北师大版七年级数学上册第二章有理数及其运算练习题及
2022-2023学年北师大版七年级数学上册《第2章有理数及其运算》单元综合选择专项练习题(附答案)

2022-2023学年北师大版七年级数学上册《第2章有理数及其运算》单元综合选择专项练习题(附答案)1.盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为()A.0.16×107B.1.6×107C.1.6×106D.16×105 2.2022的倒数是()A.﹣2022B.C.2022D.﹣3.﹣|﹣6|的相反数是()A.﹣6B.C.﹣D.64.下列运算错误的是()A.﹣2+2=0B.2﹣(﹣2)=0C.﹣(﹣)=1D.﹣(﹣2)=2 5.如果将“收入50元”记作“+50元”,那么“支出20元”记作()A.+20元B.﹣20元C.+30元D.﹣30元6.实数a的绝对值是,a的值是()A.B.﹣C.±D.±7.一只蚂蚁沿数轴从原点向右移动了3个单位长度到达点A,则点A表示的数是()A.3B.﹣3C.0D.±38.下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C.﹣1.5D.﹣39.下列各组数中,互为相反数的是()A.|+1|与|﹣1|B.﹣(﹣1)与1C.|﹣(﹣3)|与﹣|﹣3|D.﹣|+2|与+(﹣2)10.数轴上的点B到原点的距离是6,则点B表示的数为()A.12或﹣12B.6C.﹣6D.6或﹣611.算式+﹣(﹣)之值为何?()A.B.C.D.12.计算(﹣1)×()的结果是()A.1B.﹣1C.D.﹣13.某单位开展了“健步迎冬奥,一起向未来”职工健步走活动,职工每天健步走5000步即为达标.若小王走了7205步,记为+2205步;小李走了4700步,记为()A.﹣4700步B.﹣300步C.300步D.4700步14.已知|a|=1,b是的相反数,则a+b的值为()A.或B.C.D.或15.(﹣1)2022的相反数是()A.﹣1B.2022C.﹣2022D.116.计算(﹣+﹣)×(﹣24)的结果是()A.1B.﹣1C.10D.﹣1017.下列计算中,正确的是()A.|﹣2|=﹣2B.(﹣1)2=﹣2C.﹣7+3=﹣4D.6÷(﹣2)=3 18.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2021+2020b+c2019的值为()A.2021B.2020C.2019D.019.计算:(﹣1)2022+(﹣1)2021的结果是()A.﹣2B.2C.0D.﹣120.用简便方法计算﹣(9+)×17时,最合适的变形是()A.﹣(10﹣)×17B.﹣(9﹣)×17C.﹣(10+)×17D.﹣9×17+×1721.下列运算正确的是()A.B.﹣24+22÷20=﹣20÷20=﹣1C.D.22.下列结论正确的是()A.互为相反数的两个数的商为﹣1B.在数轴上与表示数4的点相距3个单位长度的点对应的数是7或1C.当|x|=﹣x,则x<0D.带有负号的数一定是负数23.下列各对数中,数值相等的是()A.﹣28与(﹣2)8B.(﹣3)7与﹣37C.﹣3×23与﹣33×2D.﹣(﹣2)3与﹣(﹣3)224.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣2×3225.已知119×21=2499,则119×212﹣2498×21=()A.11B.21C.41D.3126.在(﹣5)2、﹣(﹣2.9)、﹣72、|﹣3|、0、、﹣1中,非负数共有()A.2个B.3个C.4个D.5个27.一架飞机的原飞行高度是8000米,然后飞机上升300米,又下降200米,这时飞机的飞行高度是()A.8000米B.8100米C.8200米D.8300米28.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=2,f(2)=4,f(3)=6…;(2)f()=2,f()=3,f()=4….利用以上规律计算:f(2022)﹣f()等于()A.2021B.2022C.D.29.下列说法正确的是()A.数据0.80精确到百分位B.14185用科学记数法表示(精确到百位)为1.42×104 C.数据2.002×1011可以表示为20020亿D.66.8万用科学记数法表示为6.68×105 30.(多选题)某工厂生产工艺品,以每天生产35个为基本量,实际每天生产量与前一天相比有增减(上周最后一天生产量恰好是基本量,超产记为正、减产记为负).如表是本周一至周五的生产情况:星期一二三四五增减(单位:个)﹣1﹣4+7+2﹣6根据记录的数据,该厂本周每天生产产量超过基本量35个的是()A.星期二B.星期三C.星期四D.星期五参考答案1.解:1600000=1.6×106.故选:C.2.解:2022的倒数是.故选:B.3.解:﹣|﹣6|=﹣6,﹣6的相反数是6,∴﹣|﹣6|的相反数是6.故选:D.4.解:A:﹣2+2=0,故A正确;B:2﹣(﹣2)=2+2=4,故B错误;C:﹣(﹣)=+=1,故C正确;D:﹣(﹣2)=2,故D正确.故选:B.5.解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.6.解:∵|a|=,∴a=±.故选:D.7.解:∵由题意知蚂蚁沿数轴从原点向右移动了3个单位长度到达点A,首先点A表示的数是正数,又与原点相距三个单位长度,∴点A表示的数是3,故选:A.8.解:A.2到原点的距离是2个长度单位,不符合题意;B.1到原点的距离是1个长度单位,不符合题意;C.﹣1.5到原点的距离是1.5个长度单位,不符合题意;D.﹣3到原点的距离是3个长度单位,符合题意;∴在数轴上所对应的点与原点的距离最远的点表示的数是﹣3.故选:D.9.解:A选项,1与1不是相反数,故该选项不符合题意;B选项,1与1不是相反数,故该选项不符合题意;C选项,3与﹣3是相反数,故该选项符合题意;D选项,﹣2与﹣2不是相反数,故该选项不符合题意;故选:C.10.解:∵点B到原点的距离是6,∴点B表示的是±6,故选:D.11.解:+﹣(﹣)==()+()=﹣+1=.故选:A.12.解:原式=﹣×=﹣1.故选:B.13.解:∵5000步达标地,7205步记为+2205步,∴4700﹣5000=﹣300(步),即4700步记为﹣300步,故选:B.14.解:∵|a|=1,∴a=±1,∵b是的相反数,∴b=,∴当a=1,b=时,a+b=1+=,当a=﹣1,b=时,a+b=﹣1+=﹣,综上所述:a+b=或﹣.故选:A.15.解:(﹣1)2022=1,1的相反数是﹣1.故选:A.16.解:(﹣+﹣)×(﹣24)=×(﹣24)﹣×(﹣24)+×(﹣24)﹣×(﹣24)=﹣22+28+(﹣18)+13=1,故选:A.17.解:A、|﹣2|=2,故本选项计算错误,不符合题意;B、(﹣1)2=1,故本选项计算错误,不符合题意;C、﹣7+3=﹣4,故本选项计算正确,符合题意;D、6÷(﹣2)=﹣3,故本选项计算错误,不符合题意;故选:C.18.解:根据题意知,a=﹣1,b=0,c=1,则原式=(﹣1)2021+2020×0+12019=﹣1+1=0,故选:D.19.解:(﹣1)2022+(﹣1)2021=1+(﹣1)=0,故选:C.20.解:﹣(9+)×17=﹣(10﹣)×17,故选项A正确,符合题意,故选:A.21.解:∵2÷8×=,∴选项A不符合题意;∵﹣24+22÷20=﹣24+=﹣23,∴选项B不符合题意;∵(﹣2)××(﹣5)=5,∴选项C符合题意;∵6÷()=6×=,∴选项D不符合题意,故选:C.22.解:A选项,0的相反数是0,0÷0没有意义,故该选项不符合题意;B选项,在数轴上与表示数4的点相距3个单位长度的点对应的数是7或1,故该选项符合题意;C选项,当|x|=﹣x,则x≤0,故该选项不符合题意;D选项,﹣(﹣2)=2,故该选项不符合题意;故选:B.23.解:A选项,﹣28<0,(﹣2)8>0,故该选项不符合题意;B选项,(﹣3)7=﹣37,故该选项符合题意;C选项,﹣3×23=﹣3×8=﹣24,﹣33×2=﹣27×2=﹣54,故该选项不符合题意;D选项,﹣(﹣2)3=﹣(﹣8)=8,﹣(﹣3)2=﹣9,故该选项不符合题意;故选:B.24.解:∵34=81,43=64,∴34≠43,因此选项A不符合题意;∵﹣42=﹣16,(﹣4)2=16,∴﹣42≠(﹣4)2,因此选项B不符合题意;∵﹣23=﹣8,(﹣2)3=﹣8,∴﹣23=(﹣2)3,因此选项C符合题意;∵(﹣2×3)2=36,﹣2×32=﹣18,∴(﹣2×3)2≠﹣2×32,因此选项D不符合题意;故选:C.25.解:119×212﹣2498×212=119×212﹣(119×21﹣1)×21=119×212﹣119×212+21=21.故选:B.26.解:(﹣5)2=25,﹣(﹣2.9)=2.9,﹣72=﹣49,|﹣3|=3,非负数有:25,2.9,3,0,共5个,故选:D.27.解:根据题意得8000+300﹣200=8100(米).所以这时飞机的飞行高度是8100米,故选:B.28.解:由(1)知f(2022)=2022×2=4044,由(2)知f()=2022,∴f(2022)﹣f()=4044﹣2022=2022,故选:B.29.解:∵数据0.80精确到百分位,∴选项A符合题意;∵14185用科学记数法表示(精确到百位)为1.42万或1.42×104,∴选项B符合题意;∵数据2.002×1011可以表示为2002亿,∴选项C不符合题意;∵66.8万用科学记数法表示为6.68×105,∴选项D符合题意,故选:ABD.30.解:星期二:35﹣1﹣4=30(个),星期三:30+7=37(个),星期四;37+2=39(个),星期五:39﹣6=33(个).∴该厂本周每天生产产量超过基本量35个的是星期三、星期四.故选:BC.。
2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题(教师版)

2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题专题课1 绝对值的应用类型1 绝对值的非负性①|a |≥0.①若|a |+|b |=0,则a =b =0.1.若|x |=x ,则x 的取值范围是( )A .x >0B .x ≤0C .x ≥0D .x <0 2.若|x -2|=2-x ,则x 的取值范围是__________. 3.已知|x -3|+|y -1|=0,求2x +3y 的值.4.已知有理数|x -2|与|y -3|互为相反数,求x +y +xy 的值.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是________. 6.当b =12 时,5-|2b -1|会有最大值,最大值是________.7.已知x 为有理数,则|x -5|+|x -3|的最小值是________.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =________;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x-3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少?专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 ________-0.009;-2 0192 020 ________-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;(2)-45 与-56 ;(3)-821 与-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是________.4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度?5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)画出数轴,标出A,B,C三点在数轴上的位置,并写出A,B,C三点表示的数;(2)根据点C在数轴上的位置,点C可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D表示的数.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=________,b=________.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是________.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.-4 B.0 C.-2 D.4 12.已知a,b是不为0的有理数,且|a|=-a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是( )13.有理数a,b在数轴上的位置如图所示,且|a|=2,|b|=3,则a=________,b=________.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B,C,D处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B→D(________),C→________(-3,-4);(2)若贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程.类型4利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52 ,-3,观察数轴,与点A 的距离3的点表示的数是________,A ,B 两点之间的距离为________;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是________;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是________,点N 表示的数是________. 16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是________; ①从-2到2有5个整数,分别是________________; ①从-3到3有7个整数,分别是________________________; ①从-100到100有________个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有________个整数;(3)在单位长度是1 cm 的数轴上任意画一条长为1 000 cm 的线段AB ,线段AB 盖住的整点最多有多少个?专题课4 有理数的加减运算技巧有理数的加减运算的简便方法归纳 方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).方法2 同号结合法——把正数和负数分别结合相加 【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.方法3 同分母结合法 【例3】 计算:(1)-23 -35 +78 -13 -25 +18 ;(2)-479 -(-315 )-(+229 )+(-615 ).方法4 凑整结合——分数相加,把相加得整数的数先结合相加 【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78 .方法5 分解——将一个数拆分成两个数的和或差 【例5】 计算:-156 +(-523 )+2434 +312 .方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14 ,…,根据规律完成下列各题. (1)19×10=________; (2)计算12 +16 +112 +120 +…+19 900的值为________.易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123 .强化训练 计算:(1)(-7)-(+5)+(-4)-(-10);(2)-9+6-(+11)-(-15);(3)3.5-4.6+3.5-2.4;(4)12 +(-23 )+45 +(-12 )+(-13 );(5)-478 -(-512 )+(-412 )-318 ;(6)0.25+112 +(-23 )-14 +(-512 );(7)|-12 |-(-2.5)-(-1)-|0-212 |;(8)0+1-[(-1)-(-37 )-(+5)-(-47 )]+|-4|;(9)-205+40034 +(-20423 )+(-112 );(10)-12 -16 -112 -120 -130 -142 -156 -172 ;(11)1-2-3+4+5-6-7+8+…+97-98-99+100.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳 方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412 ).方法2 运用乘法对加法的分配律 【例2】 计算:(1)-16×(34 -78 +12 )+(-1)2020.(2)391314 ×(-14);方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367 .方法4 除法变乘法,再利用乘法对加法的分配律 【例4】 计算:(113 -58 +712 )÷(-124 ).强化训练计算:(能用简便方法的尽量用简便方法计算) (1)-0.75×(-112 )÷(-214 );(2)-(3-5)×32÷(-1)3;(3)(-1.5)×45 ÷(-25 )×34 ;(4)-14-(12 -23 +14 )×12;(5)(-5)÷(-127 )×(-214 )÷7;(6)1318 ÷(-7);(7)(-5)-(-5)×110 ÷110 ×(-5);(8)2×(-137 )-234 ×13+(-137 )×5+14 ×(-13);(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18 ;(10)-14-(-512 )×411 +(-2)3÷|-32+1|;(11)1-(-112 )÷(12 -14 -16 );(12)1-0.52 -|0.5-23 |÷13 ×|-2-(-3)2|;(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.2021-2022学年北师大版七年级数学上册第二章有理数及其运算章末专题复习练习题专题课1绝对值的应用类型1绝对值的非负性①|a|≥0.①若|a|+|b|=0,则a=b=0.1.若|x|=x,则x的取值范围是( C )A.x>0 B.x≤0 C.x≥0 D.x<02.若|x-2|=2-x,则x的取值范围是x≤2.3.已知|x-3|+|y-1|=0,求2x+3y的值.解:因为|x-3|和|y-1|均为非负数,即|x-3|≥0, |y-1|≥0,又因为|x-3|+|y-1|=0,所以|x-3|=0,|y-1|=0.所以x-3=0,y-1=0.所以x=3,y=1.所以2x+3y=2×3+3×1=9.4.已知有理数|x-2|与|y-3|互为相反数,求x+y+xy的值.解:因为|x-2|与|y-3|互为相反数,所以|x-2|=-|y-3|.所以|x-2|+|y-3|=0.所以x-2=0,y-3=0.所以x=2,y=3.所以x+y+xy=2+3+2×3=11.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是2. 6.当b =12 时,5-|2b -1|会有最大值,最大值是5.7.已知x 为有理数,则|x -5|+|x -3|的最小值是2.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =7或-3;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x -3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少? 解:(2)当3≤x ≤6时,|x -3|+|x -6|有最小值,最小值为3. (3) 当x =2时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值为7.专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( C )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( A )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( A )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .解:-a ,-b 对应的点如图所示. 由数轴上点的位置可得-b <a <-a <b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.解:各数分别为:3.5,-3.5,-12,±3,-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12 >-1>-3>-3.5.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( D )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( D )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 >-0.009;-2 0192 020 >-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来. 解:5>1>0>-2>-3.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2,且0.1<0.2,所以-0.1>-0.2.(2)-45 与-56;解:因为|-45 |=45 =2430 ,|-56 |=56 =2530 ,且2430 <2530 , 所以-45 >-56 .(3)-821 与-|-17 |.解:-|-17 |=-17.因为|-821 |=821 ,|-17 |=17 =321 ,且821 >321 , 所以-821 <-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( B )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( A ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( B )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( A )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( C )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是-7或-1. 4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度? 解:如图所示.4>212>-1.5>-|-3|>-5.最大数与最小数两点之间相距9个单位长度.5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A ,再向右爬了2个单位长度到达点B ,然后又向左爬了10个单位长度到达点C .(1)画出数轴,标出A ,B ,C 三点在数轴上的位置,并写出A ,B ,C 三点表示的数; (2)根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D 出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D 表示的数. 解:(1)如图:A ,B ,C 三点表示的数分别为4,6,-4.(2)点C 可以看作是蚂蚁从原点出发,向左爬了4个单位长度得到的.(3)从原点向右爬4个单位长度,再向左爬7个单位长度,可以到D ,结合数轴可得,点D 表示的数为-3.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=3,b=-3.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是2或-4.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( A )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?解:(1)点C表示的数是-1.(2)点C表示的数是0.5,D表示的数是-4.5.类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( D )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( C )A .-4B .0C .-2D .412.已知a ,b 是不为0的有理数,且|a |=-a ,|b |=b ,|a |>|b |,那么用数轴上的点来表示a ,b 时,正确的是( C )13.有理数a ,b 在数轴上的位置如图所示,且|a |=2,|b |=3,则a =2或-2,b =3.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B ,C ,D 处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B →D (+3,-2),C →A (-3,-4);(2)若贝贝的行走路线为A →B →C →D ,请计算贝贝走过的路程.解:|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10(米).答:贝贝走过的路程为10米.类型4 利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52,-3,观察数轴,与点A 的距离3的点表示的数是4或-2,A ,B 两点之间的距离为3.5;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是4.5;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是-6.5,点N 表示的数是4.5.16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是-1,0,1;①从-2到2有5个整数,分别是-2,-1,0,1,2;①从-3到3有7个整数,分别是-3,-2,-1,0,1,2,3;①从-100到100有201个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有21个整数;(3)在单位长度是1 cm的数轴上任意画一条长为1 000 cm的线段AB,线段AB盖住的整点最多有多少个?解:依题意,得①当线段AB起点在整点时覆盖1 001个数;①当线段AB起点不在整点,即在两个整点之间时覆盖1 000个数.综上所述,线段AB盖住的整点最多有1 001个.专题课4有理数的加减运算技巧有理数的加减运算的简便方法归纳方法1相反数结合法【例1】计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.方法2同号结合法——把正数和负数分别结合相加【例2】计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.方法3同分母结合法【例3】计算:(1)-23 -35 +78 -13 -25 +18; 解:原式=(-23 -13 )+(-35 -25 )+(78 +18) =-1-1+1=-1.(2)-479 -(-315 )-(+229 )+(-615). 解:原式=[-479 -(+229 )]+[-(-315 )+(-615)] =-7-3=-10.方法4 凑整结合——分数相加,把相加得整数的数先结合相加【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78. 解:原式=0.75-3+0.25+18 +78=(0.75+0.25)+(18 +78)-3 =1+1-3=-1.方法5 分解——将一个数拆分成两个数的和或差【例5】 计算:-156 +(-523 )+2434 +312. 解:原式=(-1-56 )+(-5-23 )+(24+34 )+(3+12) =[(-1)+(-5)+24+3]+[(-56 )+(-23 )+34 +12] =21+(-14) =2034.方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14,…,根据规律完成下列各题.(1)19×10 =19 -110 ; (2)计算12 +16 +112 +120 +…+19 900 的值为99100 .易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123. 解:原式=6+34 +3+13 -5-14 -3-12 +1+23=(6+3-5-3+1)+(34 +13 -14 -12 +23) =2+1=3.强化训练计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(3)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(4)12 +(-23 )+45 +(-12 )+(-13); 解:原式=[12 +(-12 )]+[(-23 )+(-13 )]+45=0+(-1)+45=-15.(5)-478 -(-512 )+(-412 )-318; 解:原式=-478 +512 -412 -318=(-478 -318 )+(512 -412) =-8+1=-7.(6)0.25+112 +(-23 )-14 +(-512); 解:原式=14 +112 +(-23 )-14 +(-512) =(14 -14 )+[112 +(-23 )+(-512)] =-1.(7)|-12 |-(-2.5)-(-1)-|0-212|; 解:原式=12 +2.5+1-212=12 +1+(2.5-212) =112.(8)0+1-[(-1)-(-37 )-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37 -5+47]+4 =1-[(-1+37 +47)-5]+4 =10.(9)-205+40034 +(-20423 )+(-112); 解:原式=(-205)+400+34 +(-204)+(-23 )+(-1)+(-12) =(400-205-204-1)+(34 -23 -12) =-10+(-512) =-10512.(10)-12 -16 -112 -120 -130 -142 -156 -172; 解:原式=-(12 +16 +112 +120 +130 +142 +156 +172) =-(1-12 +12 -13 +13 -14 +14 -15 +15 -16 +16 -17 +17 -18 +18 -19 ) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100)=-1+1-1+1-…-1+1=0.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412). 解:原式=-531 ×29 ×3115 ×92=-(531 ×3115 )×(29 ×92) =-13×1 =-13.方法2 运用乘法对加法的分配律【例2】 计算:(1)-16×(34 -78 +12)+(-1)2020. 解:原式=-16×34 +16×78 -16×12+1 =-12+14-8+1=-5.(2)391314×(-14); 解:原式=(40-114)×(-14) =40×(-14)-114×(-14) =-560+1=-559.方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367. 解:原式=-367×(4-3+6) =-27.方法4 除法变乘法,再利用乘法对加法的分配律【例4】 计算:(113 -58 +712 )÷(-124). 解:原式=(43 -58 +712)×(-24) =43 ×(-24)-58 ×(-24)+712×(-24) =-32+15-14=-31.强化训练计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112 )÷(-214); 解:原式=-34 ×(-32 )×(-49) =-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45 ÷(-25 )×34; 解:原式=32 ×45 ×52 ×34=94.(4)(2020·成都成华区期末)-14-(12 -23 +14)×12; 解:原式=-1-12 ×12+23 ×12-14×12 =-1-6+8-3=-2.(5)(-5)÷(-127 )×(-214)÷7; 解:原式=-5×79 ×94 ×17=-54.(6)1318÷(-7); 解:原式=1318 ×(-17) =(14-78 )×(-17) =-2+18=-178.(7)(-5)-(-5)×110 ÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5) =-5-25=-30.(8)2×(-137 )-234 ×13+(-137 )×5+14×(-13); 解:原式=-137 ×(2+5)-13×(234 +14) =-107×7-13×3 =-10-39=-49.(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)-14-(-512 )×411+(-2)3÷|-32+1|; 解:原式=-1+112 ×411-8÷8 =-1+2-1=0.(11)1-(-112 )÷(12 -14 -16); 解:原式=1+112 ÷(612 -312 -212) =1+112 ÷112=1+1=2.(12)1-0.52-|0.5-23 |÷13 ×|-2-(-3)2|; 解:原式=-4-16×3×11 =-4-112=-192.(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.解:原式=[(-1)-32 ×18+56 ×18+19×18]÷4 =(-1-27+15+2)÷4 =(-11)÷4=-114.。
北师大版七年级数学上册第二章《有理数及其运算》基础概念练习题

第二章《有理数及其运算》基础概念整数:像-2,-1,0,1,2这样的数称为整数。
正整数、零与负整数构成整数系。
整数不包括小数,分数。
自然数:零和正整数统称。
正数:大于0的数。
负数:是小于0的数。
0:既不是正数也不是负数。
有理数:按照定义分为整数和分数。
按照性质分为正有理数、零、负有理数。
数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
数轴的三要素:原点,正方向,单位长度。
相反数:只有符号不同的两个数叫做互为相反数。
0的相反数是0。
注意:①相反数是成对出现的;②相反数只有符号不同,若一个为正,则另一个为负;③0的相反数是它本身;相反数为本身的数是0。
倒数:在数学上是指与某数相乘的积为1的数。
0没有倒数。
绝对值:一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
反馈练习题一、选择题1.下列说法中正确的是()。
(1)带正号的数是正数,带负号的数是负数(2)任意一个正数,前面加上负号就是一个负数(3)0是最小的正数(4)大于0的数是正数A.(1)(2)B.(2)(4)C.(1)(2)(4)D.(3)2.下面说法正确的是()。
A.有理数是正数和负数的统称B.有理数是整数C.整数一定是正数D.有理数包括整数和分数3.下列说法不正确的是()。
A.任何一个有理数的绝对值都是正数B.0既不是正数也不是负数C.有理数可以分为正有理数,负有理数和零D.0的绝对值等于它的相反数4.在下列说法中,正确的有()。
①符号相反的数就是相反数②每个有理数都有相反数③互为相反数的两个数一定不相等④正数和负数互为相反数A.1个B.2个C.3个D.4个5.如果两个数不相等,在下列四种情况中,绝对值肯定相等的是()。
A.两个数都是正数B.两个都是负数C.两个数一正一负D.两个数互为相反数6.下列说法正确的是()。
A.0不是正数,不是负数,也不是整数B.正整数与负整数包括所有的整数C.–0.6是分数,负数,也是有理数D.没有最小的有理数,也没有最小的自然数7.下列说法中错误的是()。
北师大版七年级数学上册第二章《有理数及其运算》复习题含答案解析 (22)

一、选择题1.在运用有理数加法法则求两个有理数的和时,下列的一些思考步骤中最先进行的是()A.求两个有理数的绝对值,并比较大小B.确定和的符号C.观察两个有理数的符号,并作出一些判断D.用较大的绝对值减去较小的绝对值2.如图,点A,B在数轴上的位置如图所示,其对应的数分别为a,b,有以下结论:甲:b−a<0.乙:a+b>0.丙:a<∣b∣.丁:ab>∣ab∣,其中结论正确的是( )A.甲、乙B.甲、丙C.丙、丁D.乙、丁3.2019年世界超高清视频产业发展大会在广州召开,到2022年我国超高清视频产业规模将超过4万亿元.4万亿用科学记数法表示为( )A.4×104B.4×108C.4×1012D.4×10134.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是( )A.m<−1B.n>3C.m<−n D.m>−n5.有理数a,b在数轴上的位置如图所示,下列选项正确的是( )A.a+b>a−b B.ab>0C.∣b−1∣<1D.∣a−b∣>16.在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A.2或6B.5或3C.2D.37.数轴上点A,M,B分别表示数a,a+b,b,那么下列运算结果一定是正数的是( )A.a+b B.a−b C.ab D.∣a∣−b8.古希腊著名的毕达哥拉斯学派把1,3,6,10⋯这样的数称为“三角形数”,而把1,4,9,16⋯ 这样的数称为“正方形数”.从图中可以发现,任何一个大于 1 的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .13=3+10B .25=9+16C .36=15+21D .49=18+319. 已知 a ,b ,c 为有理数,且 a +b +c =0,b ≥−c >∣a ∣,且 a ,b ,c 与 0 的大小关系是 ( ) A . a <0,b >0,c <0 B . a >0,b >0,c <0 C . a ≥0,b <0,c >0D . a ≤0,b >0,c <010. 一串数字的排列规律是:第一个数是 2,从第二个数起每一个数与前一个数的倒数之和为 1,则第 2020 个数是 ( ) A . 2 B . −2 C . −1 D . 12二、填空题11. 定义一种新运算:a ⋇b ={a −b,a ≥b3b,a <b ,则当 x =3 时,2⋇x −4⋇x 的结果为 .12. 在数轴上将点 A 移动 3 个单位长度恰好到达 −2 的位置,则点 A 表示的数是 .13. 代数式 ∣x −2018∣+5 的最小值是 .14. 定义新运算:对任意有理数 a ,b ,c ,都有 a ∗b ∗c =∣a−b−c∣+a+b+c2.例如:(−1)∗2∗3=∣−1−2−3∣+(−1)+2+32=5.将 −716,−616,−516,−416,−316,−216,−116,816,916,1016,1116,1216,1316,1416,1516这 15 个数分成5 组,每组 3 个数,进行 a ∗b ∗c 运算,得到 5 个不同的结果,那么 5 个结果之和的最大值是 .15. 数轴上点 M 表示有理数 −3,将点 M 向右平移 2 个单位长度到达点 N ,点 E 到点 N 的距离为 4,则点 E 表示的有理数为 .16. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.17. 已知 a ,b ,c 为有理数,且满足 abc <0,a +b +c =0,则 ∣a∣b+c+∣b∣a+c+∣c∣b+a的值为 .三、解答题18. 在数轴上把下列各数表示出来,并用“<”连接各数.23,−∣−1∣,112,0,−(−3.5).19. 已知六(2)班有班费 300 元,收入记为正,支出记为负,生活委员的记录为:+50.5 元,−15.4 元,−5 元,则现在还有多少班费?20. 观察下列各式:−1×12=−1+12;−12×13=−12+13; −13×14=−13+14; ⋯.(1) 你发现的规律是 (用含 n 的式子表示).(2) 用以上规律计算:(−1×12)+(−12×13)+(−13×14)+⋯+(−12017×12018).21. 完成下列各题.(1) 19−9÷(−3)×(−13).(2) −14+16÷(−2)3×∣−3−1∣.22. 已知 m 和 n 互为相反数,p 和 q 互为倒数,a 的绝对值是 2,求 m+n2000a −2004pq +14a 2 的值.23.如图:有理数a,b,c在数轴上的位置如图所示,化简下列各式:(1) ∣a∣=,∣b∣=,∣c∣=,∣a+b∣=,∣b−c∣=;(2) ∣a+b∣+∣b−c∣.24.如图,四边形AOBC是正方形,点C的坐标是(8√2,0).(1) 正方形AOBC的边长为,点A的坐标是;(2) 将正方形AOBC绕点O顺时针旋转45∘,点A,B,C旋转后的对应点为Aʹ,Bʹ,Cʹ,求点Aʹ的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3) 动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).25.已知:△ABC中,BC=a,AC=b,AB=c,a是最小的合数,b,c满足等式:∣b−5∣+(c−6)2=0,点P是△ABC的边上一动点,点P从点B开始沿着△ABC的边按BA→AC→CB顺序顺时针移动一周,回到点B后停止,移动的路程为S,如图1所示.(1) 试求出△ABC的周长;(2) 当点P移动到AC边上时,化简:∣S−4∣+∣3S−6∣+∣4S−45∣.答案一、选择题1. 【答案】C【解析】【分析】本题主要考查有理数的加法,熟练掌握加法法则是解题的关键.【解析】解:在运用有理数加法法则求两个有理数的和时,思考步骤中最先进行的是:观察两个有理数的符号,属于同号还是异号;其次是确定和的符号;然后求两个有理数的绝对值,并比较大小,最后是用较大的绝对值减去较小的绝对值,故选:C.【点评】本题主要考查有理数的加法运算,熟练掌握运算的法则是解题的关键.2. 【答案】B【解析】∵b<a,∴b−a<0,故甲正确;∵b<−2,0<a<2,∴a+b<0;故乙错误;∵b<−2,0<a<2,∴∣b∣>2,∴a<∣b∣,故丙正确;∵b<0,a>0,∴ab<0,∴ab<∣ab∣,故丁错误;∴正确的是:甲、丙.3. 【答案】C4. 【答案】D【解析】由数轴可得,−1<m<0<2<n<3,故选项A错误,选项B错误,∴m>−n,故选项C错误,选项D正确.5. 【答案】D【解析】由题可知0<a<1,正数,b<−1,负数;A.a+b<0,a−b>0,∴a+b<a−b,故A错误;B.a,b异号,ab<0,故B错误;C.b−1<−2,∣b−1∣>2>1,故C错误;D.a>0,−b>1,∣a−b∣>1,故D正确.故选D.6. 【答案】A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.7. 【答案】A【解析】∵a<a+b,∴b>0.∵a+b<b,∴a<0.∵AM>BM,∴∣a+b−a∣>∣a+b−b∣,∴∣b∣>∣a∣.∵a<0,b>0,∣b∣>∣a∣,A.∵a<0,b>0,∣b∣>∣a∣,a+b>0,故正确;B.∵a<0,b>0,a−b<0,故不正确;C.∵a<0,b>0,ab<0,故不正确;D.∵a<0,b>0,∣b∣>∣a∣,∣a∣−b<0,故不正确.8. 【答案】C【解析】显然选项A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.9. 【答案】D【解析】∵∣a∣≥0,则b≥−c>∣a∣≥0,b>0,−c>0,即c<0,a+b+c=0,即a+b=−c≤b,即a≤0,∴a≤0,b>0,c<0.10. 【答案】A【解析】第一个数是2,倒数是1,2,倒数是2,第二个数是12第三个数是−1,倒数是−1.第四个数是2.由规律可知,这串数由 2,12,−1 循环出现 2020÷3=673⋯1, ∴ 第 2020 个数是 2.二、填空题 11. 【答案】 8【解析】当 x =3 时,原式=2⋇3−4⋇3=9−(4−3)=9−1=8.12. 【答案】 1 或 −5【解析】根据数轴上距离某点 3 个单位长度的数有两个来分情况讨论:若点 A 在 −2 的左边,移动 3 个单位长度恰好到达 −2 的位置,此时点 A 表示的数是 −5; 若点 A 在 −2 的右边,移动 3 个单位长度恰好到达 −2 的位置,此时点 A 表示的数是 1, ∴ 点 A 表示的数为 1 或 −5.13. 【答案】 5【解析】 ∵∣x −2018∣≥0, ∴∣x −2018∣+5≥5,∴ 代数式 ∣x −2018∣+5 的最小值是 5.14. 【答案】158【解析】令 b ,c 取最大的正数 1416,1516,a 取最小的负数 −716, ∴a ∗b ∗c =∣∣−716−1416−1516∣∣−716+1416+15162=158.15. 【答案】 −5 或 3【解析】 ∵ 点 M 表示有理数 −3,将点 M 向右平移 2 个单位长度到达点 N , ∴ 点 N 表示 −3+2=−1,点 E 在点 N 的左边时,−1−4=−5, 点 E 在点 N 的右边时,−1+4=3, 综上所述,点 E 表示的有理数是 −5 或 3.16. 【答案】 1838【解析】 2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838.17. 【答案】−1【解析】不妨设ab>0,c<0,∵a+b+c=0,∴a+b>0,∴a>0,b>0,∴原式=a−a +b−b+−c−c=−1−1+1=−1.故答案为:−1.三、解答题18. 【答案】如图所示:观察数轴可知:−∣−1∣<0<23<112<−(−3.5).19. 【答案】300+50.5−15.4−5=330.1(元),答:现在还有330.1元班费.20. 【答案】(1) −1n ×1n+1=−1n+1n+1(2) 原式=−1+12−12+13−13+14−⋯−12017+12018 =−1+12018=−20172018.【解析】(1) ∵第1个式子为−1×12=−1+12第2个式子为−12×13=−12+13第3个式子为-13×14=−13+14⋯∴第n个式子为−1n ×1n+1=−1n+1n+1.21. 【答案】(1)19−9÷(−3)×(−13)=19−9×(−13)×(−13)=19−9×19=19−1=18.(2)−14+16÷(−2)3×∣−3−1∣=−1+16÷(−8)×4=−1+16×(−18)×4=−1+(−2)×4=−1−8=−9.22. 【答案】∵m和n互为相反数,p和q互为倒数,a的绝对值是2,∴m+n=0,pq=1,a=±2,a2=4.∴ m+n2000a −2004pq+14a2=0−2004×1+14×4=−2003.23. 【答案】(1) −a;b;−c;−(a+b);b−c(2) −a−c.24. 【答案】(1) 8;(4√2,4√2)(2) 如图.∵四边形AOBC是正方形,∴∠AOB=90∘,∠AOC=45∘.∵将正方形AOBC绕点O顺时针旋转45∘,∴点Aʹ落在x轴上.又∵正方形的边长为8,∴OAʹ=OA=8.∴点Aʹ的坐标为(8,0).∵OC=8√2,∴AʹC=OC−OAʹ=8√2−8.∵四边形OACB,OAʹCʹBʹ是正方形,∴∠OAʹCʹ=90∘,∠ACB=90∘,∴∠CAʹE=90∘,∠OCB=45∘.∴∠AʹEC=∠OCB=45∘.∴AʹE=AʹC=8√2−8.∴S OBEAʹ=S△OBC−S△AʹCE=12OB2−12AʹE2=12×82−12(8√2−8)2=64√2−64.∴旋转后的正方形与原正方形的重叠部分的面积为64√2−64.(3) t=8或t=163.25. 【答案】(1) 由题意得a=4,b=5,c=6,所以,C=15.(2) 由题意得6≤S≤11,原式=S−4+3S−6+45−4S=35.11。
(常考题)北师大版初中数学七年级数学上册第二单元《有理数及其运算》测试题(答案解析)

一、选择题1.下列计算中,正确的是( ). A .1515-=- B .4.5 1.7 2.5 1.8 5.5--+=C .()22--=D .()1313-÷-=2.我们常用的十进制数,如312639210610?3109,=⨯⨯⨯+++我国古代《易经》一书记载,远古时期,人们通过在绳子上打结来记录数量,如图,一位母亲在从右到左依次排列的绳子上打结,并采用七进制(如32125132757173=⨯⨯+⨯++)用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .1435天B .565天C .13天D .465天3.下列比较大小正确的是( ) A .5(5)--<+-B .1334->- C .22()33--=-- D .10(5)3--<4.如图,数轴上有三个点A 、B 、C ,且A 、B 表示的数互为相反数,若每个单位长度表示1,则点C 表示的数为( )A .不能确定B .-2C .2D .0 5.我国的领水面积约为3700002km ,用科学记数法表示370000这个数为( )A .37×410B .3.7×510C .0.37×610D .3.7×6106.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制的数的对应关系如下表: 十六进制 0 1 2 3 4 5 6 7 8 9 A B C D E F 十进制12345678910111213141519F A -=,则A E ⨯,用A E ⨯十六进制可表示为( )A .8CB .140C .32D .EO7.如图,数轴上A ,B ,C 三点所表示的数分别为a ,b ,c ,且AB BC =.如果有0,0,0a b b c a c +<+>+<,那么该数轴原点0的位置应该在( )A .点A 的左边B .点A 与B 之间C .点B 与C 之间D .点C 的右边8.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻的可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A C -表示观测点A 相对观测点C 的高度),根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )A C -C D -E D -F E -G F - B G -100米80米60-米50米70-米20米A .240-米B .240米C .390米D .210米9.34-的倒数是( ) A .34 B .43-C .43D .34-10.5-的相反数是( ) A .15-B .5-C .5D .1511.已知有理数a 在数轴上的位置如图,则|1|a a +-的值为( )A .1B .21a -C .1-D .2a12.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为( ) A .0.324×108B .32.4×106C .3.24×107D .324×108二、填空题13.已知a ,b 互为相反数,m ,n 互为倒数,则()32020a b mn +-的值为____________.14.为了求239912222++++⋅⋅⋅+的值,可设239912222S =++++⋅⋅⋅+,则23422222S =++++⋅⋅⋅1002+,因此100221S S -=-,所以23991001222221++++⋅⋅⋅+=-.请仿照以上推理计算出2144++3202044++⋅⋅⋅+= ________ .15.观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,…,根据其中的规律可得01220217777++++的结果的个位数字是__________.16.化简:-(-2)=________,(-2)3=_________,|-212|=_________. 17.如图,是北京S1线地铁的分布示意图,其中桥户营、四道桥、金安桥、苹果园四站在同一条直线上.如果在图中以正东为正方向建立数轴,桥户营站、苹果园站表示的数分别是4-,2,那么金安桥站表示的数是___________.18.||8a =,4b =-,则-a b 的值为__________.19.计算3339(2)⎡⎤-÷⨯--⎣⎦的结果为__________.20.已知2|2|(3)0a b -++=,则a b =______.三、解答题21.(1)()32102 2.25327⎛⎫-⨯+-⨯-⎪⎝⎭; (2)()()32353128⨯---÷22.计算:()3111723⎡⎤-+⨯+-⎣⎦.23.计算: (1)21133()(24)468-+-+⨯- (2)221163()232--⨯-+÷ 24.计算:(1)()18623⎛⎫-÷-⨯- ⎪⎝⎭(2)()()2221235122---+--÷⨯ 25.某检修小组乘一辆检修车沿一段东西方向铁路检修,规定向东走为正,向西走为负,小组的出发地记为M ,某天检修完毕时,行走记录(单位:千米)如下: +12,-5,-9,+10,-4,+15,-9,+3,-6,-3,-7(1)问收工时,检修小组距出发地M 有多远?在东侧还是西侧? (2)若检修车每千米耗油0.3升,求从出发到收工时检修车共耗油多少升? 26.计算:(1)357(36)4912⎛⎫--+⨯- ⎪⎝⎭; (2)32110(1)23423⎛⎫----⨯- ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据绝对值、相反数、有理数加减和乘除运算的性质,对各个选项逐个分析,即可得到答案. 【详解】1515-=,故选项A 错误;4.5 1.7 2.5 1.8 2.1--+=,故选项B 错误;()22--=,故选项C 正确;()111133339⎛⎫-÷-=-⨯-= ⎪⎝⎭,故选项D 错误; 故选:C . 【点睛】本题考查了绝对值、相反数、有理数运算的知识;解题的关键是熟练掌握绝对值、相反数、有理数加减和乘除运算的性质,从而完成求解.2.B解析:B 【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数. 【详解】解:1×73+4×72+3×7+5 =1×343+4×49+3×7+5 =343+196+21+5 =565(天). 故选:B . 【点睛】考查了有理数的混合运算,本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.3.B解析:B【分析】先化简符号,再根据有理数的大小比较法则比较即可.【详解】解:A、∵-|-5|=-5,+(-5)=-5,∴5=(5)--+-,故本选项不符合题意;B、∵114||=3312-=<339||4412-==,∴1334->-,故本选项符合题意;C、∵2233--=-,22()33--=∴22()33--≠--,故本选项不符合题意;D、∵15(5)=5=1033-->,故本选项不符合题意;故选:B.【点睛】本题考查了绝对值、相反数和有理数的大小比较,能正确化简符号是解此题的关键.4.B解析:B【分析】首先确定原点位置,进而可得C点对应的数.【详解】解:∵点A、B表示的数互为相反数,∴原点在线段AB的中点处,∴点C对应的数是-2.故选:B.【点睛】本题主要考查了数轴,关键是正确确定原点的位置.5.B解析:B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将370000用科学记数法表示为:3.7×510. 故选:B . 【点睛】本题考查了大数的科学记数法表示,解答时,注意a ,n 的确定方法是解题的关键.6.A解析:A 【分析】根据表格对应数据,先把16进制转换成十进制求结果,再把结果转换成十六进制,即可求出答案. 【详解】 解:∵A=10,E=14 ∴A×E=10×14=140 ∴140÷16=8⋯⋯12 ∵C=12 ∴A×E=8C 故答案选A . 【点睛】本题主要考察了不同进制之间的转化,把我们陌生十六进制转换成我们熟悉的十进制去计算是解题关键.7.C解析:C 【分析】根据各个选项的情况,去分析a ,b ,c 三个数的正负,判断选项的正确性. 【详解】解:若原点在点A 左边,则0a >、0b >、0c >,就不满足0a b +<,故A 选项错误; 若原点在点A 与点B 之间,则0a <、0b >、0c >,且a c <,就不满足0a c +<,故B 选项错误;若原点在点B 与点C 之间,则0a <、0b <、0c >,条件都可以满足,故C 选项正确; 若原点在点C 右边,则0a <、0b <、0c <,就不满足0b c +>,故D 选项错误. 故选:C . 【点睛】本题考查数轴,解题的关键是根据数轴上点的位置判断式子的正负.8.B解析:B 【分析】根据表格信息,利用有理数的加法运算法则进行计算.解:由表可知:100A C -=(米),80C D (米),60D E(米),50E F(米),70F G(米),20G B -=-(米),∴()()()()()()()()1008060507020240A C C D D E E F F G GB A B -+-+-+-+-+-=-=+++-++-=(米). 故选:B . 【点睛】本题考查有理数加法的应用,解题的关键是掌握有理数的加法运算法则.9.B解析:B 【分析】根据乘积是1的两数互为倒数可得答案. 【详解】解:34-的倒数是43-. 故选:B . 【点睛】本题主要考查了倒数,正确把握倒数的定义是解题的关键.10.C解析:C 【分析】直接利用只有符号不同的两个数叫做互为相反数,进而得出答案. 【详解】由相反数的定义可知,−5的相反数为5. 故选:C . 【点睛】此题主要考查了相反数,正确掌握定义是解题关键.11.A解析:A 【分析】根据数轴可知a-1是负数,去绝对值号为1-a ,按照有理数加减计算即可. 【详解】解:根据数轴知原式可化为:|1|11a a a a +-=+-=, 故选:A . 【点睛】此题考查数轴的的相关知识,根据数轴去绝对值号,涉及到有理数加减运算.12.C解析:C科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将3240万用科学记数法表示为:3.24×107. 故选:C . 【点睛】本题考查了科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.正确掌握知识点是解题的关键;二、填空题13.-2020【分析】根据互为相反数的两个数和为0互为倒数的两个数积为1计算即可【详解】解:∵互为相反数∴∵互为倒数∴;故答案为:-2020【点睛】本题考查了互为倒数的两个数的积和互为相反数的两个数的和解析:-2020. 【分析】根据互为相反数的两个数和为0,互为倒数的两个数积为1计算即可. 【详解】解:∵a ,b 互为相反数, ∴0a b +=, ∵m ,n 互为倒数, ∴1mn =,()3202030202012020a b mn +-=⨯-⨯=-;故答案为:-2020. 【点睛】本题考查了互为倒数的两个数的积和互为相反数的两个数的和,熟记相反数和倒数的意义是解题关键.14.【分析】设从而可得两式相减即可得出答案【详解】设则因此所以即故答案为:【点睛】本题考查了含乘方的有理数混合运算的规律型问题读懂题干所给的求和方法是解题关键解析:2021413- 【分析】设23202014444A +++⋅⋅⋅+=+,从而可得3202142444444A ++⋅⋅⋅+=++,两式相减即可得出答案. 【详解】设23202014444A +++⋅⋅⋅+=+, 则3202142444444A ++⋅⋅⋅+=++, 因此,2021441A A -=-,所以2021413A -=,即202123202041444413-++++⋅+=⋅⋅, 故答案为:2021413-.【点睛】本题考查了含乘方的有理数混合运算的规律型问题,读懂题干所给的求和方法是解题关键.15.8【分析】先根据已知等式发现个位数字是以为一循环再根据即可得【详解】因为…所以个位数字是以为一循环且又因为所以的结果的个位数字是8故答案为:8【点睛】本题考查了有理数乘方的规律型问题根据已知等式正确解析:8 【分析】先根据已知等式发现个位数字是以1,7,9,3为一循环,再根据202245052=⨯+即可得. 【详解】因为071=,177=,2749=,37343=,472401=,5716807=,…, 所以个位数字是以1,7,9,3为一循环,且179320+++=, 又因为202245052=⨯+,505201710108⨯++=, 所以01220217777++++的结果的个位数字是8,故答案为:8. 【点睛】本题考查了有理数乘方的规律型问题,根据已知等式正确发现个位数字的变化规律是解题关键.16.-82【分析】根据有理数的相反数的定义有理数的乘方法则去绝对值符号法则计算即可求解【详解】解:-(-2)=2(-2)3=-8|-2|=2故答案为:2-82【点睛】考查了有理数的相反数乘方的求法绝对值解析:-8 212【分析】根据有理数的相反数的定义、有理数的乘方法则、去绝对值符号法则计算即可求解. 【详解】解:-(-2)=2,(-2)3=-8,|-212|=212.故答案为:2,-8,212.【点睛】考查了有理数的相反数,乘方的求法,绝对值的性质,关键是熟练掌握相关定义、法则.17.0【分析】由桥户营站苹果园站表示的数分别是2计算出两点之间的距离为6求出一个单位长度表示的数是2即可得到答案【详解】∵桥户营站苹果园站表示的数分别是2∴桥户营站与苹果园站的距离是2-(-4)=6∵桥解析:0【分析】由桥户营站、苹果园站表示的数分别是4-,2,计算出两点之间的距离为6,求出一个单位长度表示的数是2,即可得到答案.【详解】∵桥户营站、苹果园站表示的数分别是4-,2,∴桥户营站与苹果园站的距离是2-(-4)=6,∵桥户营站与苹果园站之间共有三个单位长度,∴每个单位长度表示632÷=,∴金安桥表示的数是2-2=0,故答案为:0.【点睛】此题考查数轴上两点之间的距离,数轴上点的平移规律,有理数的加减法计算,掌握数轴上两点之间的距离公式是解题的关键.18.12或-4【分析】根据绝对值的定义即可求出答案【详解】解:由题意可知:a=±8当a=8b=﹣4时a﹣b=8+4=12当a=﹣8b=﹣4时a﹣b=﹣8+4=﹣4故答案:12或-4【点睛】本题考查绝对值解析:12或-4【分析】根据绝对值的定义即可求出答案.【详解】解:由题意可知:a=±8,4b=-,当a=8,b=﹣4时,a﹣b=8+4=12,当a=﹣8,b=﹣4时,a﹣b=﹣8+4=﹣4,故答案:12或-4.【点睛】本题考查绝对值的定义,解题的关键是熟练运用绝对值的定义,本题属于基础题型.19.【分析】先算乘方再算乘除然后进行加减运算【详解】解:原式=-27÷9×8=-3×8=-24故答案:-24【点睛】本题考查了有理数的混合运算解题的关键是掌握有理数混合运算的运算法则:先算乘方再算乘除然解析:24-【分析】先算乘方,再算乘除,然后进行加减运算.【详解】解:原式=-27÷9×8=-3×8=-24故答案:-24.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的运算法则:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.20.9【分析】先根据绝对值的非负性偶次方的非负性求出ab 的值再代入计算有理数的乘方即可得【详解】由绝对值的非负性偶次方的非负性得:解得则故答案为:9【点睛】本题考查了绝对值的非负性偶次方的非负性有理数的 解析:9【分析】先根据绝对值的非负性、偶次方的非负性求出a 、b 的值,再代入计算有理数的乘方即可得.【详解】由绝对值的非负性、偶次方的非负性得:2030a b -=⎧⎨+=⎩,解得23a b =⎧⎨=-⎩, 则()239a b =-=,故答案为:9.【点睛】本题考查了绝对值的非负性、偶次方的非负性、有理数的乘方,熟练掌握绝对值与偶次方的非负性是解题关键. 三、解答题21.(1)1;(2)13.【分析】(1)原式先计算乘方,再进行乘除运算,最后算加减即可得到答案;(2)原式先算乘除法,再进行加减运算即可.【详解】解:(1)()32102 2.25327⎛⎫-⨯+-⨯- ⎪⎝⎭=104 2.252727-⨯+⨯=-9+10=1;(2)()()32353128⨯---÷=()128235+33⨯-⨯=-115+128=13.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.22.2【分析】原式先计算乘方及括号内的运算,再计算乘法运算,最后算加减运算即可求出值.【详解】 解:()3111723⎡⎤-+⨯+-⎣⎦ []111783=-+⨯- 1139=-+⨯ 13=-+2=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(1)20-;(2) 2133. 【分析】(1)有理数的混合运算,先算乘方,然后使用乘法分配律使得计算简便,最后算加减; (2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)21133()(24)468-+-+⨯- 1139(24)(24)(24)468=-+⨯--⨯-+⨯- 9649=--+-20=-(2)221163()232--⨯-+÷163429=-⨯+⨯ 1683=-+ 2133= 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 24.(1)7,(2)-12.【分析】(1)按照有理数混合运算的顺序和法则计算即可;(2)按照有理数混合运算的顺序和法则计算即可.【详解】解:(1)()18623⎛⎫-÷-⨯- ⎪⎝⎭=1833-⨯=8-1=7(2)()()2221235122---+--÷⨯ =24222---⨯=4422---⨯=-12.【点睛】本题考查了有理数的混合运算,解题关键是熟练运用有理数的运算法则,按照有理数混合运算顺序进行计算.25.(1)收工时,检修小组距离出发地M 点3千米,在M 点西侧;(2)24.9升【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案;【详解】解:(1)125910415936373--+-+-+---=-;答:收工时,检修小组距离出发地M 点3千米,在M 点西侧.(2)()125910415936370.3830.324.9++++++++++⨯=⨯=(升). 答:从出发到收工时检修车共耗油24.9升;【点睛】本题考查了正负数,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量;26.(1)26;(2)0【分析】(1)使用乘法分配律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)357(36)4912⎛⎫--+⨯- ⎪⎝⎭ =35736+36364912⨯⨯-⨯ =27+2021-=26(2)32110(1)23423⎛⎫----⨯- ⎪⎝⎭=3101423⎛⎫---⨯- ⎪⎝⎭=14+5--=0.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。
北师大版七年级数学上册第二章有理数及其运算 绝对值 专项训练【含答案】

第二章 有理数及其运算 绝对值 专项训练1. 3的相反数是( )A .-3B .-C .D .313132.下列说法:①-2是相反数;②-3和+3都是相反数;③-3和3互为相反数;④+5是-5的相反数;⑤表示相反意义的两个数是相反数;⑥一个数的相反数不可能是它本身.其中正确的有( )A .1个B .2个C .3个D .4个3.-2的绝对值是( )A .2B .-2C .D .-12124.下列各式中,不成立的是( )A .|3|=3B .-|3|=-3C .-|-3|=3D .|-3|=35.下列有理数大小关系判断正确的是( )A .-(-)>-||B .0>|-10|C .|-3|<|+3|19110D .-1>-0.016.a(a≠0)的相反数是( )A .-aB .a 2C .|a|D .1a7.某工厂生产一批螺帽,螺帽的内径要求为1.5cm ,超过规定内径数记为正数,不足规定内径数记为负数,检查结果如下:①+0.03cm ,②-0.018cm ,③-0.025cm ,④-0.015cm ,则上述四只螺帽质量最好的是( )A .①B .②C .③D .④8. 0的相反数是 ; -8的相反数是 ;-(-2.8)的相反数是 ;的相反数是;100和 是互为相反数.149. 任意一个有理数的绝对值都不是负数,即|a|≥ .10.若|x -1|+|y -2|+|z|=0,则x = ,y = ,z = .11. 若|x -1|=3,则x = .12. 如果a =-13,那么-a = ,如果-x =9,那么x = .13.若|x -3|+|y +2|=0,则x = ,y = .14.因为互为相反数的两个数到原点的距离相等,所以到原点的距离为2020的点有 个,分别是 ,即绝对值等于2019的数是 .15.化简下列各数.(1)-(-2);13(2)+(-8);37(3)-[-(-)];13(4)-[+(-)].5716.计算:(1)|3.14-π|;(2)|-25|+|23|-|-40|;(3)|-25|×|-|.21517. 比较-与-的大小.235718.运动员选拔仪仗队员,按规定:男仪仗队员的标准身高是175cm ,高于标准身高的记为正,低于标准身高的记为负,现有参选人员A 、B 、C 、D 、E 共5位,量得身高分别记作:-7cm 、-5cm 、-3cm 、-1cm 、+6cm.(1)5位参选人员谁的身高最接近标准身高?(2)若实际选拔男仪仗队员的身高为170~180cm ,则上述5人有几人能入选?为什么?19. 学习了数轴与绝对值后,小华在没有标出原点只标出了单位长度的数轴上选取了A 、B 、C 、D 四个点,如图,然后又找出两个点,便与小刚进行交流.聪明的同学们,你知道小刚的答案吗?快点试一试吧!答案;1-7 ABACA AD8. 0 8 -2.8 - -100149. 010. 1 2 011. 4或-2.12. 13 -913. 3 -214. 两 2020 -2020 ±201915. 解:(1)原式=2;13(2)原式=-8;37(3)原式=-;13(4)原式=.5716. 解:(1)原式=π-3.14; (2)原式=8; (3)原式=.10317. 解: 因为|-|==,|-|==,<,所以->-.232314215757152114211521235718. 解:(1)D 的身高最接近标准身高;(2)B 、C 、D 3人能入选,A 、B 、C 、D 、E 的身高分别为168cm 、170cm 、172cm 、174cm 、181cm 、故A 、E 不够条件.19. 解:有两种情况:①原点在C处,A点表示-5,B点表示-2,C点表示0,D点表示3;②原点在D处,A点表示-8,B点表示-5,C点表示-3,D点表示0.。
北师大版七年级数学上册 第2章 有理数及其运算 单元测试卷(含解析)

北师大版七年级数学上册第 2章有理数及其运算单元测试卷一、选择题(本大题共10小题,共30分)1. 如果“盈利5%”记作+5%,那么−3%表示( )A. 盈利2%B. 亏损8%C. 亏损3%D. 少赚2%2. 在有理数−3,0,3,4中,最小的有理数是( )A. −3B. 0C. 3D. 43. 下列运算正确的是( )A. −22=4B. (−213)3=−8127 C. (−12)3=−18 D. (−2)3=−64. −22−(−2)4的值是( )A. −20B. 16C. −16D. −125. 数轴上点A 、B 表示的数分别是−3、8,它们之间的距离可以表示为A. −3+8B. −3−8C. |−3+8|D. |−3−8|6. 下列说法中正确的有( )①同号两数相乘,符号不变;②几个因数相乘,积的符号由负因数的个数决定;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值等于这两个有理数的绝对值的积. A. 1个B. 2个C. 3个D. 4个7. 高度每增加1千米,气温就下降2℃,现在地面气温是−10℃,那么离地面高度为7千米的高空的气温是( ) A. −4℃B. −14℃C. −24℃D. 14℃8. 一个数的立方是它本身,那么这个数是( )A. 0B. 0或1C. −1或1D. 0或−1或19. 为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统计,目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为( ) A. 0.35×104B. 3.5×103C. 3.5×102D. 35×10210. 计算:3−2×(−1)=( )二、填空题(本大题共6小题,共24分)11.若规定一种运算:a∗b=ab+a−b,则1∗(−2)=___________.12.绝对值小于2的所有整数的和是______.13.如果向南走5米,记作+5米,那么向北走8米应记作______米.14.在实数范围内定义运算“☆”,其规则为:a☆b=a2−b2,则(4☆3)☆6=__________。
七年级数学上册 第二章 有理数及其运算 2.7 有理数的乘法练习题 (新版)北师大版-(新版)北师大

有理数的乘法班级:___________某某:___________得分:__________一、选择题(每小题8分,共40分)1.若a<0,b<0,则ab计算结果为()A.正数 B.负数 C.零D.不能确定2. 有四个互不相等的整数a、b、c、d且abcd=9,那么a+b+c+d等于()A.0 B.8 C.4 D.不能确定3.下列说法错误的是()A、任何有理数都有倒数B、互为倒数的两个数的积为1C、互为倒数的两个数同号D、1和-1互为负倒数4.学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是()A.100 B.80 C.50 D.1205. 两个有理数的积是负数,和是正数,那么这两个有理数是( )A.都是正有理数B.都是负有理数C.绝对值大的那个有理数是正数,另一个有理数是负数D.绝对值大的那个有理数是负数,另一个有理数是正数二、填空题(每小题8分,共40分)6. 国家规定储蓄存款需征收利息税,利息税的税率是20%(即储蓄利息的20%).小江在银行存入人民币2千元,定期一年,年利率为2.25%,存款到期时,应交利息税_____元.7. 已知a与b互为倒数,c与d互为相反数,m的绝对值是4,求m×(c+d)+a×b-3×m 的值________8.一天,小刚和小明利用温差测量山峰的高度,小明在山顶测得的温度是-2 ℃,小刚在山脚测得的温度是4 ℃.已知该地区的高度每增加100 m,气温大约下降0.6 ℃,求这个山峰的高度大约是______等于它本身的数是_______10.4个有理数相乘,积的符号是负号,则这四个有理数中,正数有______个三、解答题(共20分)11.(1)某学生将某数乘以-1.25时漏乘了一个负号,所得结果比正确结果小0.25,那么正确结果应是多少?(2)在10.5与它的倒数之间有a个整数,在10.5与它的相反数之间有b个整数.求(a+b)÷(a-b)+2的值.12小明在学习《有理数》这一章时遇到了这样一道趣味题:“四个整数a,b,c,d互不相等,且abcd=25,求a+b+c+d的值.”小明苦苦思考了很长时间也没有解决,聪明的你能解出答案吗?参考答案一、选择题【解析】∵a<0,b<0,∴ab>0.故选A.2.A【解析】由题意得:这四个数小于等于9,且互不相等.再由乘积为9可得,四个数中必有3和-3,∴四个数为:1,-1,3,-3,和为0.故选A.3. A【解析】A选项,0没有倒数,所以A错误;BCD正确,故选A【解析】从一楼到五楼共经过四层楼,所以用20乘以4,再根据有理数的乘法运算法则进行计算即可得解,从一楼到五楼要经过的台阶数为:20×(5﹣1)=80.故选B.【解析】两个有理数的积是负数,说明两个数是异号,所以A,B错误,和是正数,说明绝对值大的数为正数,所以为C故选C二、填空题6.9【解析】利息税=2000×2.25%×20%=9元.答:存款到期时,应交利息税9元.7.13【解析】解:因为a与b互为倒数,c与d互为相反数,m的绝对值是4,所以a×b=1,c +d=0,m=±4.当m=4时,m×(c+d)+a×b-3×m=4×0+1-3×4=-11;当m=-4 时,m×(c+d)+a×b-3×m=(-4)×0+1-3×(-4)=13.【解析】×100=10×100=1 000(m).9.1和-1【解析】倒数等于它本身的数是1和-1或3【解析】几个不为0的数相乘,积的符号由负因数的个数决定:当负因数是奇数个时,积为负;当负因数为偶数个时,积为正,所以正数有1或3个三、解答题11.(1)设某数为x,根据题意得,=0.25,解得a=-0.1,×(-1.25)=0.125;(2)∵10.5倒数为,10.5与之间的整数有1~10共10个,∴a=10,∵10.5的相反数为-10.5,之间的整数有-10~10共21个,∴b=21,∴(a+b)÷(a-b)+2,=(10+21)÷(10-21)+2,=-+2 =-.12.解:∵25=5×5,整数a,b,c,d互不相等,且abcd=25,∴a,b,c,d的值只能分别为5,-5,1,-1,∴a+b+c+d=0.。