全国2021年中考数学试题精选50题不等式及其应用含解析
2021年全国各省市中考真题精编精练:方程与不等式实际应用(选择题)(含答案)(PDF版)

A.12
B.13
C.15
D.16
4.〔2021•台湾〕小文原本方案使用甲、乙两台影印机于 10:00 开始一起印制文件并持续
到下午,但 10:00 时有人正在使用乙,于是他先使用甲印制,于 10:05 才开始使用乙
一起印制,且到 10:15 时乙印制的总张数与甲相同,到 10:45 时甲、乙印制的总张数
架数比总架数的一半多 11 架,乙种型号无人机架数比总架数的三分之一少 2 架.设甲种
型号无人机 x 架,乙种型号无人机 y 架,根据题意可列出的方程组是〔 〕
A.
B.
C.
D.
25.〔2021•临沂〕某工厂生产 A、B 两种型号的扫地机器人.B 型机器人比 A 型机器人每小 时的清扫面积多 50%;清扫 100m2 所用的时间 A 型机器人比 B 型机器人多用 40 分钟.两 种型号扫地机器人每小时分别清扫多少面积?假设设 A 型扫地机器人每小时清扫 xm2,根 据题意可列方程为〔 〕
A.
B.
C.
D.
19.〔2021•杭州〕某景点今年四月接待游客 25 万人次,五月接待游客 60.5 万人次.设该
景点今年四月到五月接待游客人次的增长率为 x〔x>0〕,那么〔 〕
A.60.5〔1﹣x〕=25
B.25〔1﹣x
C.60.5〔1+x〕=25
D.25〔1+x
20.〔2021•新疆〕某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得 2 分,负一场
A.
=+
B.
+=
C. + =
D. =
+
26.〔2021•宁波〕我国古代数学名著?张邱建算经?中记载:“今有清酒一斗直粟十斗,醑 酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?意思是:现在一斗清酒 价值 10 斗谷子,一斗醑酒价值 3 斗谷子,现在拿 30 斗谷子,共换了 5 斗酒,问清、醑 酒各几斗?如果设清酒 x 斗,醑酒 y 斗,那么可列方程组为〔 〕
2021年全国各省市中考真题精编精练:方程与不等式性质 选择题(含答案)(PDF版)

21.解:把 x=﹣2 代入方程 x2+4kx+2k2=4 得 4﹣8k+2k2=4, 整理得 k2﹣4k=0,解得 k1=0,k2=4, 即 k 的值为 0 或 4. 应选:B.
22.解:根据题意得 k〔x2+1〕+〔5﹣2k〕x=0, 整理得 kx2+〔5﹣2k〕x+k=0, 因为方程有两个实数解,
×22﹣3×2=6,那么方程 1☆x=2 的根的情况为〔 〕
A.没有实数根
B.只有一个实数根
C.有两个相等的实数根
D.有两个不相等的实数根
11.〔2021•宜宾〕假设 m、n 是一元二次方程 x2+3x﹣9=0 的两个根,那么 m2+4m+n 的值是
〔〕
A.4
B.5
C.6
D.12
12.〔2021•通辽〕关于 x 的一元二次方程 x2﹣〔k﹣3〕x﹣k+1=0 的根的情况,以下说法
所以 k≠0 且△=〔5﹣2k〕2﹣4k2≥0,解得 k≤ 且 k≠0.
应选:C. 23.解:当 k﹣1≠0,即 k≠1 时,此方程为一元二次方程.
∵关于 x 的方程〔k﹣1〕2x2+〔2k+1〕x+1=0 有实数根, ∴△=〔2k+1〕2﹣4×〔k﹣1〕2×1=12k﹣3≥0, 解得 k≥ ; 当 k﹣1=0,即 k=1 时,方程为 3x+1=0,显然有解; 综上,k 的取值范围是 k≥ , 应选:D. 24.解:解不等式 x+5<4x﹣1,得:x>2, ∵不等式组的解集为 x>2, ∴m≤2, 应选:A. 25.解:∵一元二次方程 ax2+2x+1=0 有两个不相等的实数根, ∴a≠0,△=b2﹣4ac=22﹣4×a×1=4﹣4a>0, 解得:a<1, 应选:D. 26.解:根据题意得 k≠0 且△=〔2k﹣1〕2﹣4k•〔k﹣2〕>0, 解得 k>﹣ 且 k≠0. 应选:C. 27.解:根据图象可得 k<0,b<0, 所以 b2>0,﹣4k>0, 因为Δ=b2﹣4〔k﹣1〕=b2﹣4k+4>0, 所以Δ>0, 所以方程有两个不相等的实数根. 应选:C.
2021年中考数学专项训练--二元一次方程分式方程应用题---不等式类利润最大问题(含解析)

二元一次方程分式方程应用题---不等式类利润最大问题一、解答题(共18题;共175分)1.某文具店经销甲、乙两种不同的笔记本,已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,小玲同学买4本甲种笔记本和3本乙种笔记本共用了47元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时文具店获利最大?2.茶为国饮,茶文化是中国传统文化的重要组成部分,这也带动了茶艺、茶具、茶服等相关文化的延伸及产业的发展,在“春季茶叶节”期间,某茶具店老板购进了、两种不同的茶具.若购进种茶具1套和种茶具2套,需要250元;若购进种茶具3套和种茶具4套则需要600元.(1)、两种茶具每套进价分别为多少元?(2)由于茶具畅销,老板决定再次购进、两种茶具共80套,茶具工厂对两种类型的茶具进行了价格调整,种茶具的进价比第一次购进时提高了,种茶具的进价按第一次购进时进价的八折;如果茶具店老板此次用于购进、两种茶具的总费用不超过6240元,则最多可购进种茶具多少套?(3)若销售一套种茶具,可获利30元,销售一套种茶具可获利20元,在(2)的条件下,如何进货可使再次购进的茶具获得最大的利润?最大的利润是多少?3.郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?4.深圳某居民小区计划对小区内的绿化进行升级改造,计划种植A,B两种观赏盆栽植物700盆.其中A种盆栽每盆16元,B种盆栽每盆20元.相关资料表明:A,B两种盆栽的成活率分别为93%和98%.(1)若购买这两种盆栽共用11600元,则A,B两种盆栽各购买了多少盆?(2)要使这批盆栽的成活率不低于95%,则A种盆栽最多可购买多少盆?(3)在(2)的条件下,应如何选购A,B两种盆栽,使购买盆栽的费用最低,此时最低费用为多少?5.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?6.某学校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.7.为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动,某工程队承担了一段长1500米的道路绿化工程,施工时有两种绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?8.深圳市某校对初三综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100 分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80 分时,该生综合评价为A 等.(1)小明同学的测试成绩和平时成绩两项得分之和为185 分,而综合评价得分为91 分,则小明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70 分,他的综合评价得分有可能达到A 等吗?为什么?(3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分?9.某科技有限公司准备购进A和B两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元;购进A种机器人3个和B种机器人2个共需14万元.请解答下列问题:(1)求A,B两种机器人每个的进价;(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买A、B两种种机器人的总个数不少于28个,且该公司购买的A、B两种种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?10.为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出4000元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B钟纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少?11.某商场销售甲,乙两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(毛利润=(售价进价)×销售量)(1)该商场计划购进甲,乙两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种教学设备的购进数量,增加乙种教学设备的购进数量,已知乙种教学设备增加的数量是甲种教学设备减少数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问甲种教学设备购进数量至多减少多少套?12.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A、B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?13.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.14.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?15.已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?16.甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?17.惠好商场用24000元购进某种玩具进行销售,由于深受顾客喜爱,很快脱销,惠好商场又用50000元购进这种玩具,所购数量是第一次购进数量的2倍,但每套进价比第一次多了10元.(Ⅰ)惠好商场第一次购进这种玩具多少套?(Ⅱ)惠好商场以每套300元的价格销售这种玩具,当第二次购进的玩具售出时,出现了滞销,商场决定降价促销,若要使第二次购进的玩具销售利润率不低于12%,剩余的玩具每套售价至少要多少元?18.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.答案解析部分一、解答题1.【答案】(1)解:设甲种笔记本的进价为m元,乙种笔记本的进价为n元..由题意得,解得,答:甲种笔记本的进价是6元/本,乙种笔记本的进价是4元/本.(2)解:设购入甲种笔记本x本,则购入乙种笔记本(60﹣x)本,根据题意得6x+4(60﹣x)≤296,解得n≤28,设利润为y元,则y=2x+(60﹣x),即y=x+60,∵k=1>0,∴y随x的增大而增大,∴当x=28时文具店获利最大.答:购入甲种笔记本最多28本,此时获利最大.【解析】【分析】(1)设甲种笔记本的进价为m元,乙种笔记本的进价为n元.根据王同学买4本甲种笔记本和3本乙种笔记本共用了47元,列出方程组即可解决问题;(2)设购入甲种笔记本x本,根据购入这两种笔记本共60本,花费不超过296元,列出不等式求出x的取值范围;设利润为y元,根据题意得出y与x的函数关系式,再根据一次函数的性质解答即可.2.【答案】(1)解:设种茶具每套进价为元,种茶具每套进价为元,解之得:.∴种茶具每套进价为100元,种茶具每套进价为75元.(2)解:设再次购进种茶具套,则购进种茶具套,,,,,∴最多可购进种茶具30套.(3)解:设总利润为元,则.∵,随的增大而增大,又∵,∴当时最大(元),∴当购进种茶具30套时,种茶具的数量:(套),∴再次购进种茶具30套,种茶具50套可使利润最大,最大利润为1900元.【解析】【分析】(1)设种茶具每套进价为元,种茶具每套进价为元,根据题目中的等量关系列出方程进而求解即可.(2)设再次购进种茶具套,则购进种茶具套,此次用于购进、两种茶具的总费用不超过6240元,列出不等式,即可求解.(3)设总利润为元,则.根据一次函数的性质即可求解.3.【答案】(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:,答:A种奖品每件16元,B种奖品每件4元;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤ ,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【解析】【分析】(1)根据两种情况下购买的总价列出二元一次方程组并求解;(2)设出A种奖品购买a件,则B种奖品购买(100﹣a)件。
全国2021年中考数学试题精选50题不等式及其应用含解析

中考数学试题精选50题:不等式及其应用一、单选题1.(2020·河池)不等式组的解集在数轴上表示正确的是()A.B.C.D.2.(2020·铁岭)不等式组的整数解的个数是()A. 2B. 3C. 4D. 53.(2020·盘锦)不等式的解集在数轴上表示正确的是()A. B.C. D.4.(2020·阜新)不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.(2020·阜新)在“建设美丽阜新”的行动中,需要铺设一段全长为的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺管道,根据题意,所列方程正确的是()A.B.C. D.6.(2020·朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.7.(2020·雅安)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(2020·绵阳)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A. 1.2小时B. 1.6小时 C. 1.8小时 D. 2小时9.(2020·眉山)不等式组的整数解有()A. 1个B. 2个C. 3个 D. 4个10.(2020·呼伦贝尔)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.B.C.D.11.(2020·鄂尔多斯)二次根式中,x的取值范围在数轴上表示正确的是()A. B. C.12.(2020·赤峰)不等式组的解集在数轴上表示正确的是()A. B.C. D.13.(2020·南县)将不等式组的解集在数轴上表示,正确的是()A. B.C.D.14.(2020·长春)不等式的解集在数轴上表示正确的是()A.B.C.D.15.(2020·昆明)某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A. 1600元B. 1800元 C. 2000元 D. 2400元16.(2020·昆明)不等式组,的解集在以下数轴表示中正确的是()A. B.C. D.17.(2020·云南)若整数使关于的不等式组,有且只有45个整数解,且使关于的方程的解为非正数,则a的值为()A. -61或-58B. -61或-59 C. -60或-59 D. -61或-60或-5918.(2020·沈阳)不等式的解集是()A. B.C.D.二、填空题19.(2020·徐州)方程的解为________.20.(2020·河池)方程的解是x-________.21.(2020·锦州)不等式的解集为________.22.(2020·绵阳)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是________万元.(利润=销售额﹣种植成本)23.(2020·绵阳)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是________.24.(2020·眉山)关于x的分式方程的解为正实数,则k的取值范围是________.25.(2020·凉山州)关于x的不等式组有四个整数解,则a的取值范围是________.26.(2020·滨州)若关于x的不等式组无解,则a的取值范围为________.27.(2020·吉林)不等式的解集为________.28.(2020·宿迁)不等式组的解集是________.三、计算题29.(2020·徐州)(1)解方程:;(2)解不等式组:30.(2020·镇江)(2)解不等式组:31.(2020·泰州)(1)计算:(2)解不等式组:32.(2020·鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:()÷ ,其中a满足a2+2a﹣15=0.33.(2020·锦州)某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?34.(2020·丹东)为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍,求八年级捐书人数是多少?35.(2020·泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线为全程的普通道路,路线包含快速通道,全程,走路线比走路线平均速度提高,时间节省,求走路线的平均速度.36.(2020·雅安)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)37.(2020·威海)解不等式组,并把解集在数轴上表示出来38.(2020·威海)在“旅游示范公路”建设的的中,工程队计划在海边某路段修建一条长的步行道,由于采用新的施工方式平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务,求计划平均每天修建的长度.39.(2020·吉林)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.40.(2020·长春)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?41.(2020·云南)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?42.(2020·沈阳)某工程队准备修建一条长的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?43.(2020·玉林)南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x千立方米,总需用时间y天,且完成首期工程限定时间不超过600天.(1)求y与x之间的函数关系式及自变量x的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?44.(2020·铁岭)某中学为了创设“书香校园”,准备购买两种书架,用于放置图书.在购买时发现,种书架的单价比种书架的单价多20元,用600元购买种书架的个数与用480元购买种书架的个数相同.(1)求两种书架的单价各是多少元?(2)学校准备购买两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个种书架?45.(2020·阜新)在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元. (1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?46.(2020·淄博)如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A→C→B方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=100千米,≈1.4,≈1.7等数据信息,解答下列问题:(1)公路修建后,从A地到景区B旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?47.(2020·烟台)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?48.(2020·赤峰)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m ,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600 m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0. 5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?49.(2020·永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?50.(2020·云南)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车目的地A地(元/辆)B地(元/辆)车型大货车900 1000小货车500 70015吨物资,每辆小货车装10吨物资)中的10辆前往A 地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求与的函数解析式,并直接写出的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.答案解析部分一、单选题1.【答案】 D【解析】【解答】解:,由①得:x>1,由②得:x≤4,不等式组的解集为:1<x≤4,故答案为:D.【分析】分别求出不等式组中的每一个不等式的解集,再确定出不等式组的解集,然后观察各选项,可得答案。
2021年中考数学分类汇编不等式(组)应用

2021年中考数学分类汇编不等式(组)应用第6章不等式(组)一、选择题1.(2021湖南永州)某市柔佛州电话的收费标准就是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(严重不足1分钟按1分钟计).某天小芳给同学踢了一个6分钟的市话,所用电话费为0.5元;小刚现准备工作给同学柔佛州电话6分钟,他经过思索以后,同意先踢3分钟,接起后再踢3分钟,这样只需电话费0.4元.如果你想要给某同学踢市话,准备工作通话10分钟,则你所须要的电话费至少为()a.0.6元b.0.7元c.0.8元d.0.9元【答案】b.二、填空题1.(2021山东临沂)有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料中20kg电梯最大负荷为1050kg,则该电梯在此3人搭乘的情况下最多还能够配备梱材料.【答案】422.(2021湖北襄阳)我国从2021年5月1日起至在公众场所推行“控烟”,为协调“控烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记?5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.【答案】14三、解答题1.(2021广东广州市)某商店5月1日举办降价优惠活动,当天至该商店出售商品存有两种方案,方案一:用168元出售会员卡沦为会员后,凭会员卡出售商店内任何商品,一律按商品价格的8八折优惠;方案二:若不出售会员卡,则出售商店内任何商品,一律按商品价格的9.5八折优惠.未知小敏5月1日前不是该商店的会员.(1)若小敏不出售会员卡,所出售商品的价格为120元时,实际应当缴付多少元?(2)恳请帮忙小敏算是一算,所出售商品的价格在什么范围内时,使用方案一更不划算?【答案】(1)120×0.95=114(元)所以实际应支付114元.(2)设购买商品的价格为x元,由题意得:0.8x+168<0.95x解得x>1120所以当购买商品的价格超过1120元时,采用方案一更合算.2.(2021湖北鄂州)今年我省旱情灾情轻微,甲地着急须要抗旱用水15万吨,乙地13万吨.现有a、b两水库各调出14万吨水支援甲、乙两地抗旱.从a地到甲地50千米,到乙地30千米;从b地到甲地60千米,到乙地45千米.⑴设从a水库调往甲地的水量为x万吨,完成下表水量/万吨调出地ab总计米)【答案】⑴(从左至右,从上至下)14-x15-xx-1⑵y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275解不等式1≤x≤14所以x=1时y取得最小值ymin=12803.(2021浙江湖州)我市水产养殖专业户王大爷承揽了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:调到地甲x15乙13总计141428⑵恳请设计一个调运方案,风道的调运量尽可能大.(阳入运量=调运水的重量×调运的距离,单位:万吨?千(1)2021年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元?(收益=销售额-成本)(2)2021年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2021年相同,必须赢得最小收益,他应当养殖甲鱼和桂鱼各多少亩?(3)已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg.根据(2)中的养殖亩数,为了节约运输成本,实际采用的运输车辆每有载装载饲料的总量就是原计划每次装载总量的2倍,结果运输养殖所须要全部饲料比原计划增加了2次.谋王大爷原定的运输车辆每次可以装载饲料多少kg?(3-2.4)+10?(25.-2)=17(万元)【答案】解:(1)2021年王大爷的收益为:20?(2)设立养殖甲鱼x亩,则养殖桂鱼(30-x)亩.由题意得2.4x?2(30?x)?70,解得x?25,又设王大爷可获得收益为y万元,则y?0.6x?0.5(30?x),即y?1x?15.10∵函数值y随x的减小而减小,∴当x=25,可以赢得最小收益.请问:必须赢得最小收益,应当养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料akg,由(2)得,共需饲料为500?25+700?5=16000(kg),根据题意,得答:王大爷原定的运输车辆每次可装载饲料4000kg.1600016000??2,Champsaura?4000(kg).a2a4.(2021浙江绍兴)筹设中的城南中学须要720套出任课桌椅(例如图),光明厂分担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可以生产12张;生产椅子的必须4人一组,每组每天可以生产24把.未知学校筹设组建议光明厂6天顺利完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹设组组建议至少提早1天顺利完成这项生产任务,光明厂生产课桌椅的员工减少至84名,先行得出一种分配生产桌子、椅子的员工数的方案.【答案】?720?6=120,?光明厂平均每天要生产120套单人课桌椅.x?12?5?720,?5?84?x(2)设x人生产桌子,则(84?x)人生产椅子,则4245720,Champsaur60?x?60,?x?60,84?x?24,?生产桌子60人,生产椅子24人。
(完整word版)中考数学专题练习-不等式的解及解集(含解析)

中考数学专题练习-不等式的解及解集(含解析)一、单选题1。
某日我市最高气温是26℃,最低气温是12℃,则当天气温t(℃)的变化范围是() A。
t>26 B。
t≥12C. 12<t<26 D。
12≤t≤262.下列说法正确的是( )A. x=1是不等式-2x<1的解集B。
x=3不是不等式-x<1的解集C. x>-2是不等式-2x<1的解集D。
不等式-x<1的解集是x<-13.不等式组的解集是x>a,则a的取值范围是( )A。
a<﹣2 B. a=﹣2 C。
a>﹣2 D. a≥﹣24.从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A。
x>﹣1 B。
x>2 C. x<﹣1 D. x<25.若关于x的一元一次不等式组无解,则a的取值范围是( )A. a≥1B。
a>1 C。
a≤﹣1 D。
a<﹣16。
下列式子中,是不等式的有( )①2x=7;②3x+4y;③﹣3<2;④2a﹣3≥0;⑤x>1;⑥a﹣b>1.A. 5个B。
4个 C. 3个D。
1个7.若不等式组有解,则a的取值范围是()A。
a≤3B。
a<3 C. a<2 D. a≤28.某种品牌奶粉合上标明“蛋白质≥20%”,它所表达的意思是( )A. 蛋白质的含量是20%B 。
蛋白质的含量不能是20%C. 蛋白质的含量高于20%D。
蛋白质的含量不低于20%9.对于不等式x﹣3<0,下列说法中不正确的是( )A.x=2是它的一个解B.x=2不是它的解C。
有无数个解D.x<3是它的解集10.若不等式组无解,则a的取值范围是()A. a≥﹣3 B。
a>﹣3 C. a≤﹣3 D. a<﹣311。
某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是( )A. t>33 B. t≤24C。
24<t<33 D。
24≤t≤3312。
已知不等式组的解集是x>2,则a的取值范围是()A。
a≤2B。
2021年全国中考数学试题分类解析汇编方程不等式和函数的综合

2021年全国中考数学试题分类解析汇编方程、不等式和函数的综合2021年全国中考数学试题分类解析汇编专题24:方程、不等式和函数的综合一、选择题1. (2021福建龙岩4分)下列函数中,当x<0时,函数值y随x的增大而增大的有【】y=?1x ④y=3x2 ①y=x ②y=-2x+1 ③ A.1个 B.2个 C.3个【答案】B。
D. 4个【考点】一次函数、反比例函数和二次函数的性质。
【分析】根据一次函数、反比例函数和二次函数的性质作出判断:①∵y=x 的k>0,∴当x<0时,函数值y随x的增大而增大;②∵y=-2x+1的k<0,∴当x<0时,函数值y随x的增大而减小;y=?1x的k<0,∴当x<0时,函数值y随x的增大而增大;2 ③∵ ④∵y=3x的a>0,对称轴为x=0,∴当x<0时,函数值y随x的增大而减小。
∴正确的有2个。
故选B。
2. (2021四川广元3分)已知关于x的方程函数y?1?bx(x?1)?(x?b)?222有唯一实数解,且反比例的图象在每个象限内y随x的增大而增大,那么反比例函数的关系式为【】3x B.y?1x C.y?2x D.y??2xy??A.【答案】D。
【考点】一元二次方程根的判别式,反比例函数的性质。
22【分析】关于x的方程(x?1)?(x?b)?2化成一般形式是:2x2+(2-2b)x+(b2-1)=0,∵它有唯一实数解,∴△=(2-2b)2-8(b2-1)=-4(b+3)(b-1)=0,解得:b=-3或1。
y?1?bx∵反比例函数的图象在每个象限内y随x的增大而增大,∴1+b<0。
∴b<-1。
∴b=-3。
y?1?3xy??2x。
故选D。
∴反比例函数的解析式是,即3. (2021山东菏泽3分)已知二次函数y?ax?bx?c2的图象如图所示,那么一次函数y?bx?c和反比例函数y?ax在同一平面直角坐标系中的图象大致是【】A.B.C.D【答案】C。
【考点】一次函数、反比例函数和二次函数的图象性质。
中考数学不等式与不等式祖专题训练50题-含参考答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.已知a <0, -1<b <0.则a ,ab ,ab 2 由小到大的排列顺序是( ). A .a <ab <ab 2B .ab 2<ab <aC .a <ab 2<abD .ab <a <ab 22.据气象台预报,2020年5月某日大埔最高气温27℃,最低气温21℃,则当天气温t (℃)的变化范围是( ) A .t >21B .t ≤27C .21<t <27D .21≤t ≤273.若a >b ,则下列不等式正确的是( ) A .2a <2b B .ac >bc C .-a+1>-b+1D .3a +1>3b +14.不等式123x x +>-的最大整数解为:( ) A .1B .2C .3D .45.我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5-分.小明参加本次竞赛得分要超过100分,他至少要答对多少道题( ). A .13B .14C .15D .166.如果不等式(a -2)x>a -2的解集是x<1,那么a 必须满足( ) A .a<0B .a>1C .a>2D .a<27.不等式组1020x x +>⎧⎨-≥⎩的解集在数轴上表示正确的是( )A .B .C .D .8.如果成立,则实数的取值范围是( ) A .B .C .D .9.如果 x > y ,那么下列结论错误的是( ) A .x + 2 > y + 2B .x - 2 > y - 2C .2x > 2 yD .-2x > -2 y10.下列不等式中是一元一次不等式的是( )A .3y x +≥B .3-4<0C .2241x -≥D .24x -≤11.把不等式组30322x x -<⎧⎪⎨+≥⎪⎩的解集表示在数轴上,正确的是( )A .B .C .D .12.若关于x 的不等式()11a x ->的解集是11x a <-,则a 的取值范围是( ) A .1a >B .1a <C .1a ≠D .1a <且0a ≠13.如果a >b ,那么下列不等式中一定成立的是( ) A .a +m <b +mB .am <bmC .am 2>bm 2D .m ﹣a <m ﹣b14.函数12y x =+-,当4m x ≤≤,对应y 的取值范围为23y -≤≤,则m 的取值范围为( ) A .1m =-B .1m ≤-C .61m -≤≤-D .14m -≤<15.若关于x 的不等式组023115x ax x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解,且关于y 的方程2433a y a y y -=---的解是正数,则所有满足条件的整数a 的值之和是( ) A .﹣8B .﹣4C .﹣3D .﹣116.将一箱苹果分给若干个学生,每个学生都分到苹果.若每个学生分5个苹果,则还剩12个苹果;若每位学生分8个苹果,则有一个学生所分苹果不足8个.若学生的人数为x ,则列式正确的是( ) A .05128(1)8x x ≤+--< B .05128(1)8x x <+--≤ C .15128(1)8x x ≤+--< D .15128(1)8x x <+--≤17.下列各式中正确的是( ) A .若a >b ,则a ﹣1<b ﹣1 B .若a >b ,则a 2>b 2 C .若a >b ,则ac >bcD .若a c >bc,则a >b18.某商品的进价是1000元,标价为1500元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打( )折出售此商品. A .9B .8C .7D .619.不等式组()11{?22213x x -<++≥的解集是( ) A .﹣1<x≤3 B .1≤x <3 C .﹣1≤x <3 D .1<x≤320.不等式2x 97x ≤-的解集在数轴上表示出来,正确的是( ) A . B . C .D .二、填空题21.若(1)30k k x -+≥是关于x 的一元一次不等式,则k 的值为______. 22.满足一元一次不等式组101203x x -≤⎧⎪⎨->⎪⎩的最大整数值为___.23.有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,若要使总收入不低于15.6万元,则至多安排______人种甲种蔬菜.24.若不等式组1>125x ax x -⎧⎨-≥-⎩的解为1<2x ≤-,则a 的取值是_____________25.不等式组10324x x x ->⎧⎨>-⎩所有整数解的和为_____.26.不等式2x <4x ﹣6的最小整数解为_____.27.x 的3倍与15的差不小于8,用不等式表示为 ________28.小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有 _____种.29.不等式组23348x x ⎧>-⎪⎨⎪-≤⎩的最小整数解为_____.30.一辆公共汽车上原有(54)a -名乘客,到某一车站有(92)a -名乘客下车,车上原来可能有_____名乘客.31.已知实数x ,y ,a 满足x +3y +a =4,x ﹣y ﹣3a =0.若﹣1≤a ≤1,则2x +y 的取值范围是_____.32.已知将直线y kx =向上平移2个单位后,恰好经过点(1,0)-,则不等式42x kx -<+的解集为_____.33.不等式2x-6≥0的解集为________.34.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.35.不等式了()133x m m ->-的解集为5x >,则m 的值为_______. 36.已知一次函数(2) 3y m x m =-+-的图象经过第一、二、四象限,则化简=__________.37.若关于x 的不等式组324x a x a <+⎧⎨>+⎩无解,则a 的取值范围是__.38.弟弟上午八点钟出发步行去郊游,速度为每小时4千米;哥哥上午十点钟从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,那么哥哥的速度至少是__________. 39.若关于x 的不等式组123354413x x xa x a恰有两个整数解,则a 的取值范围是_____.三、解答题 40.解不等式(组) (1)()2332x x +≥+ (2)12323x x -+< (3)2130x x >⎧⎨-<⎩(4)273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩41.某商品经销店计划购进A ,B 两种纪念品,若购进A 种纪念品7件,B 种纪念品8件共需380元;若购进A 种纪念品10件,B 种纪念品6件共需380元. (1)求A ,B 两种纪念品每件的进价分别为多少元;(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备购进A ,B 两种纪念品共40件,且这两种纪念品全部售出后总获利不低于216元,求该商店最多可以购进A 种纪念品多少件.42.根据下列语句列不等式并求出解集:x 与4的和不小于6与x 的差.43.某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,但进价比第一批每本多了2元. (1)第一批笔记本每本进价多少元?(2)王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,剩余的笔记本每本售价最低打几折?44.解不等式组()()3151124x x x x ⎧-<+⎪⎨-≥-⎪⎩并求它的所有的非负整数解.45.如图甲所示的A 型(11⨯)正方形板材和B 型(31⨯)长方形板材,可用于制作成图乙所示的竖式和横式两种无盖箱子.已知板材每平方米20元.(1)若用2860元的资金去购买A 、B 两种型号板材,并全部制作竖式箱子,问可以制作竖式箱子多少只?(2)若有A 型板材67张、B 型板材135张,用这批板材制作两种类型的箱子共40只.问有哪几种制作方案? 46.计算(1)解不等式组312(1)212x x x +≥-⎧⎪⎨-<⎪⎩(2)解方程:53.212x x =-+ 47.飞盘运动由于门槛低、限制少,且具有较强的团体性和趣味性,在全国各地悄然兴起,深受年轻人喜爱.某商家购进了海绵和橡胶两种飞盘进行销售,已知一个橡胶飞盘比一个海绵飞盘的进价多30元,其中购买海绵飞盘花费4000元,购买橡胶飞盘花费3200元,且购买海绵飞盘的数量是购买橡胶飞盘数量的2倍.(1)求一个海绵飞盘的进价是多少元;(2)商家第一次购进的飞盘很快售完,决定再次购进同种类型的海绵和橡胶两种飞盘共80个,但海绵飞盘的进价比第一次购买时提高了16%,而橡胶飞盘的进价在第一次购买时进价的基础上打9折,如果商家此次购买海绵和橡胶两种飞盘的总费用不超过4800元,那么此次最多可购买多少个橡胶飞盘?48.在“母亲节”到来之际,某校九年级团支部组织全体团员到敬老院慰问.为筹集慰问金,团员们利用课余期间去卖鲜花.已知团员们从花店按每支1.5元的价格买进鲜花共支,并按每支5元的价格全部卖出,若从花店购买鲜花的同时,还用去50元购买包装材料.(1)求所筹集的慰问金y(元)与x(支)之间的函数表达式;(2)若要筹集不少于650元的慰问金,则至少要卖出鲜花多少支?49.为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A 种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?参考答案:1.C【分析】根据:不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时乘以负数a,得到:0>ab2>a,据此即可求得各数的大小关系.【详解】℃a<0,b<0,℃ab>0,℃−1<b<0,℃b2<1;℃a<ab2<ab.故选C.【点睛】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.D【分析】变化范围是指在最低值和最高值之间,且包含最高值和最低值,根据题意用不等式表示.【详解】最高气温27℃,最低气温21℃,则t的变化范围为:21≤t≤27.故选D.【点睛】本题考查不等式表示生活中的应用,知道这个量的最大值和最小值,便可确定变量的变化范围,从而可用不等式表示,理解题意是解题的关键.3.D【分析】根据不等式的性质,逐项判断即可.【详解】解:℃a>b,℃2a>2b,℃选项A不符合题意;℃a>b,c<0时,ac<bc,℃选项B不符合题意;℃a>b,℃-a <-b , ℃-a +1<-b +1, ℃选项C 不符合题意; ℃a >b , ℃3a >3b ,℃3a +1>3b+1,℃选项D 符合题意. 故选:D .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 4.C【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出最大整数解即可.【详解】解:123x x +>- 移项得231x x ->-- 合并同类项得4x ->- 系数化为1得4x <故该不等式的最大整数解为3,故选C.【点睛】本题考查一元一次不等式的整数解.解本题注意在第三步系数化为1时需改变不等号的方向. 5.B【分析】竞赛得分=10×答对的题数+(-5)×未答对(不答)的题数,根据本次竞赛得分要超过100分,列出不等式求解即可. 【详解】解:设要答对x 道. 10x+(-5)×(20-x )>100, 10x-100+5x >100, 15x >200,解得x >403=1133,他至少要答对14道题, 故选B .【点睛】本题考查一元一次不等式的应用,得到得分的关系式是解决本题的关键. 6.D【详解】试题分析:根据两边同时除以(a -2),不等号的方向改变,可得(a -2)<0,解得a <2.考点:解一元一次不等式 7.B【分析】先分别求出各不等式的解集,再求其公共解集,然后把解集在数轴上表示出来即可.【详解】解:解10x +>得x >−1, 解20x -≥得x≤2,℃不等式组的解集为−1<x≤2, 在数轴上表示解集为:故选:B .【点睛】本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则. 8.C 【详解】如果成立那么必须30,30,0mm m m-〉-≥≥可得9.D【分析】根据不等式的基本性质来分别判断求解.【详解】解:A .因为x y >,在不等边两边同时加上2,不等式方向不变,故原选项正确,此项不符合题意;B .因为x y >,在不等边两边同时减去2,不等式方向不变,故原选项正确,此项不符合题意;C.因为x y>,在不等边两边同时乘2,不等式方向不变,故原选项正确,此项不符合题意;D.因为x y>,在不等边两边同时除以-2,不等式方向要改变,故原选项错误,此项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质,理解等式的基本性质是解答关键.不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.10.D【分析】利用一元一次不等式的定义判断即可.【详解】下列不等式中是一元一次不等式的是2-x≤4,故选D.【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.11.A【分析】先求出不等式组的解集,再根据解集画图即可.【详解】解:30322xx-<⎧⎪⎨+≥⎪⎩①②,由℃得,x<3,由℃得,x≥-2,故不等式组的解集为-2≤x<3.故选:A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式的解集,每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.B【分析】根据不等式()11a x ->的解集是11x a <-,得出关于a 的不等式,求出a 的取值范围即可. 【详解】解:℃原不等式两边同时除以1a -,不等号方向改变,℃10a -<,解得1a <,故B 正确.故答案选:B .【点睛】本题考查的是解一元一次不等式,熟知不等式的基本性质,是解答此题的关键. 13.D【分析】根据不等式的基本性质,对每个选项分别进行判断,即可得到答案.【详解】解:A .℃a >b ,℃a +m >b +m ,故本选项不合题意;B .如果a >b ,m >0,则am >bm ,故本选项不合题意;C .如果a >b ,m =0,则am 2=bm 2,故本选项不合题意;D ..℃a >b ,℃﹣a <﹣b ,℃m ﹣a <m ﹣b ,故本选项符合题意;故选:D .【点睛】本题考查了不等式的基本性质,解题的关键是掌握不等式的基本性质进行判断. 14.C【分析】求出当y =3和y =-2时的x 的值,根据函数图像即可求出m 的取值. 【详解】解:画出函数12y x =+-图象如图所示.把3y =代入12y x =+-得312x =+-,解得4x =或6-,把=2y -代入12y x =+-得212x -=+-,解得=1x -,当4m x ≤≤,对应y 的取值范围为23y -≤≤,=由图可知61m -≤≤-.故选:C .【点睛】本题主要考查了带绝对值的一次函数的图像和性质,熟练掌握一次函数图像上点的坐标特征是解题的关键.15.B【分析】先解不等式组,根据关于x 的不等式组023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解,可得a 的取值范围,再解分式方程,关于y 的方程2433a y a y y-=---的解是正数,可得a 的取值范围,进一步求和即可.【详解】解: 023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩①②, 解不等式℃得,x a >,解不等式℃得,3x ≤,关于x 的不等式组023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解, 3a ∴<,解分式方程 2433a y a y y-=---, 去分母得,24(3)a y y a =-+-, 解得:3125a y +=, 关于y 的方程2433a y a y y-=---的解是正数, y ∴>0且3y ≠,31205a +∴>且31235a +≠, 解得4a ->,且1a ≠,43a ∴-<<且1a ≠,∴满足条件的整数a 的值:32102---、、、、;3(2)(1)024-+-+-++=-,故选:B .【点睛】本题考查了分式方程的解,和解一元一次不等式组,熟练掌握解不等式组的方法以及解分式方程的步骤是解题的关键.16.C【分析】根据每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友所分苹果不到8个.由此得出不等式组.【详解】解:根据小朋友的人数为x ,根据题意可得:15128(1)8x x ≤+--<,故选:C .【点睛】此题主要考查了一元一次不等式的应用,根据题意找出不等式的取值范围是解决问题的关键.17.D【详解】A 、不等式的两边都减1,不等号的方向不变,故A 错误;B 、当a=-1,b=-2时,a 2<b 2,故B 错误;C 、当c=0时,ac=bc ,故C 错误;D 、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D 正确;故选D .18.C【分析】设售货员可以打x 折出售此商品,利用利润=售价-进价,结合利润率不低于5%,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设售货员可以打x 折出售此商品,依题意得:1500×10x -1000≥1000×5%, 解得:x ≥7,℃售货员最低可以打7折出售此商品.故选:C .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.19.C【详解】分析:分别求出每一个不等式的解集,然后再确定不等式组的解集即可. 详解:解不等式112x -<,得:x <3, 解不等式2(x+2)+1≥3,得:x≥﹣1,℃不等式组的解集为﹣1≤x <3,故选C .点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 20.C【分析】先利用不等式的性质求出原不等式的解集,再把它的解集在数轴上表示出来即可.【详解】2x 97x ≤-,2x 7x 9+≤,9x 9≤,x 1≤.在数轴上表示如下图所示:故选C .【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,关键是明确解不等式的方法,会在数轴上表示不等式的解集.21.1- 【分析】根据一元一次不等式的定义可得1k =且10k -≠,分别进行求解即可.【详解】解:℃(1)30k k x -+≥是关于x 的一元一次不等式, ℃1k =且10k -≠,解得:1k =-,故答案为:1-.【点睛】本题主要考查一元一次不等式定义的“未知数的最高次数为1次”这一条件;还要注意,未知数的系数不能是0,掌握一元一次不等式的定义是解题的关键.22.1【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以求得满足不等式组的整数解.【详解】解:由不等式x ﹣1≤0,得x ≤1,由不等式2﹣13x >0,得x <6, 故原不等式组的解集是x ≤1,℃最大整数x =1,故答案为:1.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.23.4【分析】设最多安排x 人种甲种蔬菜,根据有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,若要使收入不低于15.6万元,可列不等式求解.【详解】解:设安排x 人种甲种蔬菜,3x ×0.5+2(10﹣x )×0.8≥15.6,解得:x ≤4.所以最多安排4人.故答案为:4.【点睛】本题考查了一元一次不等式的应用,关键设出种植甲的人数,以总收入作为不等量关系列不等式求解.24.2-【分析】先解不等式组得出12a a +≤<,然后根据不等式组的解集为1<2x ≤-,列出关于a 的方程,是解题的关键.【详解】解:解不等式组1>125x a x x -⎧⎨-≥-⎩得:12x a x ≤>+⎧⎨⎩, ℃不等式组的解集为1<2x ≤-,℃11a +=-,解得:2a =-.故答案为:2-.【点睛】本题主要考查了解不等式组,解题的关键是根据不等式组的解集列出关于a 的方程,是解题的关键.25.﹣6【分析】根据一元一次不等式组求出不等式组的解集,进而即可得到所有整数解的和.【详解】解:解不等式10x ->,得:1x <解不等式324x x >-,得:4x >-则不等式组的解集为41x -<<其整数解得和为32106---+=-,故答案为:6-.【点睛】本题主要考查了一元一次不等式组的解,熟练掌握相关计算技巧是解决本题的关键.26.4【详解】移项,合并同类项,系数化成1,即可求出不等式的解集,即可得出答案.解:℃2x<4x-6,℃2x-4x<-6,℃-2x<-6,℃x>3,℃不等式2x<4x-6的最小整数解为4,故答案为4.27.3x﹣15≥8【分析】首先表示“x的3倍”为3x,再表示“与15的差”为3x-15,最后再表示“不小于8”为3x-15≥8.【详解】由题意可知:3x-15≥8故答案为:3x-15≥8.28.3【分析】设购买A种玩具x件,则购买B种玩具102x-⎛⎫⎪⎝⎭件.根据题意即可列出关于x的一元一次不等式组,解出x的解集,再根据x为整数,102x-为整数,即得出答案.【详解】设购买A种玩具x件,则购买A种玩具用x元,℃购买B种玩具用(10-x)元,℃购买B种玩具102x-⎛⎫⎪⎝⎭件,根据题意可知11012102xxxx⎧⎪≥⎪-⎪≥⎨⎪-⎪>⎪⎩,解得:1383x<≤.℃x为整数,102x-为整数,℃x的值为4或6或8,即可购买A种玩具4件,B种玩具3件,可购买A种玩具6件,B种玩具2件,可购买A种玩具8件,B种玩具1件.故小明的购买方案有3种.故答案为:3.【点睛】本题考查一元一次不等式组的应用.正确的用x表示出购买B种玩具的数量和正确的列出不等式组是解题关键.29.0【分析】先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值,进而得出最小整数解.【详解】解:23348xx⎧>-⎪⎨⎪-≤⎩①②,解℃得x>23 -,解℃得3x<12,即x≤4,由上可得23-<x≤4,℃x为整数,故x可取0、1、2、3、4,℃最小整数解为0.故答案为:0.【点睛】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.30.6,11,16【分析】关系式为:车上人数、下车人数一定都是非负整数,因而就可以得到一个关于a 的不等式组,求出a的范围,再根据车上人数、下车人数一定都是整数,则a一定是整数,从而求出a的值.【详解】解:根据题意,得5a−4≥9−2a解得a≥137,又℃540920aa-≥⎧⎨-≥⎩,解得:4952a≤≤,℃139 72a≤≤因为a为整数,所以a=2,3,45a−4分别为6,11,16即客车上原有乘客6人或11人或16人.故答案为:6,11,16【点睛】解决本题的关键是理解所有的人数均为自然数.根据这一条件求出a的范围.31.0≤2x +y ≤6【分析】把a 当作参数,联立方程组求出x ,y 的值,然后用x 表示出2x +y ,利用不等式的性质求解.【详解】联立方程组3430x y a x y a ++=⎧⎨--=⎩①②,将a 作为参数解得:121x a y a =+⎧⎨=-⎩, ℃﹣1≤a ≤1,℃2x +y =3a +3,可得:0≤2x +y ≤6.故答案为0≤2x +y ≤6.【点睛】本题主要考查不等式的性质和解二元一次方程组,解题时要把a 当作参数,联立方程组求出x ,y 的值,然后利用不等式的性质求解.32.6x >-【分析】根据题意,先求出k 值,然后解不等式即可.【详解】直线y kx =向上平移2个单位后,解析式为2y kx =+,℃过点(1,0)-,℃20k -+=,解得:2k =,则不等式为:422x x -<+,解得:6x >-,故答案为:6x >-.【点睛】本题主要考查一次函数图象的平移,根据题意准确求出平移之后的解析式是解题关键.33.x≥3【分析】先移项,再将不等式的两边同时除以2,就可得到不等式的解集.【详解】解: 2x-6≥02x≥6解之:x≥3故答案为x≥3【点睛】考核知识点:解一元一次不等式.34.1825【分析】先按照方案一结合题意求解出增订前的各类书的数量,并求出增订的总数量,再按照方案二的比例分别解出按照方案二增订后的各类书的总量,进而求解比例即可.【详解】设原本有A 类新书4x 本,B 类新书x 本,则C 类新书有(900-5x )本, 由题意:4400559005428x x x ≤⎧⎪⎨-≤⨯⎪⎩,解得:70100x ≤≤, 设两种方案都增订m 本书,方案一:增订A 类15m 本,B 类310m 本,C 类12m 本, 则增订后共计:A 类145x m +本,B 类310x m +本,C 类190052x m ⎛⎫-+ ⎪⎝⎭本, 按方案一增订,则增订后A ,B 两类书总数量之比为7:2, 可得:1475=3210x m x m ++,解得:1710x m =,即:10=17m x , 由70100x ≤≤,且m 和x 均为正整数,得x =85,m =50,℃求得增订前:A 类340本,B 类85本,C 类475本,方案二:增订A 类2205m =本,B 类1510m =本,C 类1252m =本, 则增订后共计:A 类360本,B 类90本,C 类500本,增订后A ,C 两类书总数量之比为36018=50025, 故答案为:1825. 【点睛】本题考查列方程及不等式解决问题,解题关键在于根据题意建立不等式,求解出范围中符合题意的数据.35.2【分析】解一元一次不等式如下步骤:℃去分母;℃去括号;℃移项;℃合并同类项;℃化系数为1.以上步骤中,只有℃去分母和℃化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向. 【详解】解:解不等式()133x m m ->- ℃x-m >9-3m℃x >9-2m ,℃解集为x >5,℃9-2m=5,解得m=2,故答案为2.【点睛】本题考查了解一元一次不等式,熟练解一元一次不等式是解题的关键. 36.5-2m【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限,可得m-2<0,30m ->,进而得到m <2,再根据二次根式的性质进行计算即可.【详解】方法一:一次函数(2)3y m x m =-+-的图象经过第一、二、四象限,℃2030m m -<⎧⎨->⎩,23m m =-+-52m =-.故答案为:52m -.方法二:(2)3y m x m =-+-的图象经过第一、二、四象限,℃2030m m -<⎧⎨->⎩解得23m m <⎧⎨<⎩, ℃2m <,|2||3|m m =-+-23m m =-+-52m =-故答案为52m -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:℃k >0,b >0⇔y=kx+b 的图象在一、二、三象限;℃k >0,b <0⇔y=kx+b 的图象在一、三、四象限;℃k <0,b >0⇔y=kx+b 的图象在一、二、四象限;℃k <0,b <0⇔y=kx+b 的图象在二、三、四象限.37.1a.【分析】把a当作已知条件,根据不等式组无解求出a的取值范围即可.【详解】解:324x ax a<+⎧⎨>+⎩①②,不等式组无解,432a a∴++.解得:1a故答案为1a【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.38.16千米/时【详解】设哥哥的速度至少为x千米/时,根据题意可得:40404206060x-⨯≥,解得:16x≥.答:哥哥的速度至少是16千米/时.故答案为16千米/时.39.1a1 2<【分析】先求出不等式组的解集,再根据不等式组有且只有两个整数解,求出实数a的取值范围.【详解】解:123354413x xx a x a①②,由℃得:25 x>-,由℃得:2x a<,不等式组的解集为:225x a -<<,不等式组只有两个整数解为0、1,122a,∴1a1 2<.故答案为1a 12<. 【点睛】此题考查的是一元一次不等式的解法和特殊解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.40.(1)3x ≤-(2)9x >- (3)132x << (4)1x ≥-【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式; (2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式; (3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集;(4)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)去括号得:2x +3≥3x +6,移项得:2x -3x ≥6-3,合并同类项得:-x ≥3,系数化1得:x ≤-3;(2)去分母得:3(x -1)<2(2x +3),去括号得:3x -3<4x +6,移项得:3x -4x <6+3,合并同类项得:-x <9,系数化1得:x >-9;(3)解第一个不等式得:x >12,解第二个不等式得:x <3, 所以不等组得解集为:12<x <3;(4)解第一个不等式得:x >-4,解第二个不等式得:x ≥-1,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试题精选50题:不等式及其应用一、单选题1.(2020·河池)不等式组的解集在数轴上表示正确的是()A.B.C.D.2.(2020·铁岭)不等式组的整数解的个数是()A. 2B. 3C. 4D. 53.(2020·盘锦)不等式的解集在数轴上表示正确的是()A. B.C. D.4.(2020·阜新)不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.(2020·阜新)在“建设美丽阜新”的行动中,需要铺设一段全长为的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺管道,根据题意,所列方程正确的是()A.B.C. D.6.(2020·朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.7.(2020·雅安)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(2020·绵阳)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A. 1.2小时B. 1.6小时 C. 1.8小时 D. 2小时9.(2020·眉山)不等式组的整数解有()A. 1个B. 2个C. 3个 D. 4个10.(2020·呼伦贝尔)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.B.C.D.11.(2020·鄂尔多斯)二次根式中,x的取值范围在数轴上表示正确的是()A. B. C.D.12.(2020·赤峰)不等式组的解集在数轴上表示正确的是()A. B.C. D.13.(2020·南县)将不等式组的解集在数轴上表示,正确的是()A. B.C.D.14.(2020·长春)不等式的解集在数轴上表示正确的是()A.B.C.D.15.(2020·昆明)某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A. 1600元B. 1800元 C. 2000元 D. 2400元16.(2020·昆明)不等式组,的解集在以下数轴表示中正确的是()A. B.C. D.17.(2020·云南)若整数使关于的不等式组,有且只有45个整数解,且使关于的方程的解为非正数,则a的值为()A. -61或-58B. -61或-59 C. -60或-59 D. -61或-60或-5918.(2020·沈阳)不等式的解集是()A. B.C.D.二、填空题19.(2020·徐州)方程的解为________.20.(2020·河池)方程的解是x-________.21.(2020·锦州)不等式的解集为________.22.(2020·绵阳)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是________万元.(利润=销售额﹣种植成本)23.(2020·绵阳)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是________.24.(2020·眉山)关于x的分式方程的解为正实数,则k的取值范围是________.25.(2020·凉山州)关于x的不等式组有四个整数解,则a的取值范围是________.26.(2020·滨州)若关于x的不等式组无解,则a的取值范围为________.27.(2020·吉林)不等式的解集为________.28.(2020·宿迁)不等式组的解集是________.三、计算题29.(2020·徐州)(1)解方程:;(2)解不等式组:30.(2020·镇江)(1)解方程:=+1;(2)解不等式组:31.(2020·泰州)(1)计算:(2)解不等式组:32.(2020·鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:()÷ ,其中a满足a2+2a﹣15=0.33.(2020·锦州)某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?34.(2020·丹东)为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍,求八年级捐书人数是多少?35.(2020·泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线为全程的普通道路,路线包含快速通道,全程,走路线比走路线平均速度提高,时间节省,求走路线的平均速度.36.(2020·雅安)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)37.(2020·威海)解不等式组,并把解集在数轴上表示出来38.(2020·威海)在“旅游示范公路”建设的的中,工程队计划在海边某路段修建一条长的步行道,由于采用新的施工方式平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务,求计划平均每天修建的长度.39.(2020·吉林)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.40.(2020·长春)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?41.(2020·云南)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?42.(2020·沈阳)某工程队准备修建一条长的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?43.(2020·玉林)南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x千立方米,总需用时间y天,且完成首期工程限定时间不超过600天.(1)求y与x之间的函数关系式及自变量x的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?44.(2020·铁岭)某中学为了创设“书香校园”,准备购买两种书架,用于放置图书.在购买时发现,种书架的单价比种书架的单价多20元,用600元购买种书架的个数与用480元购买种书架的个数相同.(1)求两种书架的单价各是多少元?(2)学校准备购买两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个种书架?45.(2020·阜新)在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元. (1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?46.(2020·淄博)如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A→C→B方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=100千米,≈1.4,≈1.7等数据信息,解答下列问题:(1)公路修建后,从A地到景区B旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?47.(2020·烟台)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?48.(2020·赤峰)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m ,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600 m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0. 5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?49.(2020·永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?50.(2020·云南)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车目的地A地(元/辆)B地(元/辆)车型大货车900 1000小货车500 70015吨物资,每辆小货车装10吨物资)中的10辆前往A 地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求与的函数解析式,并直接写出的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.答案解析部分一、单选题1.【答案】 D【解析】【解答】解:,由①得:x>1,由②得:x≤4,不等式组的解集为:1<x≤4,故答案为:D.【分析】分别求出不等式组中的每一个不等式的解集,再确定出不等式组的解集,然后观察各选项,可得答案。