descriptors[INPUT]);}return (EXIT_SUCCESS);}(2)进程管理:#include<stdio.h>#include<unistd.h>#include<sys/types.h>#include<sys/wait.h>#include<stdlib.h>#include<string.h>#define INPUT 0#define OUTPUT 1void main() {int file_descriptors[2]; //定义子进程号pid_t pid1,pid2;char buf[29];char test1[256] = "Child 1 is sending a message\n";char test2[256] = "Child 2 is sending a message\n";int returned_count;pipe(file_descriptors); //创建管道if((pid1 = fork()) == -1) {printf("Error in fork\n");exit(1);if(pid1 == 0) {printf("<<Child1>>\n");close(file_descriptors[INPUT]);printf("sending...\n");write(file_descriptors[OUTPUT], test1, strlen(test1));printf("sending completed\n");exit(0);}else {wait(NULL);printf("back to the parent process\n");pid2 = fork();if(pid2 < 0){printf("Error in fork\n");exit(1);}else if(pid2 == 0){printf("<<Child2>>\n");close(file_descriptors[INPUT]);printf("sending...\n");write(file_descriptors[OUTPUT], test2, strlen(test2));printf("sending completed\n");exit(0);}else if(pid1 > 0){wait(NULL); //等待进程结束close(file_descriptors[OUTPUT]);returned_count = read(file_descriptors[INPUT], buf, sizeof(buf));printf("%d bytes of data received from spawnedprocess: %s\n",returned_count,buf);returned_count = read(file_descriptors[INPUT], buf, sizeof(buf));printf("%d bytes of data received from spawnedprocess: %s\n",returned_count,buf);}}}五、实验结果:1、进程创建:2、进程管理:六、结果分析:在大量的输出a、b、c可能会出现间断,是因为时间片到了。