24.1.4 圆周角2
24.1.4圆周角(2)

4. 判断:圆上任意两点之间分圆周为两条弧, 这两条弧的度数和为3600( √ )
新课讲解:
若一个多边形各顶点都在同一 个圆上,那么,这个多边形叫做圆 内接多边形,这个圆叫做这个多边 形的外接圆。
D E C B
O
B
C
A
A F
O
D E
补充练习:
若ABCD为圆内接四边形,则下列哪 个选项可能成立( B )
D E
80
B C B
100 D O C
(2)四边形ABCD内接于⊙O,∠AOC=100° 则∠B=______∠D=______ 50° 130° (3)四边形ABCD内接于⊙O, ∠A:∠C=1:3,则 45° ∠A=_____,
练习:如图 AB是⊙O的直径, C ,D是圆上
50° 的两点,若∠ABD=40°,则∠BCD=__.
24.1.4
圆周角(2)
同弧或等弧所对的圆周角相等。
D
.
A
C
.
O
· .
B
E
在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于这条弧所对的圆 心角的一半.
半圆(或直径)所对的圆周 角是直角; 90°的圆周角所对的弦是直径.
C2 C1 C3
A
O
·
B
思考:判断正误: 1.同弧或等弧所对的圆周角相等 (√ )
课堂练习
(4)梯形ABCD内接于⊙O,AD∥BC,
75° ∠B=750,则∠C=_____
圆的内接梯形一定是_____梯形。
返回
1、如图,四边形ABCD内接于⊙O,如果 ∠BOD=130°,则∠BCD的度数是(A) A、115° B、130° C、65° D、50° 2、 如图,等边三角形ABC内接于⊙O,P是
人教版数学九年级上册24.1.4:圆周角的概念和圆周角的定理(教案)

2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
3.培养学生的数学抽象能力:让学生从具体的圆周角实例中抽象出一般性规律,理解圆周角与圆心角、弧和弦之间的关系,提升数学抽象思维。
4.培养学生的数学建模能力:通过解决与圆周角相关的问题,使学生能够建立数学模型,运用所学知识解决实际问题,提高数学应用能力。
三、教学难点与重点
1.教学重点
-圆周角的概念:强调圆周角定义中“顶点在圆上,两边分别与圆相交”的特点,以及与圆心角的关系。
a.圆周角定理:圆周角等于其所对的圆心角的一半。
b.圆周角推论:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等。
二、核心素养目标
1.培养学生的几何直观能力:通过观察圆周角与圆心角的关系,使学生能够直观理解圆周角的概念及定理,提高空间想象力和几何直观感知。
2.发展学生的逻辑推理能力:在学习圆周角定理及其推论的过程中,引导学生运用严密的逻辑推理,掌握证明方法,增强解决问题的能力。
-掌握圆周角定理的证明:学生需要掌握如何运用严密的逻辑推理证明圆周角定理,并能够灵活运用。
-圆周角推论的应用:学生需学会将圆周角推论应用于解决实际问题,如求弧长、弦长等。
举例1:针对圆周角定义的难点,教师可通过以下步骤帮助学生理解:
a.展示不同类型的角,让学生辨别哪些是圆周角,哪些是圆心角。
b.通过动态演示,让学生观察圆周角与圆心角的变化关系,加深理解。
24.1.4 圆周角

归纳总结
推论:圆的内接四边形的对角互补.
C
O
D
B
A
∵ 弧BCD和弧BAD所对的圆心角的和是周角,
∴∠A+∠C=180°,
同理∠B+∠D=180°,
E
延长BC到点E,有
∠BCD+∠DCE=180°.
∴∠A=∠DCE.
想一想
图中∠A与∠DCE的大小有何关系?
归纳总结
推论:圆的内接四边形的任何一个外角都等于它的内对角.
解:连接BC,则∠ACB=90°,
∠DCB=∠ACB-∠ACD=90°-60°=30°.
又∵∠BAD=∠DCB=30°,
∴∠APC=∠BAD+∠ADC=30°+70°=100°.
如果一个多边形所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.
4
知识点
圆内接四边形
教学重点
回顾旧知
什么是圆心角?它具有哪些性质?
讲授新课
典例精讲
归纳总结
1
知识点
圆周角的定义
图中∠ACB 的顶点和边有哪些特点?
顶点在圆上,并且两边都和圆相交的角叫圆周角.如:∠ACB.
如图所示,∠BAC 是圆周角的是( )
导引:顶点A必须在圆上,故排除D;AB , AC 必须分 别与圆相交,B,C都不符合,故排除B,C.
24.1 圆的有关性质
第二十四章 圆
24.1.4 圆周角
目录页
讲授新课
当堂练习
课堂小结
新课导入
1.理解圆周角的概念,会叙述并证明圆周角定理.2.理解圆周角与圆心角的关系并能运用圆周角定理解决简单的几何问题.(重点、难点)3.理解掌握圆周角定理的推论及其证明过程和运用.(难点)
人教版九年级数学上册24.1.4圆周角第2课时圆内接四边形优秀教学案例

3.小组合作与互动交流:将学生分成若干小组,进行合作研究,鼓励学生互相讨论、分享和借鉴,培养了他们的团队合作意识和沟通能力。同时,小组合作的形式也使得学生可以从不同的角度和思路去思考问题,丰富了他们的思维,提高了他们的学习效果。
3.结合实际问题,展示如何运用圆内接四边形的性质进行计算和解决几何问题。
(三)学生小组讨论
1.将学生分成若干小组,每组选定一个圆内接四边形进行研究和证明;
2.鼓励学生互相讨论、分享和借鉴,培养他们的团队合作意识和沟通能力;
3.各小组展示研究成果,其他小组进行评价和提问,促进知识的交流和深化理解。
(四)总结归纳
3.培养学生的自主学习能力和团队合作意识,使他们能够独立思考和解决问题;
4.培养学生的创新意识和思维能力,使他们能够积极探索和创造。
三、教学策略
(一)情景创设
1.利用多媒体展示一些实际生活中的圆内接四边形场景,如车轮、自行车把手等,让学生感受到数学与生活的紧密联系;
2.设计一些有趣的数学问题,如寻找特殊的圆内接四边形,让学生在解决问题的过程中自然引入圆内接四边形的概念;
2.动手操作:让学生亲自动手画出圆内接四边形,并尝试证明其性质;
3.小组讨论:让学生分组进行讨论,分享各自的发现和证明方法,互相学习和借鉴;
4.总结和归纳:引导学生总结圆内接四边形的性质,并能够运用到实际问题中。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使他们感受到数学的乐趣和魅力;
2.培养学生的耐心和毅力,使他们能够克服困难,坚持探究;
24.1.4圆周角2

圆周角
南寨中学:谢世明
回 忆
1.什么叫圆周角? 顶点在圆上,两边都和圆 相交的角叫圆周角 2. 圆心角、弧、弦、圆周角四个量之 间关系有个什么结论? 在同圆(或等圆)中,如果圆心角、弧、弦、圆周角有一 组量相等,那么它们所对应的其余三给量都分别相等。同 弧(或等弧)所对的圆周角等于圆心角的一半.
O
110
P
x
B
A
解:由题意得 2x =110o ∴x =55o
能力练习:
1、如图,在⊙O中,ABC=50°, 则∠AOC等于( D ) A、50°; B、80°; C、90°; D、100°
A B O C
2、如图,△ABC与A、B重 合,则∠BPC等于( B ) A、30°; B、60°; C、90°; D、45°
O
·
D
又在Rt△ABD中,AD2+BD2=AB2,
2 2 AD BD AB 10 5 2(cm) 2 2
1、在⊙O中,∠CBD=30° ,∠BDC=20°,求, ∠C和 ∠A的度数。
像四边形ABCD这样,所有的顶点都在同一个 圆上 的多边形,叫做圆内接多边形,这个圆叫做这 个多边形的外接圆。 圆内接四边形的对角互补
推
论
直径(或半圆)所对的圆周角是 直角, 90°的圆周角所对的弦是 直径.
巩固练习
1、判断: (1)等弧所对的圆周角相等. ( √ ) (2)相等的圆周角所对的弧也相等.( X ) 。 (3)90 的角所对的弦是直径。 ( )X (4)同弦所对的圆周角相等。 (X)
A
B C
C
O
A
O E
B
基础练习、
C
A P
人教版数学九年级上册24.1.4《圆周角定理》教学设计

人教版数学九年级上册24.1.4《圆周角定理》教学设计一. 教材分析人教版数学九年级上册24.1.4《圆周角定理》是本节课的主要内容。
圆周角定理是圆周角定理系列中的重要定理之一,也是后续学习圆的性质和圆的方程的基础。
本节课的内容包括圆周角定理的证明和应用。
教材通过丰富的例题和练习题,帮助学生理解和掌握圆周角定理,并能够运用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,对角的性质有一定的了解。
但是,对于圆周角定理的理解和运用还需要进一步引导和培养。
因此,在教学过程中,需要注重引导学生通过观察和操作,发现和总结圆周角定理的规律。
三. 教学目标1.了解圆周角定理的内容和证明过程。
2.能够运用圆周角定理解决实际问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.圆周角定理的证明过程。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作,发现和总结圆周角定理的规律。
2.运用多媒体辅助教学,展示圆周角定理的证明过程,增强学生的直观感受。
3.通过例题和练习题,让学生在实际问题中运用圆周角定理,巩固所学知识。
六. 教学准备1.多媒体教学设备。
2.圆规、直尺等绘图工具。
3.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过提问方式,引导学生回顾相似三角形的性质和角的性质。
让学生思考:在圆中,圆周角和圆心角之间有什么关系?2.呈现(10分钟)展示圆周角定理的证明过程,引导学生观察和理解证明方法。
通过多媒体动画演示,让学生更直观地感受圆周角定理的应用。
3.操练(10分钟)让学生分组讨论,尝试解决一些与圆周角定理相关的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)呈现一些例题和练习题,让学生独立解答。
教师选取部分学生的解答进行讲解和分析,巩固所学知识。
5.拓展(10分钟)引导学生思考:圆周角定理在实际问题中的应用。
人教版数学九年级上册《24.1.4 圆周角》(第2课时)教案

《24.1.4 圆周角》教案第2课时圆周角定理推论和圆内接多边形教学目标1.理解圆是轴对称图形,任何一条直径所在直线都是它的对称轴;掌握垂径定理及其推论;学会运用垂径定理及其推论解决一些有关证明、计算和作图问题。
2.经历探索发现圆的对称性,证明垂径定理及其推论的过程,锻炼学生的思维品质,学习几何证明的方法。
3.在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。
教学重点圆周角定理及其推论的探究与应用。
教学难点圆周角定理的证明中由一般到特殊的数学思想方法以及圆周角定理及推论的应用。
课时安排1课时教学方法启发引导、合作探究、拓展新知课前准备课件、课本等教学过程一、导入新知情景:几何画板导入动画效果,讲故事引导学生回答下列问题:问题1:什么叫圆心角?指出图中的圆心角?问题2:∠BCA的顶点和边有哪些特点?问题3:∠BCA与∠AOB有何异同?问题4:你能仿照圆心角的定义给∠ACB取一个名字并下定义吗?这节课,我们就一起来学习《圆周角定理推论和圆内接多边形》。
(板书课题)二、探究新知(一)圆周角定义问题:如图所示的⊙O,我们在射门游戏中,设EF是球门,•设球员们只能在所在的⊙O其它位置射门,如图所示的A、B、C点.观察∠EAF、∠EBF、∠ECF这样的角,它们的共同特点是什么?得到圆周角定义:顶点在圆上,且两边都与圆相交的角叫做圆周角.分析定义:○1圆周角需要满足两个条件;○2圆周角与圆心角的区别(二)圆周角定理及其推论1.结合圆周角的概念通过度量思考问题:○1一条弧所对的圆周角有多少个?②同弧所对的圆周角的度数有何关系?③同弧所对的圆周角与圆心角有何数量关系吗?2.在练习本上画一个⊙O.想一想,以A,C为端点的弧所对的圆周角有多少个?试着画几个.然后教师引导学生:观察下图,∠ABC,∠ADC,∠AEC的大小关系如何?为什么?让学生得出结论后,教师继续追问:如果把这个结论中的“同弧”改为“等弧”,结论正确吗?3.观察下图,BC是⊙O的直径.请问:BC所对的圆周角∠BAC是锐角、直角还是钝角?让学生交流、讨论,得出结论:∠BAC是直角.教师追问理由.4.如图,若圆周角∠BAC=90°,那么它所对的弦BC经过圆心吗?为什么?由此能得出什么结论?5.师生共同解决教材第87页例4.(三)探索圆内接四边形的性质1.教师给学生介绍以下基本概念:圆内接多边形与多边形的外接圆;圆内接四边形与四边形的外接圆.2.要求学生画一画,想一想:在⊙O上任作它的一个内接四边形ABCD,∠A是圆周角吗?∠B,∠C,∠D呢?进一步思考,圆内接四边形的四个角之间有什么关系?3.先打开几何画板,验证学生的猜想,然后再引导学生证明,最后得出结论:圆内接四边形对角互补.4.课件展示练习:(1)如图,四边形ABCD内接于⊙O,则∠A+∠C=________,∠B+∠ADC=________;若∠B=80°,则∠ADC=________,∠CDE=________;(2)如图,四边形ABCD内接于⊙O,∠AOC=100°,则∠D=________,∠B=________;(3)四边形ABCD内接于⊙O,∠A∶∠C=1∶3,则∠A=________;(4)如图,梯形ABCD内接于⊙O,AD∥BC,∠B=75°,则∠C=________.(5)想一想对于圆的任意内接四边形都有这样的关系吗?答案:(1)180°,180°,100°,80°;(2)130°,50°;(3)45°;(4)75°;(5)都有.三、随堂练习1.教材第88页练习第5题.2.圆的内接梯形一定是________梯形.3.若ABCD为圆内接四边形,则下列哪个选项可能成立( )A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=2∶1∶3∶4C.∠A∶∠B∶∠C∶∠D=3∶2∶1∶4D.∠A∶∠B∶∠C∶∠D=4∶3∶2∶1答案:1.略;2.等腰;3.B.四、归纳新知本节课我们学习了圆周角定理的两个推论和圆内接四边形的重要性质,要求同学们理解圆内接四边形和四边形的外接圆的概念,理解圆内接四边形的性质定理;并初步应用性质定理进行有关问题的证明和计算.五、教后反思。
九年级数学上册高效课堂(人教版)24.1.4圆周角(第2课时)教学设计

1.学生需独立完成作业,诚实守信,不得抄袭。
2.做题过程中,要求学生保持书写规范,注意作图的准确性。
3.鼓励学生遇到问题时,积极思考、讨论,培养解决问题的能力。
4.家长需关注学生的学习情况,协助学生完成作业,并及时与教师沟通,共同促进学生的成长。
5.教师在批改作业时,要关注学生的解题思路和方法,给予针对性的指导和建议。
8.融入德育教育,提升综合素质
在教学过程中,适时融入德育教育,培养学生的集体主义精神、合作意识和社会责任感,提升他们的综合素质。
四、教学内容与过程
(一)导入新课
1.教学活动设计
在本节课的导入环节,我将采用生活情境导入法,让学生从日常生活中发现数学问题,激发他们的学习兴趣。
2.教学过程
(1)展示图片:向学生展示自行车轮胎、时钟表盘等生活中常见的圆形物体,引导学生观察这些物体上的圆周角。
(3)学生展开讨论,教师巡回指导,解答学生的疑问。
(4)各小组汇报讨论成果,分享解题方法和心得。
(四)课堂练习
1.教学活动设计
此环节通过课堂练习,让学生巩固所学知识,提高解题能力。
2.教学过程
(1)设计具有代表性的练习题,涵盖圆周角定理的基础知识和应用。
(2)学生独立完成练习题,教师巡回指导,解答学生的问题。
(3)教师点评学生的总结,强调重点知识,指出易错点。
(4)布置课后作业,巩固所学知识,拓展思维。
五、作业布置
为了巩固本节课所学知识,提高学生的解题能力和思维品质,特布置以下作业:
1.基础知识巩固题:完成课本第24.1.4节后的练习题1、2、3,让学生通过练习,加深对圆周角定理及其推论的理解。
2.应用题:选取两道与圆周角相关的实际问题,要求学生运用所学知识解决问题。例如,计算圆形跑道中某一段弧的长度,或者求解圆形花园中两条相交弦所夹的圆周角度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
O
B
D
C
2.已知:如图,四边形ABCD是圆的内接四边形, 且ABCD是平行四边形。
求证:四边形ABCD是矩形。
A
B
O
D
C
求证:如果三角形一边上的中线等于这边的一半,那 么这个三角形是直角三角形.(提示:作出以这条边 为直径的圆.)
1
C
2
A
·
B
O
证明: 以AB为直径作⊙O. ∵AO=BO, CO= AB,
如图,
A
O
B
四边形ABCD为⊙O的内接四边形;
⊙O为四边形ABCD的外接圆。
思考: 如图,在⊙O的内接四边形ABCD中,∠A与∠C
有什么关系?∠B与∠D有什么关系?
D C
A
O
B
)
)
如图:圆内接四边形ABCD中, ∵∠A所对的弧为BCD,∠C所对的弧为BAD,
))
又 BCD和BAD所对的圆心角的和是周角 D
圆周角
O
∴∠BAC=∠BDC
B
C
半圆(或直径)所对的圆周角有什么特殊性?
半圆(或直径)所对的圆周角是直角,90°的圆周
角所对的弦是直径.
C1 C2 C3
∵AB为直径,
AO
B
∴∠AC1B=∠AC2B=∠AC3B=90°. ∵∠AC1B=90°或∠AC2B=90°或∠AC3B=90°, ∴AB为直径.
∴∠A+∠C=360°÷2= 180°. A
同理∠B+∠D=180°
O
B
C
结论:圆的内接四边形的对角互补。
圆的内接四边形的性质:
圆的内接四边形的对角互补。
D
符号表达式:
A
O
∵四边形ABCD是⊙O的内接四边形, B
C
∴ ∠A+∠C=180° ∠B+∠D=180°
1、如图,四边形ABCD为⊙O 的内接四边形,已知 ∠BOD=100°,求∠BAD及∠BCD的度数。
∵ CD 平分ACB,
C∴ ACDBiblioteka BCD,∴ AOD=BOD .
A
O
B
∴ AD=BD.
在 Rt△ABD 中,AD2+BD2=AB2 ,
∴ AD=BD= 2 AB
D
2
=5 2 (cm).
圆内接多边形
如果一个多边形的所有顶点都在同一个圆上,这个
多边形叫做圆内接多边形,这个圆叫做这个多边形的外
接圆。
D C
个多边形叫做圆内接多边形,这个圆叫做这个多边形 的外接圆
圆内接四边形的性质
圆的内接四边形的对角互补.
作业布置
课本P89 第7、14题
长. C
解:连接 OD.
∵ AB 是⊙O 的直径,
∴ ACB=ADB=90°.
A
O
B
在 Rt△ABC 中, BC= AB2 AC 2 = 102 62=8(cm) D
如图,⊙O 的直径 AB 为 10 cm,弦 AC 为 6 cm,
ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的
长.
在同圆或等圆中,如果两个圆周角相等,它们所对 的弧一定相等吗?为什么?
在同圆或等圆中,如果两个圆周角相等,它们所 对弧一定相等.
推论:同圆或等圆中,相等的圆周角所对的弧也
相等。 AB
))
∵ ∠CAD=∠EBF ∴ CD=EF
E
O
C
F
F
D
如图,⊙O 的直径 AB 为 10 cm,弦 AC 为 6 cm, ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的
九年级 上册
24.1.4
圆周角(二)
圆周角的定理: 一条弧所对的圆周角等于它所对圆心角的一半。
∵∠BOC是BC所对的圆心角, ∠BAC是BC所对的圆周角
A
O·
B
C
一条弧所对的圆周角之间有什么关系?同弧或等弧 所对的圆周角之间有什么关系?
同弧或等弧所对的圆周角相等.
A
D
∵∠BAC、∠BDC是BC所对的
∴AO=BO=CO.
∴点C在⊙O上.
A
又∵AB为⊙O的直径,
∴∠ACB= ×180°= 90°.
∴ △ABC 为直角三角形.
C
·
B
O
圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等, 都等于这条弧所对的圆心角的一半.
推论
半圆(或直径)所对的圆周角是直角, 90°的圆周 角所对的弦是直径.
圆内接多边形 如果一个多边形的所有顶点都在同一个圆上,这