职业高中高一数学(基础模块)期末试卷卷-附答案
职业高中高一下学期期末数学试题卷5(含答案)

职业高中下学期期末考试 高一《 数学_》试题5一. 选择题:(每小题3分,共30分)1.函数()x a y 1-=在R 上是增函数,则a 的取值范围是( )A.a >1B.1<a <2C.a >2D.2<a <3 2.若n m ==5ln ,2ln ,则n m e +2的值为 ( )A .2B .5C .20D .103.函数2()log (1)f x x π=+的定义域是( ) A .(1,1)-B .(0,)+∞C .(1,)+∞D .R4.下列说法中,正确的是( )A. 第一象限角一定是锐角B.锐角一定是第一象限角 B. 小于90度的角一定是锐角 D.第一象限角一定是正角5.已知α为第二象限角,则=-•αα2cos 1sin 1. A. 1 B.-1 C.1或-1 D.以上都不是6.下列函数中,在区间⎪⎭⎫⎝⎛2,0π上是减函数的是( )A .x y sin =B .x y cos =C .x y tan =D .2x y =7.等差数列{n a }的通项公式是n a = -3n + 2 ,则公差d = ( )A. -4B. -3C. 3D. 48.在等差数列{n a }中,若=+173a a 10 ,则19S = ( )A. 65B. 75C. 85D. 959.已知等比数列{}n a 中,,32,832==a a 则=1a ( )A. 2B. 4C. 6D. 810.三个正数c b a ,,成等比数列, 是c b a lg ,lg ,lg 成等差数列的 A .充要条件 B .必要条件 C .充分条件 D .无法确定 二.填空题(每小题3分,共24分) 11.已知()[]0lg log log 37=x ;则=x .12.函数()lg(lg 2)f x x =-的定义域是 .13. =+2log 15514.与52π-终边相同的角中最小正角是 15.在三角形ABC 中,如果B A cos sin ⋅<0,则△ABC 是 三角形 16.已知2cos sin =+αα,则=⋅ααcos sin . 17.等比数列{}n a 中,若,2563=a a 则=72a a _______ 18.等比数列{}n a 中,若12632==a a ,,则S 6 =_______ 三.计算题:(每小题8分,共24分)19.已知:()()521322231,31-++-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=x x x x x g x f ,()x f >()x g ,求x 的取值范围.专业 班级 姓名 学籍号 考场 座号20.求值sin()tan()cos()cos(2)tan()sin()πααπαπαπαπα+-+++-.21.在等比数列{}n a 中,若,2,12413=-=-a a a a 求首项1a 和公比q .四.证明题:(每小题6分,共12分)22.已知(1,10)x ∈, 22lg ,lg ,lg(lg ),A x B x C x === 证明:C A B <<.23.1=-.五:综合题:(10分) 24.等比数列}{n a 中,公比q=2,25log log log 1022212=+•••++a a a ,求n a a a +•••++21.高一 《 数学__》试题5参考答案一.选择题:1---5 CCDBA 6----10 BBDAA 二.填空题11. 1000 12.[100,+∞ ) 13. 10 14.58π 15.钝角 16.2117.25 18.189 三.计算题:(每小题8分,共24分) 19.已知:()()521322231,31-++-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=x x x x x g x f ,()x f >()x g ,求x 的取值范围.20.求值sin()tan()cos()cos(2)tan()sin()πααπαπαπαπα+-+++-.解 原式=()()1sin tan cos cos tan sin -=---αααααα.21.在等比数列{}n a 中,若,2,12413=-=-a a a a 求首项1a 和公比q . 解 由等比数列的通项公式得()()⎩⎨⎧=-=-=-=-21112113121121q q a q a q a q a a q a 解得 ⎪⎩⎪⎨⎧==2311q a 所以2,311==q a 四.证明题:(每小题6分,共12分)22.已知(1,10)x ∈, 22lg ,lg ,lg(lg ),A x B x C x === 证明:C A B <<.(答案略)23.1=-.证明 左边=()()120cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 2-=---=--=--οοοοοοοοοοοο=右边所以1︒=-五:综合题:(10分) 24.等比数列}{n a 中,公比q=2,25log log log 1022212=+•••++a a a ,求na a a +•••++21.(答案略)。
职高高一数学基础模块期末试题

职高高一数学基础模块期末试题(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2一、填空题(每空3分)1、 已知函数23)(-=x x f ,则=)2(f2、点()3,1-P 关于x 轴的对称点坐标是3、将52a 写成根式的形式,可以表示为4、将56a 写成分数指数幂的形式,可以表示为5、4321a a a a ⋅⋅⋅的化简结果为6、将指数932=化成对数式可得7、45°= ;(填弧度) 8、π6= ;(填角度)9、sin 750 _____________10、 sin 3π⎛⎫- ⎪⎝⎭=_____________二、选择题(每题3分)1、o 400-为第几象限角( )A. 一B. 二C. 三D. 四 2、角α终边上一点P ()a a 2,,()0≠a ,则=αtan ( ) A.21 B.a 21 C.2 D. 2a3、若0cos , 0sin <>x x ,则角x 在( )A 、第二象限B 、第三象限C 、第二、三象限D 、第二、四象限 4、若 α的终边过点(1,3-)则αsin 值为( ) A 、23-B 、21-C 、3D 、335.22sin 60cos 60︒︒+= ,( ) A 、 1 B 、0 C 、-1 D 、26、下列是指数函数的是( ).A 、y=2xB 、y=x -1C 、y=10x+1D 、y=a x7、角30°与下列哪个角的终边相同( ) A 、330° B 、360° C 、390° D 、0°8、 log 232=_______________( ) A 、0 B 、1 C 、3 D 、5 9、 判断角525º的正弦的正负号( )A 、 +B 、- 10、化简:()()()()()()()sin 2cos 2sin tan 2tan sin 2cos πθπθθθπθπθθ+------( )A 、sin αB 、-sin αC 、tan αD 、-tan α3三、求值(每题10分)1、已知1cos 2α=,且α是第四象限的角, 求sin α和tan α2、已知αtan =2,求sin cos sin cos αααα+-值四、计算(每题10分)1、计算:213cos tan tan sin cos 24332ππππ-+-+π2、计算:(要写过程)(1)cos 4π⎛⎫-= ⎪⎝⎭(2)()tan 405o-=五、(附加题10分)已知αtan =5-,且α是第二象限角,求αsin ,αcos 的值。
职高高一期末数学试卷答案

一、选择题(每题5分,共20分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -2D. 0答案:D2. 已知函数f(x) = 2x - 1,则f(3)的值为()A. 5B. 6C. 7D. 8答案:C3. 在直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)答案:A4. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2答案:D5. 下列各式中,最简二次根式是()A. √18B. √24C. √36D. √48答案:C二、填空题(每题5分,共20分)6. 二项式定理中,(a + b)^3的展开式中,a^2b的系数是______。
答案:37. 若sin∠A = 0.6,则∠A的余弦值cos∠A = ______。
答案:0.88. 一次函数y = 2x - 3的图像与x轴的交点坐标是______。
答案:(3/2, 0)9. 在等差数列中,若首项a1 = 2,公差d = 3,则第10项a10 = ______。
答案:2910. 若三角形的三边长分别为3、4、5,则该三角形的面积是______。
答案:6三、解答题(每题10分,共30分)11. (10分)解下列方程:3x^2 - 5x - 2 = 0。
解:首先,我们尝试因式分解方程。
观察方程3x^2 - 5x - 2,我们需要找到两个数,它们的乘积等于 3 (-2) = -6,而它们的和等于-5。
这两个数是-6和1。
因此,我们可以将方程重写为:3x^2 - 6x + x - 2 = 0接下来,我们将方程分组:3x(x - 2) + 1(x - 2) = 0提取公因式:(3x + 1)(x - 2) = 0根据零因子定理,我们得到两个解:3x + 1 = 0 或 x - 2 = 0解这两个方程,我们得到:x = -1/3 或 x = 2所以,方程3x^2 - 5x - 2 = 0的解是x = -1/3和x = 2。
中职高一数学期末试卷

中职高一数学期末试卷一、单项选择题:(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.1. 已知集合{}{}1,1,2,4,02A B x x =-=≤≤∣,则A B =( )A. {1,2}-B. {1,4}C. {1,2}D. {1,4}-2.如果cbc a >,那么下列不等式中, 一定成立的是( ) A .ac 2>bc 2 B .a >b C .a ﹣ c >b ﹣ c D .ac >bc 3.集合 A ={N x ∈|1≤x <4}的真子集的个数是( )A .16B .8C .7D .44.已知正实数 a ,b 满足 a +2b =2,则ba 21+的最小值为( ) A .29B C .22 D .2 5.不等式()120x x ->的解集是( ) A. ()1,0,2⎛⎫-∞⋃+∞ ⎪⎝⎭B. ()(),01,-∞⋃+∞C. 10,2⎡⎤⎢⎥⎣⎦D. 10,2⎛⎫ ⎪⎝⎭6.已知f (x ) 是定义在 R 上的奇函数,且当x >0 时,f (x )=x +2,则当 x <0 时,f (x ) =( )A .﹣ x ﹣ 2B .﹣ x +2C .x ﹣ 2D .x +2 7.已知不等式 ax 2+2x +c >0 的解集为{x | 2131<<-x },则 a +c =( ) A .10 B .﹣ 5 C .﹣ 10 D .58.定义在R 上的偶函数()f x 满足:对于任意的(]1212,,0,x x x x ∞∈-≠,都有2121()()0f x f x x x ->-,则( )A. ()()()312f f f -<<-B. ()()()123f f f <-<-C. (3)(2)(1)f f f -<-<D. (2)(1)(3)f f f -<<-二、多项选择题:(本题共4小题,每小题4分,共16分。
职业高中高一下学期期末数学试题卷1(含答案)

职业高中下学期期末考试高一《数学》试题一、选择题.(每小题3分,共30分)1.若a 3log <1,则a 的取值范围为( )A .a >3B . a <3C . 1<a <3D . 0<a <32.函数x x a a y --=且(0>a 且R a a ∈≠,1) 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数3.”y x lg lg =”是“y x =”的( )A.充分条件B. 必要条件C.充要条件D.既不是充分条件又不是必要条件4.化简式子cos()sin(2)tan(2)sin()απαππαπα-⋅-⋅--得 ( )A .sin αB .cos αC .sin α-D .cos α-5.函数sin y x =与cos y x = 都是单调递增的区间是( )A . ⎥⎦⎤⎢⎣⎡+22,2πππk kB . ⎪⎭⎫⎝⎛++ππππk k 2,22C . ⎪⎭⎫ ⎝⎛++232,2ππππk kD . ⎪⎭⎫⎝⎛++ππππ22,232k k 6.函数()()1ln 2-=x x f 的定义域是( )A .()1,1-B .()()+∞-∞-,11,C .()+∞-,1D .R7.若4.06.0a a <,则a 的取值范围是( )A .1>aB .10<<aC .0>aD .无法确定 8.在等比数列{}n a 中,若9,473-=-=a a ,则=5a ( ) A .6±B . 6-C . 213-D .69. 函数x y 28-=的定义域是( ) A . (]3,∞-B .[]3,0C .[]3,3-D .(]0,∞-10. 若54cos ,53sin -==αα且,则角α终边在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(每小题3分,共24分)11.已知等差数列{}n a 中,53=a ,则=+412a a .12. 已知等比数列{}n a 中,若120,304321=+=+a a a a ,则=+65a a .13. 已知()ππαα,,21cos -∈-=,则=α_________.14. ()()=---+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-02322381π .15. 若a =2log 3,则=-6log 28log 33 .16. c b a ,,成等比数列, 是c b a lg ,lg ,lg 成等差数列的_____________. 17.已知α为第二象限角,则=-•αα2cos 1sin 1_____ . 18. 若αtan 与cos α同号,则α属于第_______象限角。
职高高一数学试题及答案

职高高一数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()。
A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = 2x + 1在x=2处的导数是()。
A. 3B. 4C. 5D. 63. 等差数列{an}中,若a3 + a7 = 20,则a5的值为()。
A. 5B. 10C. 15D. 204. 圆的方程为x^2 + y^2 - 6x - 8y + 25 = 0,该圆的半径是()。
A. 1B. 3C. 5D. 75. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B的元素个数是()。
A. 1B. 2C. 3D. 46. 若函数f(x) = x^2 - 4x + 3的图象与x轴相交,则交点的个数是()。
A. 0B. 1C. 2D. 37. 一个等边三角形的边长为a,则其面积为()。
A. √3a^2/4B. a^2√3/4C. a√3/2D. √3a/28. 函数y = 1/x的图象在第一象限的斜率是()。
A. 正B. 负C. 零D. 不存在9. 已知等比数列{bn}的首项为2,公比为3,则b5的值为()。
A. 96B. 48C. 24D. 1210. 函数y = ln(x)的定义域是()。
A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)二、填空题(每题4分,共20分)1. 若f(x) = x^2 - 6x + 9,则f(3) = _______。
2. 一个圆的直径为10cm,那么它的周长为 _______ cm。
3. 函数y = 2x - 1与y = x + 2的交点坐标为 _______。
4. 集合{1, 2, 3, 4, 5}的所有子集个数为 _______。
5. 等差数列的前n项和为S_n,若S_5 = 75,则a1 + a5 = _______。
三、解答题(每题10分,共50分)1. 已知函数f(x) = x^2 - 4x + 3,求其在区间[1, 3]上的最大值和最小值。
中职数学高一期末试题

中职数学高一期末试题work Information Technology Company.2020YEAR高一年级期末检测题 数学 (本试卷共4页,满分150分,120分钟完卷) 题号 总分 得分 一、选择题(每小题4分,共60分,将正确答案的序号填在后面括号内) 1、下列函数是指数函数的是 ( ) A 、x y )1.1(-= B 、x y 1.1= C 、2-=x y D 、22x y = 2、设0,0>>N M ,下列各式中正确的是 ( ) A 、N M N M ln ln )ln(+=+ B 、N M MN ln ln ln = C 、N M MN ln ln ln += D 、N M N M ln ln ln = 3、计算=⋅220112011)2()41( ( ) A 、1 B 、2 C 、3 D 、4 4、计算=-++20lg 2lg 125lg 8lg ( ) A 、1 B 、 2 C 、 3 D 、4 5、函数x y ln =的定义域是 ( ) A 、[0,+∞) B 、[1,+∞) C 、(0,∞) D 、(1,∞) 县(区)_________________ 专业班级__________________ 姓名__________________ 准考证号 ………○……………密……○……封……○……线……○……内……○……不……○……要……○……答……○……题………16、下列三角函数值中小于0的是 ( )A 、sin1100°B 、cos(-3000)°C 、tan(-115)°D 、tan225°7、设0tan ,0sin ><αα,则角α所在的象限是 ( )A 、第一B 、第二C 、第三D 、第四8、已知θ是第三象限的角,则点P (cos θ,sin θ)所在的象限是( )A 、第一B 、第二C 、第三D 、第四9、设r 为圆的半径,则弧长为r 43的圆弧所对的圆心角为 ( ) A 、︒135 B 、 π︒135 C 、 ︒145 D 、π︒145 10、)1230sin(︒-的值是 ( )A 、21- B 、 23± C 、23 D 、-23 11、下列命题中正确的是 ( )A 、第一象限的角都是锐角B 、 ︒=︒-140cos 140sin 1C 、若41tan παα==则 D 、5.2cos sin =-αα不可能成立。
中职数学期末试题

中职数学(基础模块-上册)期末试题(共24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--中职数学(基础模块)期末试题一 选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。
1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合② 集合{1}表示仅由一个“1”组成的集合③{2,4,6}与{6,4,2}是两个不同的集合④ 集合{大于3的无理数}是一个有限集其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有②2.,M ={0,1,2,3} ,N ={0,3,4},N M =( );A.{0}B.{0,3}C.{0,1,3}D.{0,1,2,3}={a,b,c,d,e } ,N={b,f },则N I =( );A.{a,b,c,d,e }B.{a,b,c,d }C.{a,b,c,e }D.{a,b,c,d,e,f }={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( );A.{0,1,2,3,4}B.φC.{0,3}D.{0}5.设集合M ={-2,0,2},N ={0},则( );A.φ=NB.M N ∈C.M N ⊂D.N M ⊂6.设、、均为实数,且<,下列结论正确的是( )。
A.<B.<C.-<-D.<7.设、、均为实数,且<,下列结论正确的是( )。
A.<B.<C.-<-D.<8.下列不等式中,解集是空集的是( )。
2 -3 x –4 >0 B. x 2 - 3 x + 4≥ 0C. x 2 - 3 x + 4<0D. x 2 - 4x + 4≥09.一元二次方程x 2 – mx + 4 = 0 有实数解的条件是m ∈( )A.(-4,4)B. [-4,4]C.(-∞,-4)∪(4, +∞)D. (-∞,-4]∪[4, +∞)10.设a >>0且>>0,则下列结论不正确的是( )A.+>+B.->-C.->-D.>11.函数1y x=的定义域为( ) A.[]1,+∞ B.()1,-+∞ C.[1,)-+∞ D.[1,0)(0,)-+∞12.下列各函数中,既是偶函数,又是区间(0, +∞)内的增函数的是( ) A.y x = B.3y x = C.22y x x =+ D.2y x =- 二 填空题:本大题共6小题,每空5分,共30分. 把答案填在题中横线上.1.{m,n }的真子集共3个,它们是 ;2.集合{}2x x ≥-用区间表示为 .3. 如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e }那么集合A =4.042=-x 是x +2=0的 条件.5.设2x -3 <7,则 x <6.已知函数()22f x x x =+,则1(2)()2f f ⋅= 三 解答题:(60分)1.已知集合A={}4,3,2,B={}5,4,3,2,1,求A ∩B ,A ∪B2.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.()1427+≤-x x5.比较大小:2x 2 -7x + 2与x 2-5x6.解不等式组2 x - 1 ≥3 x - 4≤ 77.设函数()227,f x x =-求()()()()1,5,,f f f a f x h -+的值8.求函数2()43f x x x =-+的最大或最小值8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( ); A.{}51<<x x B.{}42≤≤x x C.{}42<<x x D.{}4,3,29.设集合{}{},6,4<=-≥=x x N x x M 则=N M ( ); B.{}64<≤-x x C.φ D.{}64<<-x x10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( );A.φB.AC.{}1- AD.B11.下列命题中的真命题共有( );① x =2是022=--x x 的充分条件② x≠2是022≠--x x 的必要条件 ③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件个 个 个 个12.设{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂( ).个 个 个 个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上.1.用列举法表示集合{}=<<-∈42x Z x ;2.用描述法表示集合{}=10,8,6,4,2 ;3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ; 5.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ;6.042=-x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤.1.已知集合A={}4,3,2,B={}5,4,3,2,1,求A ∩B ,A ∪B2.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.3.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.高职班数学 《不等式》测试题班级 座号 姓名 分数一.填空题: (32%)1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表示为___ ______ ;3. | x 3 |>1解集的区间表示为________________;4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩B = ,A ∪B= . 5.不等式x 2>2 x 的解集为_______ _____;不等式2x 2 -3x -2<0的解集为________________.6. 当X 时,代数式 有意义.二.选择题:(20%)7.设、、均为实数,且<,下列结论正确的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)2lg3+lg7+lg -lg +lg1 (2)Sin -Cos +Cos -Sin π
21.求函数 的定义域(8分)
22.化简 (9分)
23.画函数y=2Sin(x+ )在长度为一个周期的闭区间上的图象要求:(共12分)
(1)先填空:(6分)
X+
0
2
X:
Y=2Sin(x+ )
(2)画一周期的图象(6分)
答案部分
第一部分:选择题(每小题3分,共45分)
1.C 2.B 3.A 4.D 5.A
6.A 7.C 8.C 9.B 10.A
11.B 12.C 13.C 14.B 15.C
第二部分:填空题(每小题4分,共16分)
16.{(x,y)|(1,-2)};…….…4分
17.-1;………………………..4分
18.240,36,2π/3;……………..4分
19.-4/5,-4/3…………………..4分
第三部分:计算,解答题(共39分)
20.(1)lg100=2………………………4分
(2)0…………………….4分
21.(-∞,-1/2)U(5,8]…...8分
22. 1/cosα…………………………….9分
C. (a,-f(a) ) D. (a, )
4.一元二次方程x2– mx + 4 = 0 有实数解的条件是m ∈( )
A.(-4,4) B.[-4,4]
C.(-∞,-4)∪(4, +∞) D.(-∞,-4]∪[4, +∞)
5.已知函数 ,则f(-x)=( )
A、 B、 -f(x) C、 - D、 f(x)
23.(1)…………………………….6分
X+
0
2
X:
-
Y=2Sin(x+ )
0
2
0
-2
0
(2)……(图略)………..6分
2016-2017学年度 第一学期
数学(基础模块)上期末考试A卷
学号:姓名:班级:成绩:
本试卷共三个部分:第一部分为选择题:3分X15=45分;第二部分为填空题:4分X4=16分;第三部分为计算,解答题:其中第20题为计算题,每小题5分,计10分,第21题8分,第22题9分,第23题12分;共计总分100分。考试时间为100-120分钟,开考60分钟后方可交卷。
第一部分:选择题(每小题3分,15小题,共45分)
1.已知集合A ={0,3} ,B={0,3,4},C={1,2,3},则 ( )
A.{0,1,2,3,4} B. C.{0,3} D.{0}
2.设集合 则 ( )
A.R B. C. D.
3.奇函数y=f(x)(x R)的图像必经过的点是( ) )
15.设函数 ( 且 ), ,则 ( )
A. 2 B. C. 3 D.
第二部分:填空题部分(每小题4分,共16分)
16.若 那么 ;
17.设f(x)= 则f(-2)=_______________;
18. =度 =度,120 =弧度
19. 若 是第四象限角, ,则 Sin =, =
第三部分:计算,解答题部分(39分)
A. 16 B. 8 C. 4 D. 2
9.已知 ,则 的最大值是( )
A. B. C. D.
10.计算 ( )
A. B. C. D.
11.若 的终边过点( )则 值为( )
A、 B、 C、 D、
12. 的值为( )
A、 B、 C、 D、
13. 的值为( )
A、 B、 C、 D、
14. 当 时,在同一坐标系中,函数 与函数 的图象只可能是( )
6.函数f(x)= ( )
A、 在( )内是减函数 B、 在( )内是减函数
C、在( )内是减函数 D 、 在( )内是减函数
7.下列不等式中,解集是空集的是( )
A. x2- 3 x–4 >0 B. x2- 3 x + 4≥ 0
C. x2- 3 x + 4<0 D. x2- 4x + 4≥0
8.已知 ,则 ( )