人民教育出版社九年级数学上册 第二十四章 24.1.2垂直于弦的直径(共18张PPT)
人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册第24章《圆》的第二个知识点。
本节课主要学习了圆中一条特殊的直径——垂直于弦的直径,并探究了它的性质。
教材通过实例引导学生发现垂直于弦的直径的性质,并运用这一性质解决一些与圆有关的问题。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积计算、圆的性质等知识。
他们具备了一定的观察、分析和解决问题的能力。
但对于垂直于弦的直径的性质及其应用,可能还比较陌生。
因此,在教学过程中,需要注重引导学生发现和总结垂直于弦的直径的性质,并通过实例让学生体会其在解决实际问题中的应用。
三. 教学目标1.理解垂直于弦的直径的性质。
2.学会运用垂直于弦的直径的性质解决与圆有关的问题。
3.培养学生的观察能力、分析能力和解决问题的能力。
四. 教学重难点1.垂直于弦的直径的性质。
2.运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.引导发现法:通过实例引导学生发现垂直于弦的直径的性质。
2.实践操作法:让学生动手画图,加深对垂直于弦的直径性质的理解。
3.问题驱动法:设置问题,引导学生运用垂直于弦的直径的性质解决问题。
六. 教学准备1.课件:制作课件,展示相关实例和问题。
2.练习题:准备一些与垂直于弦的直径性质有关的练习题。
3.圆规、直尺等画图工具:为学生提供画图所需的工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:在一个圆形池塘中,怎样找到一个点,使得从该点到池塘边缘的距离最远?引导学生思考,并提出解决问题的方法。
2.呈现(10分钟)展示几个与垂直于弦的直径性质相关的实例,引导学生观察和分析这些实例,发现垂直于弦的直径的性质。
3.操练(10分钟)让学生动手画图,验证垂直于弦的直径的性质。
在这个过程中,引导学生运用圆规、直尺等画图工具,提高他们的动手能力。
九年级数学上册第二十四章圆24.1圆的有关性质24.1.2垂直于弦的直径检测(含解析)新人教版(2

九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径同步检测(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径同步检测(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径同步检测(含解析)(新版)新人教版的全部内容。
24.1.2 垂直于弦的直径测试时间:30分钟一、选择题1.一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是( )A。
① B.②C。
③D。
④2。
(2017贵州黔西南州中考)如图,在☉O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是( )A.3 B。
2。
5 C.2 D.13.在某岛A的正东方向有台风,且台风中心B距离该岛40 km,台风中心正以30 km/h的速度向西北方向移动,距离台风中心50 km以内(包括边界)都受影响,则该岛受到台风影响的时间为()A.不受影响B。
1 h C.2 h D.3 h二、填空题4.(2017湖南长沙中考)如图,AB为☉O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则☉O的半径为.5。
(2017四川雅安中考)☉O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.三、解答题6。
如图,AB为☉O的弦,☉O的半径为5,OC⊥AB于点D,交☉O于点C,且CD=1.(1)求线段OD的长;(2)求弦AB的长.7.(2018福建龙岩新罗期末)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD为☉O 的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,那么直径CD的长为多少寸?”请你求出CD的长.24。
24.1.2垂直于弦的直径

O
A
E D
B
证明:连结OA、OB,则OA= OB.∵ 垂直于弦AB的直径CD所在 的直线 既是等腰三角形OAB的对称轴又 是⊙ O的对称轴. ∴ 当把圆沿着直径CD折叠时, CD两侧的两个半圆重合, A点和B点重合, ⌒ ⌒ AE和BE重合, ⌒ ⌒ AC、AD分别和BC、BD重合. ⌒ ⌒ ⌒ ⌒ ∴ AE=BE,AC=BC,AD=BD
A E B
解:连结OA.过O作OE⊥AB, . O 垂足为E, 则OE=3cm,AE=BE. ∵AB=8cm ∴AE=4cm 在Rt△AOE中,根据勾股定理有OA=5cm ∴⊙O的半径为5cm.
2. 在⊙O中,AB、AC为互相垂直且相等的两条弦, OD⊥AB于D,OE⊥AC于E, 求证:四边形ADOE是 正方形.
① 直径过圆心 ③ 平分弦 ⑤ 平分弦所对的劣弧
② 垂直于弦 ⑤ 平分弦所对的劣弧
① 直径过圆心 ③ 平分弦 ④ 平分弦所对优弧
(4)垂直于弦并且平分弦所对的一条弧的 直径过圆心,并且平分弦和所对的另一条弧.
③ 平分弦 ④ 平分弦所对优弧
① 直径过圆心 ② 垂直于弦 ⑤ 平分弦所对的劣弧
③ 平分弦 ⑤ 平分弦所对的劣弧
证明: Q O E A C O D A B A B A C
O EA 90
o
EAD 90
o
O D A 90
C E A
o
∴四边形ADOE为矩形, 1 1 AE AC,AD AB 2 2 又∵AC=AB ∴ AE=AD ∴ 四边形ADOE为正方形.
· O
D B
24.1
24.1.2
圆的有关性质
垂直与弦的直径
轴 中心 圆心
24.1.2垂直于弦的直径

赵洲桥的半径是多少?
问题 :你知道赵洲桥吗?它是1300多年前我国隋代建造 的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是 圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点 到弦的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
实践探究 用纸剪一个圆,沿着圆的任意一 条直径对折,重复几次,你发现了 什么?由此你能得到什么结论?
弧: BC, BD AC AD
C
·
O E A D B
把圆沿着直径CD折叠时,CD两侧的两个半圆 重合,点A与点B重合,AE与BE重合, C , D A A 分别与 B C 、 B D 重合.
C
A AE=BE, D B D
, C BC A 即直径CD平分弦AB,并且平分 B 及 C B A A
C
37 . 4 18 . 7 ,
OD=OC-CD=R-7.2 在Rt△OAD中,由勾股定理,得
OA2=AD2+OD2
即 R2=18.72+(R-7.2)2
A R O
D
B
解得:R≈27.9(m)
因此,赵州桥的主桥拱半径约为27.9m.
课堂练习
1.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距 离为3cm,求⊙O的半径.
我们就得到下面的定理:
·
O
垂直于弦的直径平分弦,并 且平分弦所对的两条弧.
我们还可以得到结论:
E
A D
B
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
这个定理也叫垂径定理,利用 这个定理,你能平分一条弧吗?
解决求赵州桥拱半径的问题? 在图中 AB=37.4,CD=7.2,
九年级数学上册第二十四章圆24.1圆的有关性质24.1.2垂直于弦的直径课件新版新人教版

知识要点基础练
知识点1 圆的轴对称性
1.下列轴对称图形中,对称轴的条数最多的图形是 ( A )
A.圆 B.正六边形
C.正方形
D.等边三角形
2.将一张圆形纸片沿着它的一条直径翻折,直径两侧的部分相互重合,这说明 ( B )
A.圆是中心对称图形,圆心是它的对称中心
B.圆是轴对称图形,直径所在的直线是它的对称轴
C.圆的直径相互平分
Dቤተ መጻሕፍቲ ባይዱ垂直弦的直径平分弦所对的弧
知识要点基础练
知识点3 垂径定理的推论 5.下列说法正确的是 ( D ) A.垂直于弦的直线平分弦所对的两条弧 B.平分弦的直径垂直于弦 C.垂直于直径的弦平分这条直径 D.弦的垂直平分线经过圆心
人教版九年级数学上册24.1.2《垂直于弦的直径》说课稿

人教版九年级数学上册24.1.2《垂直于弦的直径》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的1.2节《垂直于弦的直径》是本章的重要内容。
这部分主要介绍了垂径定理及其推论,为后续学习圆的性质和圆的方程打下基础。
本节内容通过探究垂直于弦的直径的性质,引导学生利用几何推理证明结论,培养学生的逻辑思维能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本几何知识,对圆的基本概念和性质有所了解。
但学生在解决几何问题时,往往缺乏推理证明的能力。
因此,在教学过程中,教师需要关注学生的思维过程,引导学生掌握几何推理的方法。
三. 说教学目标1.知识与技能:掌握垂径定理及其推论,能运用垂径定理解决简单几何问题。
2.过程与方法:通过观察、探究、推理,培养学生的逻辑思维能力和几何直观能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养合作探究的精神。
四. 说教学重难点1.教学重点:垂径定理及其推论的证明和应用。
2.教学难点:垂径定理的证明,以及如何引导学生运用几何推理方法。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生主动参与课堂讨论。
2.教学手段:利用多媒体课件辅助教学,直观展示几何图形的性质和推理过程。
六. 说教学过程1.导入新课:通过回顾圆的基本性质,引出垂直于弦的直径的性质。
2.探究垂直于弦的直径的性质:让学生分组讨论,观察几何图形,引导学生发现垂直于弦的直径的性质。
3.推理证明:引导学生运用几何推理方法,证明垂径定理及其推论。
4.应用拓展:举例说明垂径定理在解决实际问题中的应用。
5.总结归纳:对本节课的主要内容进行总结,强调垂径定理及其推论的重要性。
七. 说板书设计板书设计如下:垂直于弦的直径性质:垂直于弦的直径平分弦,且平分弦所对的弧。
八. 说教学评价本节课通过课堂提问、学生作业、小组讨论等方式进行教学评价。
主要评价学生在掌握垂径定理、运用几何推理方法以及解决实际问题方面的表现。
人教版九年级数学上册第二十四章24.1.2 垂直于弦的直径(共21张PPT)

C
∴ AE=AD
∴ 四边形ADOE为正方形.
E
·O
A
D
B
3、如图,弓形ABC中,弦AC的长为8厘米, 弦的中点到劣弧中点间的长度是2厘米,求 圆的半径。
B
2
4
A
D
C
x
x-2
·O
4、在直径是20cm的⊙O中,∠AOB的度数是
60°, 那么弦AB的弦心距是 5 3cm .
圆的圆心到圆上弦的
距离叫做弦心距。
O
A
B
P
3≤OP≤5
2、如图,在⊙O中,AB、AC为互相垂直且相等的两 条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是
正方形.
证明: OE AC OD AB AB AC
OEA 90 EAD 90 ODA 90
∴四边形ADOE为矩形,AE 1 AC,AD 1 AB
2
2
∵AC=AB
•
10、阅读一切好书如同和过去最杰出的人谈话。09:45:1209:45:1209:458/12/2021 9:45:12 AM
•
11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.8.1209:45:1309:45Aug-2112-Aug-21
于弦,并且平分弦所对的两条弧.
D
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?
•
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。21.8.1221.8.12Thursday, August 12, 2021
九年级数学上册 第24章 圆 24.1 圆的有关性质(第2课时)垂直于弦的直径

Image
12/12/2021
第十九页,共十九页。
• 学习重点: 垂径定理及其推论.
12/12/2021
第二页,共十九页。
【知识链接,复习(fùxí)准备】
1.在下图中,弦有__________________;
直径(zhíjìng)是_______,半径是__________; 其中,弦AB所对的弧是_____________; 在图中作出
12/12/2021
拱高(弧的中点到弦的距离)为 7.23 m,求赵州桥主桥 拱的半径(精确到 0.1 m).
12/12/2021
第十二页,共十九页。
【典例精析,经典(jīngdiǎn)同行】
C
A
D
B
12/12/2021
O
第十三页,共十九页。
【反思(fǎn sī)总结 ,归纳方法】
内容: 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两
_________
变式2:已知⊙O的半径为5cm,圆心 O到AB的距离为3cm,则弦AB的长为
______cm.
12/12/2021
第九页,共十九页。
【利用(lìyòng)新知,解决问题】
学案(xuéàn)题组一第4题
4.如图,在⊙O中,AB、AC为互相垂直(chuízhí)且相等的
两条弦,OD⊥AB于D,OE⊥AC于E,求证四边 形 ADOE是正方形.
学案(xuéàn)题组一第5 题
5.如图,已知在两同心圆⊙O 中,大圆(dàyuán)弦 AB 交小圆 于 C,D,则 AC 与 BD 间可能存在什么关系?
A C DB O
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是
2、请画图说明垂径定理的条件和结论。
分析
C
O
A
E
D
条件
结论
}{ CD为直径,
CD平分弦 AB
点C平分弧ACB
CD⊥AB
点D平分弧ADB
}{ (1)过圆心
(3)平分弦 (4)平分弦所对的优弧
(B 2)垂直于弦
(5)平分弦所对的劣弧
注意书写格式.
例1.如图,弦AB的长为 8 cm,圆心O到 AB 的距 离为 3 cm,求⊙O的半径.
⌒⌒ AD = BD
·O
E
A
B
D
总结
3、图形语言
A
O
C
E
B
垂径定理
1、文字语言
垂直于弦的直径平分弦, 并且平分弦所对的两条弧。
2、符号语言
因为AB⊥CD于E, AB为⊙O的直径
∴ CE=DE,
D
AC=AB,
BC=BD.
1、判断下列图是否是表示垂径定理的图形。
C
c
C
A
O
A
E
B
D
B
O A
O
E
B
D
是
不是
垂直于弦的直径
复习与回顾
1.圆是轴对称图形吗? 2.如果是,它的对称轴是什么? 3.你能找到多少条对称轴? 4.讨论:你是用什么方法解决上述问题的?
归纳:圆是轴对称图形,其对称轴是任 意一条过圆心的直线
2020/5/14
驶向胜利 的彼岸
问题 :它的主桥是圆弧形,它的跨度(弧所对 的弦的长)为37m,拱高(弧的中点到弦的距离) 为7.23m,你能求出赵州桥主桥拱的半径吗? (结果保留小数点后一位)
A
O.
E C
B
问题:左图中AB为圆O的直 径,CD为圆O的弦。相交于 点E,当弦CD在圆上运动的
过程中有没有特殊情况?
D
直径AB和弦CD互相垂直
特殊情况
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂 足为E.
你能发现图中有那些相等的线段和弧?为什么?
C
线段: AE=BE 弧: A⌒C = B⌒C
相信自己是最棒的!
D
小结
1.圆的轴对称性
2.垂径定理的推式 直径平分弦
(1)直径垂直于弦=>{ 直径平分弦所对的弧
直径平分弧所对的弦 (2)直径平分弧=>{
直径垂直于弧所对的弦 注:垂径定理和勾股定理相结合,构造直角三角形,
可解决弦长、半径、弦心距等计算问题.
作业布置课本第88页7Fra bibliotek8题说出你这节课的收获和体 验让大家与你分享吗?
O.
A
E C
DB
∴CE=ED ∴AE-CE=EB-ED
即AC=BD
C
O
A
A
E
B
D
O
A
D
B
C
O
C
B
知“二”推“三”
如图,在下列五个条件中:
①⑤A过⌒D圆=B心⌒D的. 只直要线具②备C其D中⊥两AB个, 条③件A,M就=可BM推,出④其A余⌒C三=B个⌒C结, 论.
C
A M└ ●O
B 你可以写出相应的命题吗?
你能求出赵州桥主桥拱的 半径吗?
C
D
A
B
R
O
如图,⊙O的半径为5,弦AB的长为8,M是弦AB
上的动点,则线段OM的长的最小值为__3__.最大 值为______5______.
已知:如图,在以O为圆心的两个同心圆中,
大圆的弦AB交小圆于C,D两点。
试说明:AC=BD。
证明:过O作OE⊥AB于E
∵OE⊥AB ∴AE=EB ∵OE⊥CD
变1.在⊙O中,直径为 10 cm,弦 AB的
A
E
B 长为 8 cm, 求圆心O到AB的距离.
变2.在⊙O中,直径为 10 cm,圆心O到
O
AB的距离为 3 cm,求弦AB的长.
设⊙O的半径是r,圆心到弦的 距离d,弦长a,
三者关系如何?
O
r2 =d2+( a2)2
rd
a
2
问题 :它的主桥是圆弧形, 它的跨度(弧所对的弦的长) 为37m,拱高(弧的中点到弦 的距离)为7.23m,