人教版九年级数学上册教案-24.1.2 垂直于弦的直径2带教学反思
人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计一. 教材分析人教版数学九年级上册24.1.2《垂直于弦的直径》是圆的一部分性质的教学内容。
本节课主要让学生了解并掌握垂直于弦的直径的性质,能灵活运用这一性质解决相关问题。
教材通过实例引导学生探究,培养学生的观察、思考和动手能力,为后续圆的弦和圆弧的学习打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和定理有一定的理解。
但垂直于弦的直径这一性质较为抽象,学生可能难以理解。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,逐步掌握性质,提高学生的空间想象和逻辑思维能力。
三. 教学目标1.了解垂直于弦的直径的性质,能证明并运用这一性质解决相关问题。
2.培养学生的观察、思考、动手和合作能力。
3.提高学生对圆的一部分性质的兴趣,为后续圆的学习打下基础。
四. 教学重难点1.垂直于弦的直径的性质及其证明。
2.灵活运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.情境教学法:通过实例引导学生观察、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生探究,培养学生的解决问题能力。
3.合作学习法:分组讨论,共同完成任务,提高学生的团队协作能力。
4.实践操作法:让学生动手操作,加深对性质的理解。
六. 教学准备1.教学课件:制作课件,展示实例和动画,辅助教学。
2.教学素材:准备相关的几何图形,便于学生观察和操作。
3.教学设备:投影仪、计算机、黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用实例引入课题,展示垂直于弦的直径的性质,激发学生的兴趣。
2.呈现(10分钟)展示垂直于弦的直径的性质,引导学生观察、思考,并提出问题。
3.操练(10分钟)分组讨论,让学生动手操作,证明垂直于弦的直径的性质。
4.巩固(10分钟)出示练习题,让学生独立解答,巩固所学知识。
5.拓展(10分钟)出示一些实际问题,让学生运用垂直于弦的直径的性质解决,提高学生的应用能力。
人教版九年级上册24.1.2垂直于弦的直径24.1.2垂直于弦的直径教学设计

人教版九年级上册24.1.2垂直于弦的直径教学设计一、教学目标1.理解垂线、垂足、垂直平分线、相交于垂足的两条线段互为垂直。
2.掌握垂直平分线的性质和应用。
3.学会用垂直平分线求直径。
二、教学重难点1.理解垂线、垂足、垂直平分线的定义和性质。
2.通过垂直平分线求直径,需要掌握数学计算方法。
三、教学过程1. 导入让学生在纸上画一个圆并标记圆心、半径,引出“弦”的概念。
通过学生们的互动,让他们理解弦是圆上任意两点之间的线段。
2. 自主学习让学生自己研究什么是垂直平分线,特别是24.1.2题目中所述的垂直于弦的直径是如何求得的。
学生可以结合自己的理解和常识,得出一些初步的结论。
3. 合作探究将学生分成若干小组,每组成员之间相互讨论,举一反三,尝试解决一些类似的问题。
为了使学生更好地理解,可以在板书上示意图,或在黑板上画出一幅图形,引导学生进行讨论。
4. 指导讲解在学生讨论之后,老师进行正式的讲解,着重讲解垂足、垂线和垂直平分线的性质,并解释直径是如何通过垂直平分线来求得的。
5. 练习巩固让学生进行巩固训练,可以把一些类似的题目给学生进行练习,根据不同程度的学生做出相应的安排和调整,以及针对学生的问题进行讲解和指导;也可以让学生在课堂上完成这些题目,检验学生的掌握程度。
例如:已知圆O的直径AB,通过直线CD(平行于AB)构造两条弦EF、GH,其中EF=9cm,GH=7.5cm,请问EF和GH的中垂线上的某点到圆心的距离是多少?6. 总结归纳在巩固训练之后,对项目进行总结归纳,在课堂上梳理本课内容,使学生对本课内容有一个深入的理解。
此外,还要通过本教学的方式来告诉学生,数学并不是枯燥无味的,也充满了趣味和乐趣。
四、教学评价教学方法:•通过讨论和示例引导学生,促进他们的思维和创造力。
•通过现代媒介如电子白板和计算机等来优化整个教学流程。
教学效果:•从学生的态度和反应来看,这种教学方式能够轻松使学生更好地理解课程内容。
人教版九年级数学上册说课稿:24.1.2垂直于弦的直径

一、教材分析
(一)内容概述
本节课选自人教版九年级数学上册第24章1.2节,主题为“垂直于弦的直径”。这一节内容在整个课程体系中具有重要地位,它既是圆的相关知识的延伸,也是培养学生空间想象能力和推理能力的重要环节。在之前的课程中,学生已经学习了圆的基本概念、圆的性质以及圆的方程等知识。在此基础上,本节课将引导学生探索垂直于弦的直径的性质,进一步理解圆的相关定理。
二、学情分析导
(一)学生特点
本节课面向的是九年级的学生,这个年龄段的学生正处于青春期,思维活跃,具有一定的独立思考和自主学习能力。他们在认知水平上,已经具备了基本的几何知识和一定的逻辑推理能力,能够理解并运用圆的相关性质。此外,学生对新鲜事物充满好奇,对数学学科的兴趣也日益浓厚,但学习习惯尚需进一步培养。
2.教学难点:理解并证明垂直于弦的直径平分弦,并且平分弦所对的两条弧。
对于教学重点,教师要引导学生通过观察、思考、实践等方法,掌握垂直于弦的直径的基本概念和性质。对于教学难点,教师要提供适当的引导和提示,帮助学生理解并证明这一性质,从而培养学生的推理能力。同时,教师还要注意关注学生的学习过程,鼓励学生积极参与,提高他们的空间想象能力和解决问题的能力。
(二)学习障碍
在学习本节课之前,学生已经掌握了圆的基本概念、圆的性质以及圆的方程等前置知识。然而,他们在学习过程中可能存在以下障碍:1.对垂直于弦的直径的概念理解不够深刻,容易与其他概念混淆;2.在证明垂直于弦的直径平分弦以及平分弦所对的两条弧的过程中,可能缺乏严密的推理能力;3.在实际问题中,学生可能难以将所学知识灵活运用。
作业的目的是让学生通过练习,进一步巩固所学知识,提高解决问题的能力,培养数学素养。同时,关注学生的个体差异,使每个学生都能在作业中得到有效的提升。
24.1.2垂直于弦的直径教案 2022-2023学年人教版九年级上册数学

24.1.2 垂直于弦的直径教案2022-2023学年人教版九年级上册数学本教案旨在帮助学生理解并掌握垂直于弦的直径概念,并通过实例让学生能够运用所学知识解决相关问题。
通过本教案的学习,学生将能够更深入地理解圆的性质与特点,提高数学解题能力。
一、教学目标1.理解并掌握垂直于弦的直径的概念。
2.掌握相关综合运用题的解题方法。
3.培养学生的逻辑思维能力和问题解决能力。
二、教学重点和难点1.教学重点:垂直于弦的直径的概念及应用。
2.教学难点:综合运用题的解题方法。
三、教学准备1.教师准备:–教材:人教版九年级上册数学教材。
–备课笔记和教案。
–相关教学资源。
2.学生准备:–学习用具:课本、笔、纸等。
四、教学过程1. 导入通过提问和讨论,回顾圆的相关概念,如半径、直径、弧等,引导学生思考并复习相关知识。
2. 概念讲解•引入垂直于弦的直径概念,解释其定义和性质。
•强调垂直于弦的直径的特点,即垂直于弦的直径恰好经过弦的中点。
•通过实例和图示让学生更好地理解和记忆该概念。
3. 示例分析通过具体的例题,引导学生运用垂直于弦的直径的性质进行解题。
教师可以选择简单的例题进行分析,逐步引导学生掌握解题方法。
示例题1:在一个圆上,弦AB的长度为6cm,弦AB的中点O到圆心的距离为4cm,求圆的半径。
解题思路:根据垂直于弦的直径的性质,弦AB的中点O到圆心的距离等于圆的半径。
所以,圆的半径为4cm。
4. 综合运用题训练设计一些综合运用题,让学生将所学知识应用到更具挑战性的问题中。
逐步提高学生的解题能力和逻辑思维能力。
练习题1:已知圆上弦CD的长度为10cm,且CD垂直于弦AB,弦AB的长度为8cm。
求圆的半径。
解题思路:根据垂直于弦的直径的性质,弦CD垂直于弦AB,且AB的长度为8cm,那么AB就是CD的直径。
所以,圆的半径为4cm。
5. 总结和归纳对本节课所学的知识进行总结和归纳,提醒学生关注垂直于弦的直径的特点和解题方法,加深对相关概念的理解。
人教版数学九年级初三上册 24.1.2垂直于弦的直径 名师教学教案 教学设计反思

24.1.2垂直于弦的直径敎學目标知识与技能:1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及过程与方法:通过探索垂径定理的过程,进一步体会和理解研究几何图形的各种方法.情感态度:1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.敎學重点:垂径定理,会运用垂径定理等结论解决一些有关证明,计算和作图问题.敎學难点:垂径定理.敎學过程一、情境导入,初步认识你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中心点到弦的距离)为7.2m.你能求出主桥拱的半径吗?(图:课本第82页图24.1-7)敎學说明:赵州桥问题充分体现了数学与应用数学的关系,了解我国古代人民的勤劳与智慧,要解决此问题需要用到这节课的知识,这样较好地调动了学生的积极性,开启了学生的思维,成功地引入新课.二、思考探究,获取新知1.圆的轴对称性问题1用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?敎學说明:学生通过自己动手操作,归纳出圆是轴对称图形,任何一条直径所在直线都是它的对称轴.证明:连结OA、OB.则OA=OB.又∵CD⊥AB∴直径CD所在的直线是AB的垂直平分线∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.CD是直径,AB是弦,CD⊥AB所以:AE=BEAC=BCAD=BD垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.三、师生互动,课堂小结1.你能说说物体的三视图与投影之间有什么联系吗?2.画一个几何体的三视图时应注意哪些问题?3.你在画图过程中出现过哪些问题?与同伴交流.敎學说明:师生共同回顾,教师在听取学生的看法后,作必要的总结,加深学生对本节知识的理解.。
人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》一. 教材分析《垂直于弦的直径》是人教版数学九年级上册第24章《圆》的一部分。
本节课主要内容是让学生掌握垂径定理,理解并证明圆中的一些特殊性质。
通过学习,学生能够运用垂径定理解决实际问题,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。
但部分学生对圆的性质理解不够深入,对圆中特殊位置关系的判断和证明能力较弱。
因此,在教学过程中,要注重引导学生发现圆中的垂直关系,培养学生动手操作和解决问题的能力。
三. 教学目标1.知识与技能:让学生掌握垂径定理,学会运用垂径定理解决圆中的问题。
2.过程与方法:培养学生观察、分析、归纳、推理的能力,提高动手操作和解决问题的能力。
3.情感态度与价值观:激发学生学习圆的性质的兴趣,培养学生团队协作和积极参与的精神。
四. 教学重难点1.重点:垂径定理的理解和运用。
2.难点:圆中特殊位置关系的判断和证明。
五. 教学方法1.情境教学法:通过实物演示、图形展示等手段,引导学生发现圆中的垂直关系。
2.问题驱动法:设计一系列问题,引导学生思考和探究,激发学生的学习兴趣。
3.合作学习法:学生进行小组讨论和探究,培养学生的团队协作能力。
4.讲授法:教师讲解垂径定理及相关性质,引导学生理解和掌握。
六. 教学准备1.准备相关图形和实物,如圆、弦、直径等。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和测试题,用于巩固和检验学生的学习效果。
七. 教学过程1.导入(5分钟)利用实物或图形,展示圆中的垂直关系,引导学生关注垂直于弦的直径。
提问:你们发现了吗?垂直于弦的直径有什么特殊的性质吗?2.呈现(10分钟)介绍垂径定理的内容,并用多媒体展示垂径定理的证明过程。
让学生理解并掌握垂径定理。
3.操练(10分钟)设计一系列练习题,让学生运用垂径定理解决问题。
教师引导学生思考和探究,解答学生的疑问。
人教版数学九年级上册24.1.2垂直于弦的直径(教案)

3.重点难点解析:在讲授过程中,我会特别强调垂直于弦的直径性质以及它在解决问题中的应用。对于难点部分,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与垂直于弦的直径相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示垂直于弦的直径如何平分弦及所对的两条弧。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便习,我们了解了垂直于弦的直径的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一性质的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“垂直于弦的直径在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-将垂直于弦的直径性质与已学的圆的其他性质(如圆周角定理、弦切角定理)结合使用。
举例解释:
-对于“平分”概念,通过动态演示或实物操作,让学生直观感受直径对弦及所对弧的平分作用;
人教版九年级数学24.1.2:垂径定理优秀教学案例

4.成长记录:鼓励学生建立数学学习成长记录,记录学习过程中的点滴进步,培养他们的自主学习能力和反思能力。
四、教学内容与过程
(一)导入新课
1.引入:通过展示一幅圆形花园的图片,提问:“同学们,你们知道圆形花园中隐藏的数学秘密吗?”激发学生的好奇心。
三、教学策略
(一)情景创设
为了让学生更好地理解垂径定理,我们将从生活实际出发,创设富有启发性的教学情境。通过展示实际生活中含有垂径定理元素的场景,如古建筑中的拱桥、圆形花园的布局等,引导学生感受数学与生活的紧密联系。同时,利用多媒体手段,如动画、图片等,形象地呈现垂径定理的基本原理,激发学生的学习兴趣和探究欲望。
1.教学反思:在教学过程中,教师需密切关注学生的学习状态,及时发现并解决学生在学习过程中遇到的问题。课后,教师应认真反思教学设计、教学方法和教学效果,不断调整教学策略,以提高教学质量和效果。
2.学生评价:采用多元化的评价方式,包括自评、互评、小组评价和教师评价。评价内容涵盖知识掌握、技能运用、合作态度等方面。通过评价,激发学生的学习积极性,培养他们的自信心和自我认知能力。
3.小组交流:各小组分享自己的探究过程和结果,互相学习、借鉴,提高解决问题的能力。
(四)总结归纳
1.教师总结:对本节课的重点知识进行梳理,强调垂径定理的原理、证明方法及其应用。
2.学生总结:鼓励学生发表自己对垂径定理的理解和感悟,提高他们的概括和表达能力。
3.知识体系:将垂径定理与圆的其他性质相结合,构建完整的知识体系,为后续学习打下基础。
人教版九年级数学24.1.2:垂径定理优秀教学案例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1.2 垂直于弦的直径
教学目标
1、知识目标:
(1)充分认识圆的轴对称性。
(2)利用轴对称探索垂直于弦的直径的有关性质,掌握垂径定理。
(3)运用垂径定理进行简单的证明、计算和作图。
2、能力目标:
让学生经历“实验—观察—猜想—验证—归纳”的研究过程,培养学生动
手实践、观察分析、归纳问题和解决问题的能力。
让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
3、情感目标:
通过实验操作探索数学规律,激发学生的好奇心和求知欲,同时
培养学生勇于探索的精神。
教学重点
垂直于弦的直径的性质及其应用。
教学难点
1、垂径定理的证明。
2、垂径定理的题设与结论的区分。
教学辅助
多媒体、可折叠的圆形纸板。
教学方法
本节课采用的教学方法是“主体探究式”。
整堂课充分发挥教师的主导作用和学生的主体作用,注重学生探究能力的培养,鼓励学生认真观察、大胆猜想、小心求证。
令学生参与到“实验--观察--猜想--验证--归纳”的活动中,与教师共同探究新知识最后得出定理。
学生不再是知识的接受者,而是知识的发现者,是学习的主人。
教学过程
引入新课引入新课
问:(1)我们所学的圆是不是轴对称图形?
(2)如果是,它的对称轴是什么?
拿出一张圆形纸片,沿着圆的任意一条直径对折,
重复做几次,你发现了什么?由此你能得到什么结
论?:
(1)圆是轴对称图形。
(2)对称轴是过圆点的直线(或任何一条直径所
在的直线)
(3)圆的对称轴有无穷多条
实验:把圆形纸片沿着圆的
任意一条直径对
折,重复做几次
观察:两部分重合,发现得
出圆的对称性的结
论
培养学生
的动手能
力,观察能
力,通过比
较,运用旧
知识探索
新问题
揭示课题揭示课题
电脑上用几何画板上作图:
(1)做一圆
(2) 在圆上任意作一条弦 AB;
(3) 过圆心作AB的垂线的直径CD且交AB于E。
(板书课题:垂直于弦的直径)
在圆形纸片上作一条弦AB,
过圆心作AB的垂线的直径
CD且交AB于E
师生互动师生互动
运用几何画板展示直径与弦垂直相交时圆的翻折动
画让学生观察,讨论
(1)图中圆可能会有哪些等量关系?
(2)弦AB与直径CD除垂直外还有什么性质?
实验:将圆沿直径CD对折
观察:图形重合部分,思考
图中的等量关系
猜想: AE=EB、
弧AC=弧CB、
弧AD=弧DB
(电脑显示))垂直于弦的直
径平分弦,并且平分弦所对
的两条弧?
引导学生
通过“实验
--观察--
猜想”,获
得感性认
识,猜测出
垂直于弦
的直径的
性质
O
E
D
C
B
A
拓展升华
如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换或交换一条,命题是真命题吗?
(1)过圆心(2)垂直于弦(3)平分弦
(4)平分弦所对的优弧(5)平分弦所对的劣弧上述五个条件中的任何两个条件都可以推出其他三个结论学生自主探证通过问题,
引导学生
拓展思维,
发现新目
标
归纳小结归纳小结
由学生小结,电脑显示
知识总结:
这节课我们主要学习了两个问题:一是圆的轴对称性
(学生回答),它是理解和证明定理的关键;二是垂
径定理(学生回答),它是这节课的重点要求大家分
清楚定理的条件和结论,并熟练掌握定理的简单应
用,还推知它的里定理。
另外它的其他推论级应用我
们下节课探讨。
讲评总结:
1学习垂径定理后,你认为应该注意哪些问题?
2应用垂径定理如何添辅助线?垂径定理有哪些应用
3这节课的学习你有什么疑问?
4这节课的学习方式拟喜欢吗?你有什么好的建议?
讲评回答回顾这节
课的内容,
加深学生
对知识的
印象,反馈
学生这节
课收获节
疑问,使教
学效果得
到提高
分层作业分层作业
1、必做题:习题24.1—1,9
2、选做题:习题24.1—12
九、板书设计
~。