新编【2018年中考试题分类汇编】-中考数学:图形的相似
【精品】2018年全国各地中考数学经典真题分类汇编:图形的相似(含答案)

中考数学真题汇编 :图形的相像一、选择题1.已知,以下变形错误的选项是()A. B. C. D.【答案】 B2.已知与相像,且相像比为,则与的面积比()A. B. C. D.【答案】 D3.要制作两个形状同样的三角形框架,此中一个三角形的三边长分别为,和,另一个三角形的最短边长为 2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm【答案】 C4.在平面直角坐标系中,线段AB 两个端点的坐标分别为A(6,8), B(10, 2),若以原点O 为位似中心,在第一象限内将线段AB 缩短为本来的后获得线段CD,则点 A 的对应点 C 的坐标为()A. ( 5, 1)B(.4, 3)C(. 3,4)D(. 1, 5)【答案】 C5.如图,△ ACB和△ ECD都是等腰直角三角形,CA=CB, CE=CD,△ ACB的极点 A 在△ ECD的斜边 DE 上,若 AE=, AD=,则两个三角形重叠部分的面积为()A. B. C. D.【答案】 D6.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到本来的两倍,则点的对应点的坐标为( )A. B.或 C. D.或【答案】 B7.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、确的是(.关于以下结论:①);②;③.此中正∵∠ BEA=∠ CDA∠PME=∠ AMD∴P、 E、 D、 A 四点共圆∴∠ APD=AED=90°∵∠ CAE=180°-∠BAC-∠ EAD=90°∴△ CAP∽△ CMA∴AC2 =CP?CM∵ AC=AB∴2CB2=CP?CM因此③正确A. ①②③B①. C①②. D②③.【答案】 A8.如图,将沿边上的中线平移到的地点,已知的面积为9,暗影部分三角形的面积为 4.若,则等于()A.2B.3C.D.【答案】 A9.学校门口的栏杆如下图,栏杆从水平地点绕点旋转到地点,已知,,垂足分别为,,,,,则栏杆端应降落的垂直距离为( )A. B. C. D.【答案】 C10.如图,在△ ABC中,点 D 在 AB 边上, DE∥BC,与边 AC 交于点 E,连接 BE,记△ ADE,△ BCE的面积分别为S1,S2,()A. 若C. 若,则,则B若.D若.,则,则【答案】 D11.如图,菱形ABCD的对角线AC、 BD 订交于点O,点 E 为边CD的中点,若菱形ABCD的周长为16,∠ BAD=60°,则△ OCE的面积是()。
2018年最新中考数学分类汇编___相似(超经典)

相似一.选择题1.如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD ,CD=AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( )A .B .C .D .2.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O 为位似中心,相似比为31,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)3.如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是 ( )A .13 B .23 C .34 D .45第7题图FE BDA C4.如图所示,△ABC 中,DE ∥BC ,若,则下列结论中正确的是( )A .B .C .D .5.(2015•甘肃武威,第9题3分)如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △DOE :S △AOC 的值为( )A .B .C .D .6.如图,在△ABC 中,AB=CB ,以AB 为直径的⊙O 交AC 于点D .过点C 作CF ∥AB ,在CF 上取一点E ,使DE=CD ,连接AE .对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③=;④AE 为⊙O 的切线,一定正确的结论全部包含其中的选项是( )A.①②B.①②③C.①④D.①②④7.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.=D.=10. 如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为l:2,∠OCD=90°,CO=CD.若B(1,0),则点C[中国^的坐标为( )yxDC BAOA.(1,2)B.(1,1)C.(2, 2)D.(2,1)11.如图,在ABC ∆中,BC DE //,6=AD ,3=DB ,4=AE ,则EC 的长为(A )1 (B )2 (C )3 (D )412.如图,∥∥,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知,则的值为( )A .B .C .D .13.如图,AD∥BE∥CF,直线l1、l2这与三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A. 4 B. 5 C. 6 D. 814.如图,在矩形ABCD中,AB=10 , BC=5 .若点M、N分别是线段AC AB上的两个动点,则BM+MN的最小值为()A. 10 B. 8 C. 53 D. 615.若,则的值为()A.1 B. C. D.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC.点D是线段AB上的一点,连结CD,过点B 作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②若点D是AB的中点,则AF=AB;③当B、C、F、D四点在同一个圆上时,DF=DB;④若,则.其中正确的结论序号是()A.①② B.③④ C.①②③ D.①②③④17.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A. 2 B. 4 C. 6 D. 8考点:平行线分线段成比例;菱形的判定与性质;作图—基本作图..分析:根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF ∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.解答:解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选D.点评:本题考查了平行线分线段成比例定理,菱形的性质和判定,线段垂直平分线性质,等腰三角形的性质的应用,能根据定理四边形AEDF是菱形是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.……依次顺延18.(2015•甘肃兰州,第5题,4分)如图,线段CD两个端点的坐标分别为C(1,2),D (2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为A.(2,5)B.(2.5,5)C. (3,5)D.(3,6)【答案】B【考点解剖】本题考查了坐标和相似的有关知识【思路点拔】根据题意:AO:CO=BO:DO=5:2,而位似中心恰好是坐标原点O,所以点A的横、纵坐标都是点C横、纵坐标的2.5倍,因此选B。
专题5.2 图形的相似(第01期)-2018年中考数学试题分项版解析汇编(解析版)

专题5.2 图形的相似(第01期)-2018年中考数学试题分项版解析汇编(解析版)一、单选题1.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为( )A.B.C.D.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C【点评】考查了相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.2.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )A. B. 或C.D.或【来源】山东省潍坊市2018年中考数学试题【答案】B【解析】分析:根据位似变换的性质计算即可.详解:点P(m,n )是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n )或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.3.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )A. 2B. 3C.D.【来源】四川省宜宾市2018年中考数学试题【答案】A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知,据此求解可得.详解:如图,点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.学科#网4.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为( )A. (5,1)B. (4,3)C. (3,4)D. (1,5)【来源】山东省滨州市2018年中考数学试题【答案】C点睛:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.5.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()A. ①②③B. ①C. ①②D. ②③【来源】江苏省扬州市2018年中考数学试题【答案】A【解析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:AC=AB,AD=AE点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.6.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为( )A. 3cmB. 4cmC. 4.5cmD. 5cm【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C【解析】【分析】根据相似三角形三边对应成比例进行求解即可得.【详解】设另一个三角形的最长边为xcm,由题意得5:2.5=9:x,解得:x=4.5,故选C.【点睛】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.7.如图,是等边三角形,是等腰直角三角形,,于点,连分别交,于点,,过点作交于点,则下列结论:①;②;③;④;⑤.A. 5B. 4C. 3D. 2【来源】湖北省孝感市2018年中考数学试题【答案】B详解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE-BH=a+2x-2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴,即,整理,得:2x2=(-1)ax,由x≠0得2x=(-1)a,即AF=(-1)EF,故⑤正确;故选:B.点睛:本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点.二、填空题8.如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为__________.【来源】江苏省连云港市2018年中考数学试题【答案】1:9点睛:本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.9.已知且,则=__________.【来源】四川省凉山州2018年中考数学试题【答案】【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可.详解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.10.如图,直线,直线交,,于点,,;直线交,,于点,,.已知,则__________.【来源】2018年浙江省舟山市中考数学试题【答案】2【点评】考查平行线分线段成比例定理,熟练掌握定理是解题的关键.11.如图,E、F、G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为__________.【来源】江苏省连云港市2018年中考数学试题【答案】2【解析】分析:连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得,推出,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;详解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,点睛:本题考查中点四边形、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.学科#网12.如图,中,,于点,于点,于点,,则__________.【来源】湖南省娄底市2018年中考数学试题【答案】6【解析】【分析】由等腰三角形的性质可得∠C =∠ABC, BD=DC=BC,再根据∠BED=∠CFB=90°,可证△BED∽△CFB,根据相似三角形的对应边成比例即可求得.【点睛】本题考查了等腰三角形的性质、相似三角形的判定与性质,得到△BED∽△CFB是解本题的关键.13.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【来源】安徽省2018年中考数学试题【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.14.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【来源】山东省泰安市2018年中考数学试题【答案】点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.15.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ =________.【来源】江苏省盐城市2018年中考数学试题【答案】或【解析】分析:分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;详解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,②当AQ=PQ,∠PQB=90°时,如图2,设AQ=PQ=y.∵△BQP∽△BCA,∴,∴,∴y=.综上所述,满足条件的AQ的值为或.点睛:本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.三、解答题16.如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;(3)计算的面积.【来源】四川省凉山州2018年中考数学试题【答案】(1)作图见解析;.(2)作图见解析;(3)16.详解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:△A'B'C'即为所求;(3)S△A'B'C'=×4×8=16.点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.17.如图,在中,为上一点,以为圆心,长为半径作圆,与相切于点,过点作交的延长线于点,且.(1)求证:为的切线;(2)若, ,求的长.【来源】江西省2018年中等学校招生考试数学试题【答案】(1)证明见解析;(2)【详解】(1)作OE⊥AB于点E,∵切BC于点C,∴OC⊥BC,∠ACB=90°,∵AD⊥BD,∴∠D=90°,∴∠ABD+∠BAD =90°,∠CBD+∠BOC=90°,∵∠BOC=∠AOD,∠AOD=∠BAD,∴∠BOC=∠BAD,∴∠ABD=∠CBD在△OBC和△OBE中,∴△OBC≌△OBE,∴OE=OC,∴OE是⊙O的半径,∵OE⊥AB ,∴AB为⊙O的切线;【点睛】本题考查了切线的判定与性质,相似三角形的判定与性质等,熟练掌握相关的判定与性质定理是解题的关键.18.如图,在中,=8,=4,=6,,是的平分线,交于点,求的长.【来源】江西省2018年中等学校招生考试数学试题【答案】4【解析】【分析】由已知条件先求得CD=BC=4,然后再证明△ABE∽△CDE,根据相似三角形对应边成比例结合CE+AE=AC=6即可求得AE的长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠CBD,【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质定理是解题的关键.19.已知,中,,是边上一点,作,分别交边,于点,.(1)若(如图1),求证:.(2)若,过点作,交(或的延长线)于点.试猜想:线段,和之间的数量关系,并就情形(如图2)说明理由.(3)若点与重合(如图3),,且.①求的度数;②设,,,试证明:.【来源】2018年浙江省舟山市中考数学试题【答案】(1)证明见解析;(2)猜想:,理由见解析;(3)①;②证明见解析.【解析】【分析】(1)根据平行线的判定,得到,,证明.即可证明.(2)过点作的平行线交的延长线于点,证明≌得到.证明四边形是平行四边形,即可得到.(3)①设,,根据三角形的内角和列出方程,求解即可.②延长至,使,连结,证明.根据相似三角形的性质得到,即可证明.【解答】(1)∵,,,∴,,∴,,,∴.∴.(3)①设,∵,,∴,又,即,∴,即.【点评】考查平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,综合性比较强,对学生综合能力要求较高.学科#网20.(1)(发现)如图①,已知等边△ABC,将直角三角形的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.①若AB=6,AE=4,BD=2,则CF =________;②求证:△EBD∽△DCF.(2)(思考)若将图①中的三角板的顶点D在BC边上移动,保持三角板与AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.(3)(探索)如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为________(用含α的表达式表示).【来源】江苏省盐城市2018年中考数学试题【答案】(1)①4;②证明见解析;(2)存在;(3)1-cosα.(3)【探索】由已知不难求得C△ABC=AB+BC+CA=2AB+2OB=2(m+mcosα),则需要用m和α的三角函数表示出C△AEF,C△AEF=AE+EF+AF;题中直接已知O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF=AG+AH=2AG,而AG=AB-OB,从而可求得.②证明:∵∠EDF=60°,∠B=60°∴∠CDF+∠BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF,又∵∠B=∠C,∴△EBD∽△DCF(2)存在.如图,作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别为M,G,N,∵ED平分∠BEF且FD平分∠CFE,∴DM=DG=DN,又∵∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≅△CDN,∴BD=CD,即点D是BC的中点,∴;( 3 )连结AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别为G,D,H,点睛:本题考查了角平分线的定义,等边三角形的性质,全等三角形以及相似三角形的判定和性质等知识点.难度较大.21.如图1,在中,于点的垂直平分线交于点,交于点,,.(1)如图2,作于点,交于点,将沿方向平移,得到,连接.①求四边形的面积;②直线上有一动点,求周长的最小值.(2)如图3.延长交于点.过点作,过边上的动点作,并与交于点,将沿直线翻折,使点的对应点恰好落在直线上,求线段的长.【来源】山东省潍坊市2018年中考数学试题【答案】(1)①;②周长的最小值为9;(2)的长为或.根据平移的性质,MM'=CD=6,连接BM,如图1,四边形BHMM′的面积=×6×1.5+×4×1.5=7.5;②连接CM交直线EF于点N,连接DN,如图2,(2)∵BF∥CE,∴,∴QF=2,∴PK=PK'=6,过点K'作E'F'∥EF,分别交CD于点E',交QK于点F',如图3,当点P在线段CE上时,在Rt△PK'E'中,PE'2=PK'2-E'K'2,∴PE′=2,∵Rt△PE'K'∽Rt△K'F'Q,综上所述,CP的长为或.点睛:此题考查四边形的综合题,关键是根据相似三角形的性质和平移的性质解答,注意(2)分两种情况分析.学科#网22.如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【来源】山东省泰安市2018年中考数学试题【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MF•MH,∴BM2=MF•MH.点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解答本题的关键.。
专题5.2 图形的相似2018年中考数学试题分项版解析汇编(原卷版)

北师大版七年级数学上册学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.学校门口的栏杆如图所示,栏杆从水平位置 绕 点旋转到 位置,已知,别为 , ,,,,则栏杆 端应下降的垂直距离 为( ),垂足分A.B.C.2.在平面直角坐标系中,点对应点的坐标为( )A.B.或D. 是线段 上一点,以原点 为位似中心把放大到原来的两倍,则点 的C.D.或3.如图,将△ABC 沿 BC 边上的中线 AD 平移到△A'B'C'的位置,已知△ABC 的面积为 9,阴影部分三角形的面积为 4.若 AA'=1,则 A'D 等于( )A. 2 B. 3 C.D.4.在平面直角坐标系中,线段 AB 两个端点的坐标分别为 A(6,8),B(10,2),若以原点 O 为位似中心,在第一象限内将线段 AB 缩短为原来的 后得到线段 CD,则点 A 的对应点 C 的坐标为( ) A. (5,1) B. (4,3) C. (3,4) D. (1,5)5.如图,点 在线段 上,在 的同侧作等腰和等腰, 与 、 分别交于点 、 .对于下列结论:①;②;③.其中正确的是( )1北师大版七年级数学上册A. ①②③ B. ① C. ①② D. ②③ 6.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为 , 和 ,另一个三角形的最短边长为 2.5 cm,则它的最长边为( ) A. 3cm B. 4cm C. 4.5cm D. 5cm7.如图,是等边三角形,是等腰直角三角形,于点 , ,过点 作交 于点 ,则下列结论:,于点 ,连 分别交 ,①;②;③;④;⑤.A. 5 B. 4 C. 3 D. 2二、填空题 8.如图,△ABC 中,点 D、E 分別在 AB、AC 上,DE∥BC,AD:DB=1:2,则△ADE 与△ABC 的面积的比 为__________.9.已知且,则=__________.2北师大版七年级数学上册10.如图,直线,直线 交 , , 于点 , , ;直线 交 , , 于点 , , .已知,则 __________.11.如图,E、F、G、H 分别为矩形 ABCD 的边 AB、BC、CD、DA 的中点,连接 AC、HE、EC,GA,GF.已 知 AG⊥GF,AC= ,则 AB 的长为__________.12 . 如 图 ,中,,于 点,于点 ,于点 ,__________ .,则13.矩形 ABCD 中,AB=6,BC=8.点 P 在矩形 ABCD 的内部,点 E 在边 BC 上,满足△PBE∽△DBC,若 △APD 是等腰三角形,则 PE 的长为数___________. 14.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开 门,出东门十五步有木,问:出南门几步而见木?” 用今天的话说,大意是:如图, 是一座边长为 200 步(“步”是古代的长度单位)的正方形小城,东门 位于 的中点,南门 位于 的中点,出东门 15 步的 处有一树木,求出南门多少步恰好看到位于 处的 树木(即点 在直线 上)?请你计算 的长为__________步.3北师大版七年级数学上册15.如图,在直角△ABC 中,∠C=90°,AC=6,BC=8,P、Q 分别为边 BC、AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则 AQ =________.三、解答题 16.如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,,并求出 点坐标;(2)以原点 为位似中心,相似比为 2,在第一象限内将 放大,画出放大后的图形;(3)计算的面积 .17.如图,在中, 为 上一点,以 为圆心, 长为半径作圆,与 相切于点 ,过点 作交 的延长线于点 ,且.(1)求证: 为 的切线;(2)若,,求 的长.4北师大版七年级数学上册18.如图,在中, =8, =4, =6,, 是 的平分线, 交 于点 ,求 的长.19.已知, 中,, 是 边上一点,作,分别交边 , 于点 , .(1)若(如图 1),求证:.(2)若,过点 作,交 (或 的延长线)于点 .试猜想:线段 , 和 之间的数量关系,并就情形(如图 2)说明理由.(3)若点 与 重合(如图 3), ①求 的度数;,且.②设,,,试证明:.20.(1)(发现)如图①,已知等边△ABC,将直角三角形的 60°角顶点 D 任意放在 BC 边上(点 D 不与点 B、C 重合),使两边分别交线段 AB、AC 于点 E、F.5北师大版七年级数学上册①若 AB=6,AE=4,BD=2,则 CF =________; ②求证:△EBD∽△DCF. (2)(思考)若将图①中的三角板的顶点 D 在 BC 边上移动,保持三角板与 AB、AC 的两个交点 E、F 都存 在,连接 EF,如图②所示.问点 D 是否存在某一位置,使 ED 平分∠BEF 且 FD 平分∠CFE?若存在,求出 的值;若不存在,请说明理由. (3)(探索)如图③,在等腰△ABC 中,AB=AC,点 O 为 BC 边的中点,将三角形透明纸板的一个顶点放 在点 O 处(其中∠MON=∠B),使两条边分别交边 AB、AC 于点 E、F(点 E、F 均不与△ABC 的顶点重合), 连接 EF.设∠B=α,则△AEF 与△ABC 的周长之比为________(用含 α 的表达式表示).21 . 如 图 1, 在中,,,.于点的垂直平分线交 于点 ,交 于点(1)如图 2,作 ①求四边形于点 ,交 于点 ,将 的面积;沿 方向平移,得到,连接 .6。
2018版中考数学《6.3图形的相似》导向(含答案)

§6.3 图形的相似一、选择题 1.(改编题)如图,△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3,则CE 的值为 () A .9 B .6C .3D .4解析 ∵DE ∥BC ,∴AD BD =AE CE ,即510=3CE .解得CE =6.故选B.答案 B2.(原创题)如图,平行四边形ABCD 中,E 为AD 的中点,已知△DEF 的面积为S ,则四边形ABCE 的面积为 ( )A .8SB .9SC .10SD .11S解析 ∵DE ∥BC ,BC =2DE ,∴EF CF =DE BC =12,∴S △DEF S △DCF =12,S △DEF S △BCF =14.∵S △DEF=S ,∴S △BCF =4S ,S △DCF =2S .∴S 四边形ABCE =S 四边形ABCD -S △DEC =9S .故选B. 答案 B3.(改编题)如图,点D ,E ,F 分别是△ABC (AB >AC )各边的中点,下列说法错误的是 ( )A .AD 平分∠BACB .△AEF ∽△ABCC .EF 与AD 互相平分D .△DFE 是△ABC 的位似图形解析 由中位线定理可知EF ∥BC ,∴△AEF ∽△ABC ,故B 正确;由中位线定理可得DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形,∴EF 与AD 互相平分,故C 正确;∵DE ∥AC ,EF ∥BC ,DF ∥AB ,∴△DFE ∽△ABC .又AD ,BF ,CE 相交于一点,∴△DFE 是△ABC 的位似图形,故D 正确.综上所述,排除B ,C ,D ,故选A.答案 A4. (改编题)在▱ABCD 中,E 为靠近点D 的AD 的三等分点,连结BE ,交AC 于点F ,AC =12,则AF 为( )A .4B .4.8C .5.2D .6解析 ∵E 是AD 的三等分点,∴AE =23AD ,∴AE =23BC .∵AD ∥BC ,∴△AEF ∽△CBF .∴AE CB =AF CF =23.设AF =2x ,则CF =3x ,由题意得,2x +3x =12,x =2.4,∴AF =4.8,故选B.答案 B5.(原创题)如图,已知∠ACB =∠CDB =90°,若添加一个条件,使得△BDC 与△ABC 相似,则下列条件中不符合要求的是( ) A .∠ABC =∠BCDB .∠ABC =∠CBD C.AC BC =AB BD D .AB ∥CD解析 由两角对应相等的两个三角形相似得出A 、B 都符合要求;由AB ∥CD 可得∠ABC =∠BCD ,故D 也符合要求;而C 中给出的四条线段不是两个三角形的对应边,故C 不符合要求.故选C.答案 C二、填空题6.(改编题)如图,▱ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ∶FC 等于________.解析 ▱ABCD 中,点E 是边AD 的中点,则ED ∶BC=1∶2,△DEF ∽△BCF ,所以EF ∶FC =ED ∶BC=1∶2.答案 1∶2 7.(原创题)如图,D ,E 分别是AB ,AC 上的两点,添加_______,使得△ADE 和△ACB 相似(添加一个即可).解析 由图可知,∠A 是公共角,故添加∠ADE =∠C或∠AED =∠B ,都可以由两角对应相等得出△ADE ∽△ACB ;添加∠ADE =∠B 或∠AED =∠C ,都可以由两角对应相等得出△ADE ∽△ABC ;添加AD AC =AE AB ,由两对应边的比相等且夹角相等可得△ADE ∽△ACB ;添加AD AB =AE AC ,由两对应边的比相等且夹角相等可得△ADE ∽△ABC ;添加DE ∥BC ,也可得△ADE ∽△ABC ;综上所述,可添加:∠ADE =∠C 或∠AED =∠B 或∠ADE =∠B 或∠AED =∠C 或AD AC =AE AB 或AD AB =AE AC 或DE ∥BC .答案 答案不唯一,如:∠ADE =∠C (或∠AED =∠B 或∠ADE =∠B 或∠AED=∠C 或AD AC =AE AB 或AD AB =AE AC 或DE ∥BC )三、解答题8.(原创题)如图,△ABC 中,AB =8厘米,AC =16厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C 同时出发,以每秒3厘米的速度向A 运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A ,P ,Q 为顶点的三角形与△ABC 相似时,运动时间是多少?解 当△APQ ∽△ABC 时,AP AB =AQ AC .设用t 秒时,以A ,P ,Q 为顶点的三角形与△ABC 相似,则AP =2t ,CQ =3t ,AQ =16-3t .于是2t 8=16-3t 16,解得,t =167.当△APQ∽△ACB时,APAC=AQAB.设用t秒时,以A,P,Q为顶点的三角形与△ABC 相似,则AP=2t,CQ=3t,AQ=16-3t.于是2t16=16-3t8,解得t=4.故答案为:t=167或t=4.。
2018年中考数学《图形的相似》专题练习含答案

2018中考数学专题练习《图形的相似》(时间:100分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分)1.在比例尺为1: 8 000的城区地图上,昭阳湖的周长约为25 cm ,则它的实际周长约为()[来源学科网]A.2 000 cmB.2 000 mC.320 cmD.320 m 2.若△ABC 的每条边长增加各自的20%得到'''A B C ,则'B 的度数与其对应角B 的度数相比()A.增加了20%B.减少了20%C.增加了(1 +20% )D.没有改变3.已知如图1所示的两个四边形相似.则的度数是( )A.60oB.75oC.87 oD.120o4.如图2,已知ABC DEF :,:1:2AB DE,则下列等式一定成立的是( )A.12ABC DEF 的周长的周长 B.12ABC DEF 的面积的面积C. 12A D 的度数的度数D.12BC DF5如图3,在钝角ABC 中,6AB cm ,12AC cm ,动点D 从A 点出发到B 点止,动点E 从点C 出发到A 点止,点D 的运动速度为 1 cm/s ,点E 的运动速度为 2 cm/s.如果,D E 两点同时出发,那么当以点,,A D E 为顶点的三角形与ABC 相似时,运动的时间是() A.3 s B.4.5 s C.3 s 或4.8 sD.4.5 s 或4.8 s6.如图4,在矩形ABCD 中,对角线,AC BD 相交于点,G E 为AD 的中点,连接BE 交AC 于点F ,连接FD .若90BFA ,则下列四对三角形:①BEA 与ACD ;②FED与DEB ;③CFD 与ABC ;④ADF 与CFB .其中相似的有( )。
2018年中考数学专题复习卷:图形的相似(含解析)

图形的相似一、选择题1.已知,下列变形错误的是()A. B.C.D.【答案】B【解析】由得,3a=2b,A. 由得,所以变形正确,故不符合题意;B. 由得3a=2b,所以变形错误,故符合题意;C. 由可得,所以变形正确,故不符合题意;D.3a=2b变形正确,故不符合题意.故答案为:B.【分析】根据已知比例式可得出3a=2b,再根据比例的基本性质对各选项逐一判断即可。
2.如图,已知直线a∥b∥c,直线m分别交直线a、b、c于点A,B,C,直线n分别交直线a、b、c于点D,E,F,若, ,则的值应该()A. 等于B. 大于C. 小于D. 不能确定【答案】B【解析】:如图,过点A作AN∥DF,交BE于点M,交CF于点N∵a∥b∥c∴AD=ME=NF=4(平行线中的平行线段相等)∵AC=AB+BC=2+4=6∴设MB=x,CN=3x∴BE=x+4,CF=3x+4∵∵x>0∴故答案为:B【分析】过点A作AN∥DF,交BE于点M,交CF于点N,根据已知及平行线中的平行线段相等,可得出AD=ME=NF=4,再根据平行线分线段成比例得出BM和CN的关系,设MB=x,CN=3x,分别表示出BE、CF,再求出它们的比,利用求差法比较大小,即可求解。
3.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1) B. (4,3) C. (3,4) D. (1,5)【答案】C【解析】:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故答案为:C.【分析】根据位似图形的性质,位似图形上一个点的坐标等于原图形上对应点的横纵坐标分别乘以位似比,或位似比的相反数。
4.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1, S2,()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】 :如图,过点D作DF⊥AC于点F,过点B作BM⊥AC于点M∴DF∥BM,设DF=h1, BM=h2∴∵DE∥BC∴∴∵若∴设=k<0.5(0<k<0.5)∴AE=AC∙k,CE=AC-AE=AC(1-k),h1=h2k∵S1= AE∙h1= AC∙k∙h1, S2= CE∙h2= AC(1-k)h2∴3S1= k2ACh2, 2S2=(1-K)∙ACh2∵0<k<0.5∴k2<(1-K)∴3S1<2S2故答案为:D【分析】过点D作DF⊥AC于点F,过点B作BM⊥AC于点M,可得出DF∥BM,设DF=h1, BM=h2,再根据DE∥BC,可证得,若,设=k<0.5(0<k<0.5),再分别求出3S1和2S2,根据k的取值范围,即可得出答案。
2018年全国中考数学试卷解析分类汇编(第一期)专题26图形的相似与位似

图形的相似与位似一.选择题1. (2018?淄博第8题,4分)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为()A.B.C.D.考点:相似三角形的判定与性质;三角形的面积;三角形中位线定理..专题:压轴题.分析:根据三角形的中位线求出EF=BD,EF∥BD,推出△AEF∽△ABD,得出=,求出==,即可求出△AEF与多边形BCDFE的面积之比.解答:解:连接BD ,∵F 、E 分别为AD 、AB 中点,∴EF=BD ,EF ∥BD ,∴△AEF ∽△ABD ,∴==,∴△AEF 的面积:四边形EFDB 的面积=1:3,∵CD=AB ,CB ⊥DC ,AB ∥CD ,∴==,∴△AEF 与多边形BCDFE 的面积之比为1:(3+2)=1:5,故选C .点评:本题考查了三角形的面积,三角形的中位线等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目比较典型,难度适中.2.(2018·湖北省武汉市,第6题3分)如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O 为位似中心,相似比为31,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为()A .(2,1)B .(2,0)C .(3,3)D .(3,1)1.A【解析】∵线段CD 和线段AB 关于原点位似,∴△ODC ∽△OBA ,∴31OBABCD OD ,即3136CD OD ,∴CD =1,OD=2,∴C (2,1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学真题汇编:图形的相似一、选择题1.已知,下列变形错误的是()A. B. C. D.【答案】B2.已知与相似,且相似比为,则与的面积比()A. B. C. D.【答案】D3.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm【答案】C4.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1)B. (4,3)C. (3,4)D. (1,5)【答案】C5.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE= ,AD= ,则两个三角形重叠部分的面积为()A. B. C. D.【答案】D6.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )A. B. 或 C. D. 或【答案】B7.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=AED=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC= AB∴2CB2=CP•CM所以③正确A. ①②③B. ①C. ①②D. ②③【答案】A8.如图,将沿边上的中线平移到的位置,已知的面积为9,阴影部分三角形的面积为4.若,则等于()A. 2B. 3C.D.【答案】A9.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为( )A. B. C. D.【答案】C10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D11.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD 的周长为16,∠BAD=60°,则△OCE的面积是()。
A. B. 2 C. D. 4【答案】A12.如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD的延长线于点C,若的半径为4,,则PA的长为()A. 4B.C. 3D. 2.5【答案】A二、填空题13.如图,△ABC中,点D、E分别在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE 与△ABC的面积的比为________.【答案】1:914.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.【答案】215.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE ∽△DBC,若△APD是等腰三角形,则PE的长为数________.【答案】3或1.216.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE= ,∠EAF=45°,则AF的长为________.【答案】17.如图,E、F、G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC、GA、GF,已知AG⊥GF,AC=,则AB的长为________.【答案】218.在Rt△ABC中∠C=90°,AD平分∠CAB,BE平分∠CBA,AD、BE相交于点F,且AF=4,EF= ,则AC=________.【答案】19.如图,在矩形中,,点为线段上的动点,将沿折叠,使点落在矩形内点处.下列结论正确的是________. (写出所有正确结论的序号)①当为线段中点时,;②当为线段中点时,;③当三点共线时,;④当三点共线时,.【答案】①③④20.如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于点O,则AB=________.【答案】三、解答题21.为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】解:如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°= ,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.22.如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG,于点E,BF⊥AG于点F,设。
(1)求证:AE=BF;(2)连接BE,DF,设∠EDF= ,∠EBF= 求证:(3)设线段AG与对角线BD交于点H,△AHD和四边形CDHG的面积分别为S1和S2,求的最大值.【答案】(1)因为四边形ABCD是正方形,所以∠BAF+∠EAD=90°,又因为DE⊥AG,所以∠EAD+∠ADE=90°,所以∠ADE=∠BAF,又因为BF⊥AG,所以∠DEA=∠AFB=90°,又因为AD=AB所以Rt△DAE≌Rt△ABF,所以AE=BF(2)易知Rt△BFG∽Rt△DEA,所以在Rt△DEF和Rt△BEF中,tanα= ,tanβ=所以ktanβ= = = = =tanα所以(3)设正方形ABCD的边长为1,则BG=k,所以△ABG的面积等于k因为△ABD的面积等于=又因为=k,所以S1所以S=1- k- =2所以=-k2+k+1= ≤因为0<k<1,所以当k= ,即点G为BC中点时,有最大值23.如图,以的直角边为直径作交斜边于点,过圆心作,交于点,连接.(1)判断与的位置关系并说明理由;(2)求证:;(3)若,,求的长.【答案】(1)解:DE是圆O的切线证明:连接OD∵OE∥AC∴∠1=∠3,∠2=∠A∵OA=OD∴∠1=∠A∴∠2=∠3在△BOE和△DOE中OE=OD,∠2=∠3,OE=OE∴△BOE≌△DOE(SAS)∴∠ODE=∠OBE=90°∴OD⊥DE∴DE是圆O的切线(2)解:证明:连接BD∵AB是直径∴∠BDC=∠ADB=∠ABC=90°∵OE∥AC,O是AB的中点∴OE是△ABC的中位线∴AC=2OE∵∠BDC=∠ABC,∠C=∠C∴△ABC∽△BDC∴∴BC2=2CD•OE∵BC=2DE,∴(2DE)2=2CD•OE∴(3)解:∵设:BD=4x,CD=3x∵在△BDC中,,∴BC=2DE=5∴(4x)2+(3x)2=25解之:x=1,x=-1(舍去)∴BD=4∵∠ABD=∠C∴AD=BD•tan∠ABD=24.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3.请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形;(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值。
【答案】(1)或或.(2)证明:∵AD∥BC,∴∠ACB =∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴= ,即CA2=BC·AD,又∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC·AB,∴△ABC是比例三角形.(3)解:如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH= BD,∴AD∥BC,∠ADC=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴= ,∴AB·BC=DB·BH,∴AB·BC= BD2,又∵AB·BC=AC2,∴BD2=AC2,∴= .。