Advances in fluxgate sensors
基于隧道磁阻传感器的三维电子罗盘设计

基于隧道磁阻传感器的三维电子罗盘设计∗王琪;李孟委;王增跃;蒋孝勇;李锡广【摘要】Existing electronic compass is vulnerable to be distracted by the Magnetic Field in external environment, which leads to low accuracy. To solve this problem,a three-dimensional electronic compass is designed based on Tunneling Magneto Resistance sensor and a prototype is made. The error characteristics of compass in a real envi-ronment is studied,and ellipse hypothesis are carried out to compensate the azimuth error after ellipsoid-fitting cor-rection. Through experimental tests,the compensation effect of the ellipse hypothesis method,which compensated az-imuth accuracy of up to 0.85° and effectively reducing 94.81% of the azimuth error. Experimental results show that applying TMR sensor to electronic compass is feasible.%针对现有电子罗盘在地磁场检测时易受到外界磁场干扰而导致测量精度不高的问题,设计了基于隧道磁阻传感器( TMR)的三维电子罗盘并完成样机制作。
Bartington Instruments Mag-13三轴磁场传感器操作手册说明书

Operation Manual for Mag-13 Three-Axis Magnetic Field Sensors1. About this Manual 31.1. Symbols Glossary 32 Safe Use 33. Introduction 34. General Description 45. Enclosures 46. Compatible Power Supply and Data Acquisition Units 47. Cables and Connectors 57.1. Cables 57.2. Mating Connectors 58. Mounting 58.1. Mag-13MC 68.2. Mag-13MS 69. Operation 79.1. Connector Pin Allocation 79.2. Interface 79.3. Power Supplies 79.4. Signal/Power Ground 79.5. Test Coil 89.6. Temperature Sensor 99.7. Connecting Power 99.8. Electromagnetic Compatibility 910. Performance 910.1. Noise 910.2 Excitation Frequency 1011. Troubleshooting, Care and Maintenance 1011.1. Troubleshooting 1011.2. Care and Maintenance 1012. Storage & Transport 1013. Disposal 1113.1. Waste Electrical and Electronic Equipment (WEEE) Regulations 111.This manual describes the installation, operation and maintenance of the Mag-13 range of three axis magnetic field sensors. It should be read in conjunction with the product brochure DS3143 and the outline drawings which can be found on the Mag-13 product page on the Bartington Instruments website at: .See Application Note AN0045: ‘Magnetic Units and Measurements’, available from Bartington Instruments, for important information about magnetic field measurement units.The following symbols used within this manual call your attention to specific types of information: WARNING: Indicates a situation in which serious bodily injury or death could result if thewarning is ignored.Caution: Indicates a situation in which bodily injury or damage to your instrument, or both,could result if the caution is ignored.Identifies items that must be disposed of safely to prevent unnecessary damage to theenvironment.Note: Provides useful supporting information on how to make better use of your purchase. 2WARNING: These products are not qualified for use in explosive atmospheres or life supportsystems. Consult Bartington Instruments for advice.These compact, high performance sensors with integral electronics provide measurementsof static and alternating magnetic fields in three axes. The sensors, also described as magnetometers, convert magnetic flux density, measured in three axes, into a bipolar analogue voltage. Analogue output voltages Vx, Vy and Vz vary linearly with magnetic flux density.The Mag-13 series are an evolution of the Mag-03 range of sensors and feature a number of improvements. These include improved orthogonality error of the sensing coils, and an inbuilt test coil and temperature sensor. There have also been other refinements in the design.The analogue output is positive for conventional flux direction, South to North, in the direction of the arrow shown on the label for each axis; i.e. the maximum positive output will be obtained from any axiswhen the arrow points towards magnetic north along the total field vector. The measurement axes are designated X, Y and Z in the Cartesian co-ordinate system, when viewed from the top or non-connector end of the sensor.The analogue outputs may require external filters if not used with a Bartington Instruments data acquisition unit, to achieve the noise specification of the sensor (see Noise).4.The Mag-13 contains three fluxgate sensing elements mounted orthogonally in a block at one end of an enclosure, which also contains the electronic circuitry. The connector is mounted at the opposite end of the enclosure. The position and direction of each sensing element is indicated by arrows on the outside of the sensor, together with the product code, measuring range and serial number. The sensor elements are precisely aligned along the centre lines of the package, directly beneath the diagram on the label.Details of the enclosures, mounting, connector dimensions, connector pin allocation and the position of the sensing elements relative to the enclosure are given in outline drawings on the Mag-13 product page.The sensors provide three high precision analogue outputs, proportional to the magnetic field along each axis. The relationship between the magnetic field and the analogue output is extremely linear. An additional output is provided in order to take temperature measurements or activate the internal test coil.The low output impedance of the sensor ensures it can be operated over long cables when interfaced with Bartington Instruments’ high impedance data acquisition systems. The zero field offset error, scale factor, orthogonality and frequency response are individually calibrated.The sensors are available in a variety of enclosures. All enclosures are environmentally sealed and electrically shielded. A full list of sensors with specifications is provided in the product brochure.Note: Using your sensor in an environment that exceeds its rating may result in the need for repair at the customer’s expense.6.A number of other Bartington Instruments products will work with the Mag-13 as power supply and/or data acquisition units. These are listed in the product brochure and can be found at www. /data-acquisition-and-conditioning-units.html.Note: Outputs for the test coil and temperature sensor are presently only available with the DecaPSU Power Supply Unit. See Test Coil for information on test coil operation.For further information on power supplies see Power Supplies.For information on using your own power supply or data acquisition unit see AN0042: ‘Connecting your own Power Supply to a Bartington Magnetic Field Sensor’, available from Bartington Instruments.Although the Mag-13 is singled-ended, the cable connecting it to the power supply has a signal ground for each axis. The configuration of the cable pin out for the Mag-13 on the power supply side will require the power supply/signal conditioning unit to be set to the balanced mode to operate the Mag-13 correctly.For the Spectramag and Mag-03DAM data acquisition units, an adaptor cable will be required. This cable must be used despite the connector of the original cable being compatible with the power supplies.Caution: The Mag-13 sensor will not function correctly if plugged directly into aSpectramag-6 or Mag-03DAM without the use of an adaptor cable.7.Cables are available to connect the range of Mag-13 sensors to the range of suitable Bartington Instruments power supply and data acquisition units. Specifications for each of the cables are given in the product brochure.Note: Cables must be ordered separately.Note: Customers manufacturing their own cables must ensure the cables are shielded to prevent them picking up EM (electromagnetic) interference.7.2.For information on suitable mating connectors refer to the product datasheet.The range of compatible mounting accessories are shown in the product brochure.The method of mounting will depend on the application and the enclosure. For details of the mounting arrangements for each sensor, refer to the product brochure and the relevant outline drawing on the Mag-13 product page.Note: The use of magnetic materials in the mounting arrangement must be avoided. Check all mounting components before installation by placing the component within the immediate vicinity of the sensing elements of a working magnetometer and observing any variation in the background field.Caution: Do not place the sensor head of the unpackaged sensor in the immediate vicinity ofelectrically conductive materials.Caution: The absolute maximum screw penetration depth within the body, as shown in therelevant outline drawing on the product page, must not be exceeded.The analogue output is positive for conventional flux direction, south to north, in the direction of the arrow shown on the label for each axis; i.e. the maximum positive output will be obtained from any axis when the arrow points towards magnetic north along the total field vector.8.1.This sensor can be supported by the Mag-TA Tripod Adaptor described in the product brochure.The end of the Mag-13MC has a threaded hole for fixing the sensor in place, and three conical indentations that can be used to achieve a more precise alignment of the axes when setting up the sensor.Caution: The label area of the sensor is recessed and should not be used for clamping.8.2.This sensor can be supported by the Mag-TA Tripod Adaptor described in the product brochure. This sensor has threaded holes tapped in the base which is also the datum face. The sensor can be mounted on any flat, non-magnetic surface, including the Tripod Adaptor, using the two brass screws supplied.Caution: The absolute maximum screw penetration depth within the body is 8 mm and thismust not be exceeded.9.The connector pin or cable colour allocation for the connection to each package type is shown on the appropriate outline drawing on the Mag-13 product page.The analogue outputs for the X, Y and Z axes are buffered to give a low output impedance, enabling the unit to be operated over long cables and interfaced with high impedance data acquisition systems.The normal power supply of the sensors is specified in the product brochure. The ideal power supply units are those referenced in Compatible Power Supply and Data Acquisition Units. Alternatively, users may wish to provide their own supply. This should provide a voltage within the specification found in the product brochure. For the low noise applications, any ripple in the power supply should not exceed a few mV.Note: Adequate performance of the sensor cannot be guaranteed if used with non-Bartington Instruments products. Bartington Instruments cannot advise on the operation of third party products.See the product brochure for nominal current requirements. There is an additional current in proportion to the measured field, which is drawn from the positive or negative supply depending on the direction of the field.Note: The two signal/power ground conductors are connected to a common point within the sensor and the power supply common (power 0V) should be connected to only one of them.The other signal/power ground conductor should be used as the signal output common (0V).Each signal is then measured between the signal output conductor and the signal output common. In this way, the signal output common carries no power supply currents.Note: In long cables, the minimum current in the power ground conductor will give rise to an appreciable potential difference between the power supply end and the sensor end of the power ground conductor. The use of separate power and signal ground conductors will ensure thatthis voltage is not included in the voltage measured between the signal output and the signal common.Wiring for the Mag-13 is shown in the diagram below.Mag-13 outline wiring diagramTest CoilThe Mag-13 features a test coil which applies a magnetic field to all axes when activated. The corresponding changes in X, Y and Z output voltages confirm that all axes of the sensor are operational.The test coil can be activated by grounding the relevant pin of the Mag-13 output connector, i.e. connecting it to 0V. In this way it can be seen that the sensor is measuring correctly when the corresponding change in field is detected in each of the three axes. Refer to the test record for the field values generated for each individual sensor.Note: Of the available Bartington power supplies, only the Decaport and the DecaPSU will allow operation of the test coil.The Mag-13 features an inbuilt temperature sensor that can be used to measure temperature changes inside the sensor over time while taking measurements.The temperature can be read from the same pin as the test coil as an analogue voltage output. Measure the output between the relevant pin and signal ground. Refer to the product brochure for the voltage output and temperature scaling parameters.Caution: Check that the polarity of the supply is correct. Incorrect polarity can be preventedby using the power supply and cables provided by Bartington Instruments.Caution: The power supply should be connected to the sensor before the supply isenergised, as this prevents high surge currents which could cause damage. Apply thepositive and negative supplies simultaneously and avoid leaving the sensor connected to one polarity only.9.8.The Mag-13 range of sensors are electrically shielded from external, and emission of internal, electromagnetic fields. Any emissions generated are at a low level with a primary frequency corresponding to the frequency of the energising field of the sensor. The sensor is required to respond to magnetic fields within the specified frequency band.Caution: Do not operate the sensor in very strong electromagnetic fields as it may develop apermanent offset, or damage could occur to the sensing coils.Note: Do not place the sensor near to any equipment which may be affected by the verysmall local field produced by the sensor excitation.10. PFor detailed figures on the performance of the Mag-13 range of sensors, refer to the product brochure.N oiseThe Mag-13 range includes different noise versions that are specified in the product brochure. These versions correspond to the internal noise of the sensor, which can only be achieved in a shielded environment where no external fields are present.10.2The output signal for each axis will also contain breakthrough, which is a residual signal associated with the excitation frequency. (See the product brochure for frequency and level of breakthrough.) All Bartington Instruments power supply and signal conditioning units have a filter to remove the breakthrough.Note: When using a non-Bartington Instruments power supply, it will be necessary to providea filter to remove the breakthrough. Not doing so will lead to a higher noise level than thatspecified. See application note ‘AN0042: Connecting your own Power Supply to a BartingtonMagnetic Field Sensor’ from Bartington Instruments for further information.11.Special equipment is required for the diagnosis of faults within the unit. Much of this equipment is beyond the scope of normal service facilities. Therefore, in the event of any apparent malfunction, email service@ or telephone the Bartington Instruments service team on +44 (0)1993 706565.Caution: Attempted repair or opening of the casing by users may invalidate the warranty.A calibration service is available from Bartington Instruments which is traceable to international standards.Surface or dirt contamination should be removed using a mild detergent solution only. If the connector pins become contaminated then they should be lightly cleaned with a swab of isopropyl alcohol.Note: Dirt on the connectors may lead to increased noise in the output.12. SYour sensor is a precision electronic instrument and should be treated as such.Caution: Avoid exposing this intrument to shocks or continuous vibration.Caution: Store only within the temperature range specified in the product brochure.Caution: Do not expose this instrument to strong magnetic fields while being stored.BARTINGTON INSTRUMENTSPage 11 of 12 OM3143/313.This product should not be disposed of in domestic or municipal waste. For information about disposing of your sensor safely, check local regulations for disposal of electrical / electronic products.Bartington Instruments Mag-13 sensors comply fully with Restriction of the Use ofCertain Hazardous Substances in Electrical and Electronic Equipment (RoHS) and WEEERegulations current at the time of printing.O M 3143/3The copyright of this document is the property of Bartington Instruments Ltd.Bartington® is a registered trade mark of Bartington Instruments Limited in the following countries: United Kingdom, Australia, Brazil, Canada, China, European Union, India, Japan, Norway and the United States of America.Bartington Instruments Limited 5 Thorney Leys Business Park,Witney, Oxford, OX28 4GE, England. T: +44 (0)1993 706565F: +44 (0)1993 774813E: sales @。
地理探测器英文文献

地理探测器英文文献和专利文献1.Balmer, Manuel, Maurice Gonseth, and Domenico Giardini. "Seismic array technology for regional Structural Geology Research and practical seismological applications." Bulletin of the Seismological Society of America 99.6 (2009): 2924-2945.2.Bayer, Joachim, and Sirak Habtemariam. "GPR time lapse monitoring and geo-electric array technology to assess changes in shallow subsurface." Near Surface Geophysics 6.6 (2008): 501-506.3.Civco, Daniel L., et al. "Imaging snow depth changes using a low-cost, wide-swath, scanning laser altimeter." IEEE Geoscience and Remote Sensing Letters 7.2 (2010): 270-274.4.Ehlers, Jürgen, et al. "Remote sensing technologies for geologic and hydrogeologic mapping and characterization." Hydrogeology Journal 10.4 (2002): 410-419.5.Farquharson, Colin G., et al. "Terrasar-X: advanced radar imaging in a new digital age." Remote sensing of environment 91.4 (2004): 445-455.专利1.Huang, Chien-Chung, et al. "Isotopic georadar for ground structure exploration." US Patent 7,635,081, 2009.2.Batina, John, and Jeffrey McAllister. "Method and apparatus for subsurface imaging using stray electromagnetic fields." US Patent 6,502,692, 2003.3.Lerner, DavidA, et al. "System and method for rapid detection and automatic classification of carbon dioxide leakage." US Patent 8,939,605, 2015.4.Westcott, Darius, and Richard B. Meulenberg. "Method and apparatus for subsurface rock characterization using nuclear magnetic resonance." US Patent 5,337,763, 1994.5.Dugdale, Mark, and Richard Wilson-Clingen. "Sub-surface georadar apparatus and method of operating same." US Patent 8,864,890, 2014.。
NETWORK OF REMOTE SENSORS FOR MAGNETIC DETECTION

A. Sheinker1, N. Salomonski1, B. Ginzburg1, A. Shkalim1, L. Frumkis2, B. Z. Kaplan2
1
R&D Integrated Systems Section, Propulsion Division, Soreq NRC, Yavne 81800, Israel Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev P.O. Box 653, Beer-Sheva 84105, Israel
r
r
r
r
magnetic field, B E , as is given by:
r r r Bm = B + B E
(2)
3. The Remote Magnetic Sensing Unit The Remote Magnetic Sensing Unit (RMSU) consists of a single-axis fluxgate magnetometer, an interface to the magnetometer with a 50 Hz/ 60 Hz digital notch filter, RF communication controller and an energy source. The architecture of the RMSU is depicted in figure 2.
Figure 2 The inside structure of the RMSU Due to power saving considerations we preferred to use a single-axis magnetometer rather than a three-axis magnetometer, although the latter one provides more information about the target. The singleaxis magnetometer has been installed in the direction of Earth magnetic field in order to reduce magnetic interferences caused by orientation instability. When installed in the
德国Magsys公司介绍

Presentation MAGSYSRohwedderstr. 7 44369 Dortmund Germany www.magsys.de sales@magsys.deMAGSYS magnet systemeMAGSYS magnet systemePresentation MAGSYSContents• Company Profile • Products • Basics • Examples of Use • Abstract ReferencesMAGSYS magnet systemeContentsPresentation MAGSYS2Company Profile• Founded in 1997by Michael Kopka former Technical Head at TechnoPhysikMAGSYS magnet systeme• 17 EmployeesPhysicists, Engineers, Technicians... General Manager: Technical Manager: Sales Manager: Dipl. Ing. Michael Kopka Dipl. Ing. Volker Grebe Dipl. Phys. Hartmut Pagel• Approx. $ 3 Mio. € business volume • Subsidiary MAGSYS LLC, USA • Office in Singapore covering Asia except Japan • Commercial representatives in other industrialized countriesCompany ProfilePresentation MAGSYS3MAGSYS LocationMAGSYS magnet systemeHeadquarters in Dortmund, Germany– Complete production – Engineering – Sales Management; contact to sales partnersCompany ProfilePresentation MAGSYS4TeamMAGSYS magnet systemeCompany ProfilePresentation MAGSYS5Engineering and ProductionMAGSYS magnet systemeEngineeringProductionCompany ProfilePresentation MAGSYS6Engineering ...MAGSYS magnet systemeCompany ProfilePresentation MAGSYS7... Production ...MAGSYS magnet systemeCompany ProfilePresentation MAGSYS8..and TestingMAGSYS magnet systemeCompany ProfilePresentation MAGSYS9MagnetizersMAGSYS magnet systeme100 Ws / 500 V …Cycle time 1 secondProductsPresentation MAGSYS10Products11MAGSYS magnet systemePresentation MAGSYSMagnetizers…>100 kWs / 5000 VCurrent up to 50 kAPresentation MAGSYSProducts12Presentation MAGSYSProducts13Products14MAGSYS magnet systemePresentation MAGSYSFluxmeter•Built in calibrator •Low drift•Automatic probe detection •Probe plug with extra low thermo voltage•Frequency range 0..30 kHz •PC controllableProducts15MAGSYS magnet systemePresentation MAGSYS3D Scanning System•Messbereich: 50*50*50cm³•Genauigkeit:10 µm0.002° rotatorisch •PC-gesteuert•Verschiedene Sensoren einsetzbar3D VCM ScanProducts16MAGSYS magnet systemePresentation MAGSYSFurther Measuring Equipment•Gaussmeter for production line withHall sensor or Fluxgate; incl. interface •Handheld Gaussmeter•Material detection (Steel/stainless steel)•Tripping characteristic circuit-breakers or earth-leakage trips •Angle stop-, synchronized speed-and noise measurement on stepper motors •Pull-off force measurement on brake assist systems •Bemf measurement •… SoftwareBasics17MAGSYS magnet systemePresentation MAGSYSSaturation CurveSimplified CurveMagnetizing Field Strength HI n d u c t i o n BBasics18MAGSYS magnet systemePresentation MAGSYSMagnet Material Energy ConsumptionValues referenced to Cylinder10 mm x 10 mmE l e c t r i c a l E n e r g y [W s ] o r [J ]Magnetizing Field Strength HBasics19MAGSYS magnet systemePresentation MAGSYSEnergiebedarf MagnetmaterialienPole Pattern throughthe heightaxialmultipole in sectors axial double side multipole in sectors axial single sideradial diametricalatcircumferenceat inner diameterin stripes single side in stripes double side segment radial segment diametricalBasics20MAGSYS magnet systemePresentation MAGSYSExample Pole Pattern•10-pole at the circumference•4-pole at the inner diameter•4-pole in sectors at the head sideBasics21Presentation MAGSYSMultipole magnetization is stray field magnetizationMain fieldStray fieldB maxB minExample cylindrical coilExample 10 pole Magnetization(Extract)•Field strength decreases with distance to conductor ⇒Field strength decreases in the depth of the magnet⇒Risk of incomplete saturation in the depth of the magnet⇒Field strength on the surface of the magnet much higher than therequired saturation field strengthPresentation MAGSYSBasics22Blau is magnet surfaceRot is inside the magnetPresentation MAGSYSBasics23Basics24Presentation MAGSYS•Principle•Magnetizer: modular design, specified by–Energy–Max. charging voltage –Max. current–Min. charging time (cycle time)–Shape of current pulse –Input power•Magnetizing fixture: usually specialized based on the product •FEM analysis defines the specs aboveMagnetizer Capacitors Electric energyMagnetizing fixture InductivityMagnetic energy•Actual standard (axial): Bitter coilPrinciple Photo Bitter coil under constructionPresentation MAGSYSBasics25•Actual standard: Bitter coil–Mechanical fixing of conductorsÆhigh field strength (forces)possible, long lifetime–No epoxy Ægood heat-transfervia copper Æshort cycle timewith air cooling–Higher costs–R und L not very variablePresentation MAGSYSBasics26Examples27MAGSYS magnet systemePresentation MAGSYSExample I•Magnetization andmeasurement of ABS Sensors •Energy: 2.4 kWs •Voltage:2 kV •Cycle time:10 s•Measurement: magnetic flux with fluxmeter; test of built-in coil with LCR-meter •Handling by MAGSYS•Magnetization ofVCM magnets•Energy:6kWs•Voltage:2kV•Current:35 kA•Cycle time: 1.7 s / part•Handling by MAGSYSPresentation MAGSYSExamples28•Magnetization ofStepper motors•Energy: 2.4 kWs•Voltage: 2.0 kV•Cycle time: 5 s / fixture0.8 s / part300 000 parts / dayIn 7 production lines•Measurement:–Angle stop–Synchronized speed–Noise•Handling by customerPresentation MAGSYSExamples29•Magnetization ofCircuit-breakers•Energy:5kWs•Voltage:2kV•Cycle time:30 sMagnetization and calibration•Measurement: Tripping current•Handling by MAGSYSPresentation MAGSYSExamples30Examples31MAGSYS magnet systemePresentation MAGSYSSolutions for•Sensors / Actuators (especially Automotive Industry)•ABS-system, seat positioning sensor, float switch, brake assistant, tirepressure control, angle sensor, roll bar sensor, positioning sensor in hydraulic cylinder, direct shift gearbox, balance, flow measurement,…•Electro-technics•Drilling machine, chainsaw, cell phone,…•Audio•Loudspeaker, microphone•Motors•Bicycle, wheelchair, stepper-, pumps-, window lift-, wiper-, blower-, elevator-motor, generator,…•Hard-disc drivesReferences 32MAGSYS magnet systemePresentation MAGSYSExcerpt Reference List Sensors/Actuators•Allegro MicroSystems, Inc. USA •Balda AG, Germany •Bourns, Inc. USA•Delphi Corporation Automotive, Portugal/ USA•Dichtungstechnik G. BRUSS GmbH & CO. KG, Germany •HOERBIGER HYDRAULIK GmbH, Germany •Kiekert AG, Germany •LUXALP S.A., France•Continental, Germany / Spain/ Malaysia/ India •SONCEBOZ SA, Switzerland •TI Automotive, USA•TRW Automotive Germany / USA •Visteon Corporation, Hungary/ USA •AB Elektronik GmbH, Germany•AKG Acoustics GmbH, Austria•Blaupunkt GmbH, Germany•Bose Corporation, USA•Morel Acoustic Inc., USA•Panasonic -Matsushita, USA•Robert Bosch GmbH, Malaysia/ Tunesia•Shabani Industries Ltd., Israel•Song Am Than, Vietnam•Harman/Becker Automotive Systems Ltd., Great Britain•Shure Inc., USAPresentation MAGSYSReferences33•Berger Lahr GmbH & Co. KG, Germany•ETEL S.A., Switzerland•Dr. Fritz Faulhaber GmbH & Co. KG, Germany•maxon motor AG, Switzerland•Bosch Rexroth GmbH, Germany•Robert Bosch GmbH, Germany / USA•Rockwell Automation Inc., USA•Rosenberg Ventilatoren GmbH, Germany•Siemens AG, Germany•Temic Automotive, Germany•Valeo, France•Volkswagen, GermanyPresentation MAGSYSReferences34References35MAGSYS magnet systemePresentation MAGSYSExcerpt Reference ListExcerpt Reference List Magnet Manufacturers •BT Magnet Technologie GmbH, Germany•Magnetfabrik Schramberg GmbH & Co. KG, Germany •Magneti Ljubljana, d.d., Slovenia •Max Baermann GmbH, Germany •ThyssenKrupp Magnettechnik, Germany•VACUUMSCHMELZE GmbH & Co. KG, Germany •Precision Magnetics, Singapore •Magnetfabrik Bonn GmbH, Germany •Arnold Magnetics, USA / SwitzerlandReferences36MAGSYS magnet systemePresentation MAGSYSExcerpt Reference List VCM•Precision Magnetics Singapore Pte Ltd, Singapore •Magnetronics Technology Pte Ltd, Singapore •Min Aik Technology Co., Ltd, Taiwan•MMI Holdings Ltd., Singapore/ Malaysia/ China •Shin-Etsu Chemical Co., Ltd., Malaysia •Vacuumschmelze, MalaysiaMAGSYS magnet systemePresentation MAGSYS Presentation MAGSYSMAGSYS magnet systemeRohwedderstr . 744369 Dortmund Germanywww.magsys.de sales@magsys.deThank you!。
SCI_期刊最新分区表-JCR-中科院-2015最新版

阈值阈值3.4585225序号123456789101112131415161718192021222324252627282930 31 32NanoNanotechnology Biology andPROPHOTOVOLTAICSPROCEEDIEEEJOURNALPROGRESGROWTH ANDCHARACTERIZATION OFMATERIALSACM COMPUPolymCHEMISTRYACPROGRESSCIENCETREBIOTECHNOLOGYADVANCEMATERIALSNANOANNUALBIOMEDICAL ENGINEERINGLAB OINTERMATERIALS REVIEWSBIOTECADVANCESCURRENBIOTECHNOLOGYMaterBIOMAnnual Revand Biomolecular EngineeringSADVANCEANNUALMATERIALS RESEARCHNATURENature NNATURE BIEnergy EducTechnologyPROGRESSSCIENCEMATERIAENGINEERING R-REPORTSNanPROGRESAND COMBUSTION刊111111111111111111111111377分区111111111549-9634NANOMED-NANOTECHNOL1062-7995PROG PHOTOVOLTAICS0018-9219P IEEE1369-7021MATER TODAY0142-9612BIOMATERIALS0021-9517J CATAL1473-0197LAB CHIP0950-6608INT MATER REV0960-8974PROG CRYST GROWTH CH0360-0300ACM COMPUT SURV1558-3724POLYM REV1616-301X ADV FUNCT MATER0734-9750BIOTECHNOL ADV0897-4756CHEM MATER1947-5438ANNU REV CHEM BIOMOL1613-6810SMALL0958-1669CURR OPIN BIOTECH1531-7331ANNU REV MATER RES1936-0851ACS NANO0079-6816PROG SURF SCI0167-7799TRENDS BIOTECHNOLISSN刊名简称1476-1122NAT MATER1748-3387NAT NANOTECHNOL1523-9829ANNU REV BIOMED ENG1区2区期刊数期刊数3区阈值1.931 1.1121087-0156NAT BIOTECHNOL1301-8361ENERGY EDUC SCI TECH0079-6425PROG MATER SCI0935-9648ADV MATER0927-796X MAT SCI ENG R1748-0132NANO TODAY0360-1285PROG ENERG COMBUST1530-6984NANO LETT33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 52 5354 55 56 57 58 59 6061 62CRITICALFOOD SCIENCE ANDCURRENSOLID STATE & MATERIALSIEEE TRANINDUSTRIAL ELECTRONICSMACROMOLCOMMUNICATIONSSOLAMATERIALS AND SOLARJOURNASOURCESINTERNATIOF PLASTICITYBiotechnolMIS QSIAM JouSciencesBIORTECHNOLOGYADVANCEMECHANICSELECTROCOMMUNICATIONSMOLECULAFOOD RESEARCHJOURNALCHEMISTRYMETABOLICSoActa BNaIEEE CoSurveys and TutorialsIEEE SIGNAMAGAZINECAIEEE TRANPATTERN ANALYSIS ANDMACHINE INTELLIGENCEMACRORENESUSTAINABLE ENERGYCRITICALBIOTECHNOLOGYNPG ABIOSEBIOELECTRONICSPROGRESELECTRONICSMRS1111111111111111111111111111110378-7753J POWER SOURCES1040-8398CRIT REV FOOD SCI1388-2481ELECTROCHEM COMMUN1359-0286CURR OPIN SOLID ST M0278-0046IEEE T IND ELECTRON1022-1336MACROMOL RAPID COMM0927-0248SOL ENERG MAT SOL C1613-4125MOL NUTR FOOD RES1744-683X SOFT MATTER1742-7061ACTA BIOMATER0960-8524BIORESOURCE TECHNOL0065-2156ADV APPL MECH1754-6834BIOTECHNOL BIOFUELS0276-7783MIS QUART1053-5888IEEE SIGNAL PROC MAG0008-6223CARBON2040-3364NANOSCALE1936-4954SIAM J IMAGING SCI0162-8828IEEE T PATTERN ANAL0024-9297MACROMOLECULES0749-6419INT J PLASTICITY1553-877X IEEE COMMUN SURV TUT0883-7694MRS BULL0959-9428J MATER CHEM1364-0321RENEW SUST ENERG REV0738-8551CRIT REV BIOTECHNOL1096-7176METAB ENG1884-4049NPG ASIA MATER0956-5663BIOSENS BIOELECTRON0079-6727PROG QUANT ELECTRON63 64 65 6667 68 69 70 71 7273 74 7576 77 7879 8081 82 83 8485 86878889 90 91 92 93 94SENSACTUATORS B-CHEMICALAPPLIED SREVIEWSFOOD CPlaJournal of NMicrofluidicsENIEEE JOSELECTED TOPICS INQUANTUM ELECTRONICSIEEE TRANFUZZY SYSTEMSBIOTECHBIOENGINEERINGIEEE TRANPOWER ELECTRONICSBIOMASSELECTROAnnual RScience and TechnologyNANOTEACM TRANGRAPHICSJOURNALSCIENCETRENDS IN& TECHNOLOGYIEEE JOSELECTED AREAS INORGANICACTA MINTERNATIOF COMPUTER VISIONIEEE TRANEVOLUTIONARYAPPLIEACS ApplInterfacesINTERNATIOF HYDROGEN ENERGYJOURNAL OMATERIALSMEDICAL IMHUMANINTERACTIONMicrobialInternationalSystems222211112222111211111111111111111741-2560J NEURAL ENG1613-4982MICROFLUID NANOFLUID0308-8146FOOD CHEM0360-5442ENERGY0016-2361FUEL1557-1955PLASMONICS0376-7388J MEMBRANE SCI0925-4005SENSOR ACTUAT B-CHEM1077-260X IEEE J SEL TOP QUANT1063-6706IEEE T FUZZY SYST0961-9534BIOMASS BIOENERG0570-4928APPL SPECTROSC REV1941-1413ANNU REV FOOD SCI T0957-4484NANOTECHNOLOGY0730-0301ACM T GRAPHIC0013-4686ELECTROCHIM ACTA0306-2619APPL ENERG1944-8244ACS APPL MATER INTER0006-3592BIOTECHNOL BIOENG0885-8993IEEE T POWER ELECTR0733-8716IEEE J SEL AREA COMM1566-1199ORG ELECTRON1361-8415MED IMAGE ANAL0737-0024HUM-COMPUT INTERACT0360-3199INT J HYDROGEN ENERG1359-6454ACTA MATER1475-2859MICROB CELL FACT0129-0657INT J NEURAL SYST0924-2244TRENDS FOOD SCI TECH0304-3894J HAZARD MATER0920-5691INT J COMPUT VISION1089-778X IEEE T EVOLUT COMPUT9596 979899100 101 102 103 104 105106 107108 109 110 111 112 113 114 115116 117 118119 120 121 122 123 124DENTALCOMPOSAND TECHNOLOGYJOUBIOTECHNOLOGYIEEE CIntelligence MagazineJournal ofBehavior of BiomedicalCOMBUSTIINTERNATIOF ROBOTICS RESEARCHENVIRMODELLING & SOFTWARESCIETECHNOLOGY OFFOOD HYDJournal of Cand ManagementIEEE TRANIMAGE PROCESSINGIEEE COMMAGAZINEFuJOUNANOPARTICLE RESEARCHMARINE BIOJournal of SINFORMATCORROSMICROMICROANALYSISINTERNATIOF NONLINEAR SCIENCESAND NUMERICALSIMULATIONFOOD MIBIOMMICRODEVICESAPPLIED MAND BIOTECHNOLOGYIEEE JOURSTATE CIRCUITSINTERNATIOF FOOD MICROBIOLOGYInternatioNanomedicineCHEMICALJOURNALCurrenBiomechanicMechanobiology2222222222222222222222222222221392-3730J CIV ENG MANAG1057-7149IEEE T IMAGE PROCESS0266-3538COMPOS SCI TECHNOL0168-1656J BIOTECHNOL1388-0764J NANOPART RES1436-2228MAR BIOTECHNOL0163-6804IEEE COMMUN MAG1556-603X IEEE COMPUT INTELL M1548-7660J STAT SOFTW0020-0255INFORM SCIENCES0109-5641DENT MATER1615-6846FUEL CELLS1431-9276MICROSC MICROANAL1751-6161J MECH BEHAV BIOMED0278-3649INT J ROBOT RES1364-8152ENVIRON MODELL SOFTW1178-2013INT J NANOMED0010-2180COMBUST FLAME1468-6996SCI TECHNOL ADV MAT0268-005X FOOD HYDROCOLLOID0010-938X CORROS SCI1385-8947CHEM ENG J1570-1646CURR PROTEOMICS1617-7959BIOMECH MODEL MECHAN0018-9200IEEE J SOLID-ST CIRC0168-1605INT J FOOD MICROBIOL0740-0020FOOD MICROBIOL1387-2176BIOMED MICRODEVICES0175-7598APPL MICROBIOL BIOT1565-1339INT J NONLIN SCI NUM125126127128129130131132133134135136137138139140141142143144145146147148149150151152153Science of ANanoscale IEEE ELECLETTERSIEEE TRANINFORMATION THEORY FUEL PTECHNOLOGY PROGRESSSCIENCES BiofIEEE TRANSOFTWARE ENGINEERINGFOODINTERNATIONAL COMPUTEAND INFRASTRUCTUREENGINEERING JOURNAL OMATERIALS RESEARCHInnovativeEmerging Technologies Journal of Nand Rehabilitation SCRIPTA IBM JORESEARCH AND JOURNAL JOURNALAND COMPATIBLE JOURNALLEARNING RESEARCHVLDB JOUSUPERCRITICAL FLUIDS IEEE TRANNEURAL NETWORKS IEEE TRANSYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS InternatioElectrochemical Science PROCEEDCOMBUSTION INSTITUTE DYES AN IEEE IndusMagazineSEPARPURIFICATION CEL GOLD 222222222222222222222222222220098-5589IEEE T SOFTWARE ENG1947-2935SCI ADV MATER0963-9969FOOD RES INT 1466-8564INNOV FOOD SCI EMERG 1743-0003J NEUROENG REHABIL 0376-0421PROG AEROSP SCI 1758-5082BIOFABRICATION 0741-3106IEEE ELECTR DEVICE L 0018-9448IEEE T INFORM THEORY 0004-5411J ACM0883-9115J BIOACT COMPAT POL 1359-6462SCRIPTA MATER 0378-3820FUEL PROCESS TECHNOL 1532-4435J MACH LEARN RES 1066-8888VLDB J1931-7573NANOSCALE RES LETT 0018-8646IBM J RES DEV0017-1557GOLD BULL 1093-9687COMPUT-AIDED CIV INF 0896-8446J SUPERCRIT FLUID 1045-9227IEEE T NEURAL NETWOR1540-7489P COMBUST INST 1549-3296J BIOMED MATER RES A 1932-4529IEEE IND ELECTRON M 1383-5866SEP PURIF TECHNOL0969-0239CELLULOSE 0143-7208DYES PIGMENTS 1083-4419IEEE T SYST MAN CY B 1452-3981INT J ELECTROCHEM SC154155 156157158 159 160161 162 163164 165166167168 169 170171 172173174 175 176 177178 179 180181 182 183 184COMPOSAPPLIED SCIENCE ANDMANUFACTURINGIEEE TRANENERGY CONVERSIONISPRS JPHOTOGRAMMETRY ANDREMOTE SENSINGIEEE PoMagazineBIOCENGINEERING JOURNALPATTERNIEEEEARTHQUJournal ofIEEE TRANSIGNAL PROCESSINGREACTIVEPOLYMERSENERGFOOD ANTOXICOLOGYIEEE TraRoboticsAUTIEEECOMPUTINGANNUALINFORMATION SCIENCEAND TECHNOLOGYIEEE INSYSTEMSJournal ofARTIFICIALADVABIOCHEMICALENGINEERING /BIOTECHNOLOGYINTEGRATEAIDED ENGINEERINGIEEE TRANGEOSCIENCE AND REMOTESENSINGIEEE TRANINTELLIGENTTRANSPORTATIONSYSTEMSRENEWAIEEE-ASMEON MECHATRONICSBIOTECOMPREHEIN FOOD SCIENCE ANDFOOD SAFETYBMC BIOTFOOD22222222222222222222222222222220887-0624ENERG FUEL1359-835X COMPOS PART A-APPL S0924-2716ISPRS J PHOTOGRAMM1540-7977IEEE POWER ENERGY M0272-1732IEEE MICRO0885-8969IEEE T ENERGY CONVER1570-8268J WEB SEMANT1053-587X IEEE T SIGNAL PROCES1381-5148REACT FUNCT POLYM8755-2930EARTHQ SPECTRA1069-2509INTEGR COMPUT-AID E0196-2892IEEE T GEOSCI REMOTE1369-703X BIOCHEM ENG J0031-3203PATTERN RECOGN1552-3098IEEE T ROBOT0005-1098AUTOMATICA1083-4435IEEE-ASME T MECH0736-6205BIOTECHNIQUES1524-9050IEEE T INTELL TRANSP1089-7801IEEE INTERNET COMPUT1942-0862MABS-AUSTIN1541-4337COMPR REV FOOD SCI F0278-6915FOOD CHEM TOXICOL0960-1481RENEW ENERG0956-7135FOOD CONTROL0066-4200ANNU REV INFORM SCI1556-4959J FIELD ROBOT0004-3702ARTIF INTELL1541-1672IEEE INTELL SYST0724-6145ADV BIOCHEM ENG BIOT1472-6750BMC BIOTECHNOL185 186187 188189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204205 206 207 208 209 210 211 212JOURNEUROPEAN CERAMICIEEE PhoINTERNAJOURNALPLANT FOONUTRITIONIEEE CONTMAGAZINECOMPUINTELLIGENCEIEEE TRANPOWER SYSTEMSLEBENWISSENSCHAFT UND-TECHNOLOGIE-FOODSCIENCE ANDJOURNAL OMICROBIOLOGY &BIOTECHNOLOGYCHEMICALSCIENCEEXPERT SAPPLICATIONSIEEE TRANELECTRON DEVICESJOURNAL OTECHNOLOGYJOURNASCIENCETRANSRESEARCH PART B-JOURNALTHERMODYNAMICSAPPLIED SOINFORMANAGEMENTJournal ofMateriaEngineering C-Materials forARCCOMPUTATIONALANNALS OENGINEERINGCEMENT ARESEARCHIEEE TRANMOBILE COMPUTINGCOMPUTEREnterprisSystemsJOURNAL OTECHNOLOGYJOURNELECTROCHEMICAL22222222222222222222222222221367-5435J IND MICROBIOL BIOT0009-2509CHEM ENG SCI0885-8950IEEE T POWER SYST0023-6438LWT-FOOD SCI TECHNOL0018-9383IEEE T ELECTRON DEV0955-2219J EUR CERAM SOC0958-6946INT DAIRY J0921-9668PLANT FOOD HUM NUTR1748-0221J INSTRUM1943-0655IEEE PHOTONICS J1066-033X IEEE CONTR SYST MAG0824-7935COMPUT INTELL-US0957-4174EXPERT SYST APPL0928-4931MAT SCI ENG C-MATER1134-3060ARCH COMPUT METHOD E0090-6964ANN BIOMED ENG1568-4946APPL SOFT COMPUT0378-7206INFORM MANAGE-AMSTER0733-5210J CEREAL SCI0191-2615TRANSPORT RES B-METH0360-1315COMPUT EDUC1751-7575ENTERP INF SYST-UK0008-8846CEMENT CONCRETE RES0021-9614J CHEM THERMODYN0268-3962J INF TECHNOL0013-4651J ELECTROCHEM SOC0733-8724J LIGHTWAVE TECHNOL1536-1233IEEE T MOBILE COMPUT213214 215 216217 218219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237238239 240INTERNATIOF COAL GEOLOGYJOURNAMERICAN SOCIETY FORINFORMATION SCIENCEAND TECHNOLOGYMATERIALAND PHYSICSULTRAMFUTURECOMPUTER SYSTEMSJOURNALINFORMATION SYSTEMSJOURNAL OCOMPOUNDSPhotonics anFundamentals andJOURNAL OMATERIALS RESEARCHPART B-APPLIEDBIOMATERIALSCOMPUTEAPPLIED MECHANICS ANDENGINEERINGJOURNALSCIENCE-MATERIALS INMEDICINEBiomedFOOD QPREFERENCEIEEE WCOMMUNICATIONSIEEE JourTopics in Signal ProcessingSOLAIEEE TRANWIRELESSCOMMUNICACMBioinIEEE TRANAUTOMATIC CONTROLJOURNENGINEERINGAUSTRALIAGRAPE AND WINEMEATIEEE PCOMPUTINGUSER MOUSER-ADAPTEDEVOLCOMPUTATIONIEEE TraAutonomous MentalBIOTECPROGRESS22222222222222222222222222221532-2882J AM SOC INF SCI TEC0925-8388J ALLOY COMPD1569-4410PHOTONIC NANOSTRUCT0167-739X FUTURE GENER COMP SY1552-4973J BIOMED MATER RES B0045-7825COMPUT METHOD APPL M0166-5162INT J COAL GEOL0963-8687J STRATEGIC INF SYST0018-9286IEEE T AUTOMAT CONTR0254-0584MATER CHEM PHYS0957-4530J MATER SCI-MATER M1748-6041BIOMED MATER1932-4553IEEE J-STSP0304-3991ULTRAMICROSCOPY1536-1276IEEE T WIREL COMMUN0001-0782COMMUN ACM1934-8630BIOINTERPHASES0038-092X SOL ENERGY0924-1868USER MODEL USER-ADAP1063-6560EVOL COMPUT0950-3293FOOD QUAL PREFER1536-1284IEEE WIREL COMMUN1322-7130AUST J GRAPE WINE R0309-1740MEAT SCI1536-1268IEEE PERVAS COMPUT1943-0604IEEE T AUTON MENT DE8756-7938BIOTECHNOL PROGR0260-8774J FOOD ENG241 242243 244 245 246 247 248 249250 251252 253 254255 256257 258259 260261262 263 264 265 266267 268269COMPUTERENGINEERINGJOUBIOMATERIALSENERGY COMANAGEMENTIEEE TraIndustrial InformaticsIEEE TRANBIOMEDICAL ENGINEERINGBUILDENVIRONMENTIEEE JOQUANTUM ELECTRONICSIEEECOMPOSITIEEE-ACM TON NETWORKINGMATERIAJOURNAL OINTERIEEE RAUTOMATION MAGAZINECHEMOMINTELLIGENT LABORATORYSYSTEMSINTERNATIOF HEAT AND MASSFLUID PHAIEEE TRANSYSTEMS MAN ANDCYBERNETICS PART A-SYSTEMS AND HUMANSAICHENEURAL CInternatioSemantic Web andIEEE TRANVISUALIZATION ANDCOMPUTER GRAPHICSDESAKNOWLINFORMATION SYSTEMSARTIFJOURNAMERICAN CERAMICJOUMICROMECHANICS ANDJOURNCOMPOSITION ANDDECISIOSYSTEMS222222222222222222222222222220933-2790J CRYPTOL0966-9795INTERMETALLICS0098-1354COMPUT CHEM ENG0196-8904ENERG CONVERS MANAGE1551-3203IEEE T IND INFORM0017-9310INT J HEAT MASS TRAN0378-3812FLUID PHASE EQUILIBR1070-9932IEEE ROBOT AUTOM MAG0018-9294IEEE T BIO-MED ENG1083-4427IEEE T SYST MAN CY A0001-1541AICHE J0885-3282J BIOMATER APPL0169-7439CHEMOMETR INTELL LAB1552-6283INT J SEMANT WEB INF0360-1323BUILD ENVIRON0890-8044IEEE NETWORK0263-8223COMPOS STRUCT0002-7820J AM CERAM SOC0018-9197IEEE J QUANTUM ELECT1063-6692IEEE ACM T NETWORK0167-577X MATER LETT0899-7667NEURAL COMPUT0960-1317J MICROMECH MICROENG0889-1575J FOOD COMPOS ANAL0167-9236DECIS SUPPORT SYST0219-1377KNOWL INF SYST1064-5462ARTIF LIFE1077-2626IEEE T VIS COMPUT GR0011-9164DESALINATION270271272 273 274 275 276 277 278 279 280 281 282 283284 285 286287288 289290 291 292ACM TransaNetworksHYDROMENERGY AMATERIALSENGINEERING A-STRUCTURAL MATERIALSPROPERTIES MICROSTFOOD ADCONTAMINANTSJOURNAL OEDUCATIONIEEE PTECHNOLOGY LETTERSIEEE ENGMEDICINE AND BIOLOGYMAGAZINEINDUENGINEERING CHEMISTRYEUROPEJOURNAL EINTERNATIOF MACHINE TOOLS &MANUFACTUREJOUBIOMATERIALS SCIENCE-NEURALJOURNALTECHNOLOGY ANDBIOTECHNOLOGYBaltic JourBridge EngineeringINTERNATIOF ELECTRICAL POWER &ENERGY SYSTEMSIEEE TRANCIRCUITS AND SYSTEMSFOR VIDEO TECHNOLOGYJOURNAL OELECTROCHEMISTRYJOUMANAGEMENTJOUMICROELECTROMECHANICAL SYSTEMSIEEE TRANSYSTEMS MAN ANDCYBERNETICS PART C-APPLICATIONS AND REJournal of thInformation SystemsMATERIALBULLETIN222222222222222222222221041-1135IEEE PHOTONIC TECH L0739-5175IEEE ENG MED BIOL0304-386X HYDROMETALLURGY0378-7788ENERG BUILDINGS0890-6955INT J MACH TOOL MANU0920-5063J BIOMAT SCI-POLYM E0888-5885IND ENG CHEM RES0921-5093MAT SCI ENG A-STRUCT0893-6080NEURAL NETWORKS0268-2575J CHEM TECHNOL BIOT1550-4859ACM T SENSOR NETWORK1292-8941EUR PHYS J E0025-5408MATER RES BULL1944-0049FOOD ADDIT CONTAM A1822-427X BALT J ROAD BRIDGE E0142-0615INT J ELEC POWER1432-8488J SOLID STATE ELECTR1069-4730J ENG EDUC1057-7157J MICROELECTROMECH S1094-6977IEEE T SYST MAN CY C1536-9323J ASSOC INF SYST0742-1222J MANAGE INFORM SYST1051-8215IEEE T CIRC SYST VID293294295 296297 298 299300 301 302303 304 305 306 307 308 309 310 311312 313314 315 316317 318 319 320 321BIOPROBIOSYSTEMSSTRUCTUMONITORING-ANINTERNATIONAL JOURNALTRANSRESEARCH PART A-POLICYMECHANIAND SIGNAL PROCESSINGMACROMATERIALS ANDCEMENTCOMPOSITESCOASTALIET NanoDATA MKNOWLEDGE DISCOVERYJournal of DiBIODEGIEEE TRANANTENNAS ANDMECHANICSSMART MSTRUCTURESSTRUCTUINTERNATIOF APPROXIMATEPOWDERJOURNAL OAND ENGINEERINGIEEE TRANNANOTECHNOLOGYELECTROCSOLID STATE LETTERSAPPLIEENGINEERINGSURFACETECHNOLOGYIEEE TRANKNOWLEDGE AND DATAENGINEERINGINTERNATIOF ENERGY RESEARCHCOMPULINGUISTICSINTERNATIOF ADHESION ANDINTERNATIFOR NUMERICAL METHODSIN ENGINEERINGFunctionalIEEE TRANMICROWAVE THEORY ANDTECHNIQUES333333333332222222222222222220965-8564TRANSPORT RES A-POL1438-7492MACROMOL MATER ENG0888-3270MECH SYST SIGNAL PR0888-613X INT J APPROX REASON0032-5910POWDER TECHNOL1615-7591BIOPROC BIOSYST ENG1475-9217STRUCT HEALTH MONIT0378-3839COAST ENG1751-8741IET NANOBIOTECHNOL1099-0062ELECTROCHEM SOLID ST1359-4311APPL THERM ENG1226-086X J IND ENG CHEM1384-5810DATA MIN KNOWL DISC0257-8972SURF COAT TECH1041-4347IEEE T KNOWL DATA EN0958-9465CEMENT CONCRETE COMP1536-125X IEEE T NANOTECHNOL0891-2017COMPUT LINGUIST1551-319X J DISP TECHNOL0018-926X IEEE T ANTENN PROPAG0167-6636MECH MATER1793-6047FUNCT MATER LETT0923-9820BIODEGRADATION0964-1726SMART MATER STRUCT0167-4730STRUCT SAF0363-907X INT J ENERG RES0018-9480IEEE T MICROW THEORY0143-7496INT J ADHES ADHES0029-5981INT J NUMER METH ENG322323 324325 326327 328 329 330 331332 333 334335 336337 338 339 340 341 342 343 344 345 346 347 348349 350 351CHEMIDEPOSITIONSENSACTUATORS A-PHYSICALMATERIAIEEE-ACMComputational Biology andBioinformaticsFoodPLASMA CPLASMA PROCESSINGOPTICALARTIFICAPPLIESCIENCEPROGRESCOATINGSIEEE TraInformation Forensics andJOURNALAND ENGINEERING DATAIEEE TraBiomedical Circuits andACM TRANCOMPUTER SYSTEMSENERGSYNTHEACM TransaCOMACM TRANMATHEMATICALADSORPTIOTHE INTERNATIONALADSORPTION SOCIETYDIAMONDMATERIALSTRANSRESEARCH PART E-LOGISTICS ANDTRANSPORTATION REVIEWTHIN SCOMPUTEIMAGE UNDERSTANDINGIEEE TRANMULTIMEDIAJOURNALCONTROLINTERNATIOF THERMAL SCIENCESJournal of FJOURNPROTECTIONCOMPOPERATIONS RESEARCH3333333333333333333333333333330925-3467OPT MATER0948-1907CHEM VAPOR DEPOS0261-3069MATER DESIGN0734-2071ACM T COMPUT SYST0924-4247SENSOR ACTUAT A-PHYS1545-5963IEEE ACM T COMPUT BI1876-4517FOOD SECUR0272-4324PLASMA CHEM PLASMA P0195-6574ENERG J0018-9162COMPUTER0098-3500ACM T MATH SOFTWARE0021-9568J CHEM ENG DATA1932-4545IEEE T BIOMED CIRC S0169-4332APPL SURF SCI0300-9440PROG ORG COAT1366-5545TRANSPORT RES E-LOG0040-6090THIN SOLID FILMS0929-5607ADSORPTION1556-6013IEEE T INF FOREN SEC1077-3142COMPUT VIS IMAGE UND1520-9210IEEE T MULTIMEDIA0160-564X ARTIF ORGANS0925-9635DIAM RELAT MATER0305-0548COMPUT OPER RES0379-6779SYNTHETIC MET0959-1524J PROCESS CONTR1290-0729INT J THERM SCI1559-1131ACM T WEB1756-4646J FUNCT FOODS0362-028X J FOOD PROTECT352 353354 355 356 357 358359 360361362 363 364 365366 367368 369370 371 372373 374375376377378379380381SIAM JOCOMPUTINGMACHINMEDICAL EPHYSICSGPS SINTERNATIOF DAMAGE MECHANICSBioinspiratioJOURNAMERICAN OIL CHEMISTSCOMPOSENGINEERINGFoodWJOURNALMATERIALSEMPIRICAENGINEERINGAPPLIEAAPGAPPLIED BAND BIOTECHNOLOGYFOOD ANBULLETININTERNATIOF HEAT AND FLUID FLOWSEIET RenGenerationPOLYMADVANCEDKNOWLESYSTEMSIEEE MICWIRELESS COMPONENTSLETTERSInformPOLYMIEEE TRANBROADCASTINGCHEMICALAND PROCESSINGINTERNATIOF CIRCUIT THEORY ANDAPPLICATIONSTRANSRESEARCH PART C-EMERGING TECHNOLOGIESJOURNFRANKLIN INSTITUTE-ENGINEERING ANDAPPLIED MATHEMATICSJOURNALSCIENCE3333333333333333333333333333331056-7895INT J DAMAGE MECH1748-3182BIOINSPIR BIOMIM1350-4533MED ENG PHYS0003-021X J AM OIL CHEM SOC1080-5370GPS SOLUT0142-727X INT J HEAT FLUID FL0097-5397SIAM J COMPUT1359-8368COMPOS PART B-ENG1557-1858FOOD BIOPHYS1382-3256EMPIR SOFTW ENG0885-6125MACH LEARN0149-1423AAPG BULL0273-2289APPL BIOCHEM BIOTECH0379-5721FOOD NUTR BULL1559-128X APPL OPTICS1566-2535INFORM FUSION0142-9418POLYM TEST0043-1648WEAR0022-3115J NUCL MATER1752-1416IET RENEW POWER GEN1042-7147POLYM ADVAN TECHNOL0098-9886INT J CIRC THEOR APP0968-090X TRANSPORT RES C-EMER0018-9316IEEE T BROADCAST0950-7051KNOWL-BASED SYST0016-0032J FRANKLIN I0022-2461J MATER SCI1424-8220SENSORS-BASEL0255-2701CHEM ENG PROCESS1531-1309IEEE MICROW WIREL CO382 383384 385 386387 388389390 391392 393 394395 396397 398399 400 401 402 403 404 405 406407 408IEEE TRANCIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORYAND APPLICATJOUMICROENCAPSULATIONDigesNanomaterials andMODESIMULATION IN MATERIALSSCIENCE ANDENGINEERINGJOURNALMANAGEMENTAd HoEUROPEALIPID SCIENCE ANDMacromolEngineeringCIRPMANUFACTURINGTECHNOLOGYJOURNALSPRAY TECHNOLOGYIEEE TRANDEVICE AND MATERIALSRELIABILITYACM TRANSOFTWARE ENGINEERINGAND METHODOLOGYJOURNSCIENCEAPPLIEDMATERIALS SCIENCE &COMPSTRUCTURESMEXPERIMEINTERNATIOF HUMAN-COMPUTERCurrentJOUMICROSCOPY-OXFORDIEEE TRANINFORMATIONTECHNOLOGY INBIOMEDICINEMETIEEE SIEEE TRANCONTROL SYSTEMSTECHNOLOGYANNUALCONTROLBIOTECHNOMACRORESEARCH3333333333333333333333333330265-2048J MICROENCAPSUL1530-4388IEEE T DEVICE MAT RE1049-331X ACM T SOFTW ENG METH0007-8506CIRP ANN-MANUF TECHN0022-1147J FOOD SCI0947-8396APPL PHYS A-MATER1549-8328IEEE T CIRCUITS-I1059-9630J THERM SPRAY TECHN1996-1944MATERIALS1842-3582DIG J NANOMATER BIOS1063-8016J DATABASE MANAGE1570-8705AD HOC NETW0740-7459IEEE SOFTWARE0965-0393MODEL SIMUL MATER SC1438-7697EUR J LIPID SCI TECH1862-832X MACROMOL REACT ENG0045-7949COMPUT STRUCT1063-6536IEEE T CONTR SYST T1367-5788ANNU REV CONTROL0141-5492BIOTECHNOL LETT1089-7771IEEE T INF TECHNOL B0026-1394METROLOGIA1071-5819INT J HUM-COMPUT ST1573-4137CURR NANOSCI0022-2720J MICROSC-OXFORD1598-5032MACROMOL RES0723-4864EXP FLUIDS409410 411412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430431432433 434 435 436TRIBOLOJOURNALINTELLIGENCE RESEARCHTRIINTERNATIONALMJournal of thof Chemical EngineersDATA & KENGINEERINGDRYING TCOMPUTFORUMMACROTHEORY AND SIMULATIONSCONTROLPRACTICENanoscaleThermophysical EngineeringMETALLUMATERIALSTRANSACTIONS A-PHYSICAL METALLURGYAND MATERIALAUTONOMAND MULTI-AGENTWINDINTERNATIOF REFRACTORY METALS& HARD MATERIALSIEEE TraComputational Intelligence andBIOLOGICAIEEE TransSpeech and LanguageJOURNAELECTROCHEMISTRYIEEE CGRAPHICS ANDJOURNAL OREASONINGCERAMICSLETTERMICROBIOLOGYIEEE TRANVEHICULAR TECHNOLOGYAPPLIED SIEEE TRANULTRASONICSFERROELECTRICS ANDFREQUENCY CONTROLINTERNATIOF ROBUST ANDNONLINEAR CONTROLINTERNATIOF FATIGUE33333333333333333333333333330737-3937DRY TECHNOL0167-7055COMPUT GRAPH FORUM1076-9757J ARTIF INTELL RES0301-679X TRIBOL INT1556-7265NANOSC MICROSC THERM1073-5623METALL MATER TRANS A1022-1344MACROMOL THEOR SIMUL0968-4328MICRON1387-2532AUTON AGENT MULTI-AG1095-4244WIND ENERGY1023-8883TRIBOL LETT0967-0661CONTROL ENG PRACT0018-9545IEEE T VEH TECHNOL1876-1070J TAIWAN INST CHEM E0263-4368INT J REFRACT MET H1943-068X IEEE T COMP INTEL AI0021-891X J APPL ELECTROCHEM0169-023X DATA KNOWL ENG0168-7433J AUTOM REASONING0272-8842CERAM INT0266-8254LETT APPL MICROBIOL0272-1716IEEE COMPUT GRAPH1049-8923INT J ROBUST NONLIN0142-1123INT J FATIGUE0340-1200BIOL CYBERN1558-7916IEEE T AUDIO SPEECH0003-7028APPL SPECTROSC0885-3010IEEE T ULTRASON FERR。
最新 传感器 参考文献-精品

传感器参考文献传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,是实现自动检测和自动控制的首要环节。
[1] 刘钰旻. 纳米功能材料在能量转换与储存器件中的应用[D]. 武汉大学2013[2] 曾谦. 声表面波技术在微流控芯片中的集成及应用研究[D]. 武汉大学2011[3] 彭露,朱红伟,杨旻,国世上. 微沟道内两相流速比对液滴形成的影响[J]. 传感技术学报. 2010(09)[4] 郭志霄. 微液滴和海藻酸凝胶颗粒在微流控芯片中的应用研究[D]. 武汉大学 2011[5] 全祖赐. 环境友好型多功能氧化物薄膜的微结构、光学、电学和磁学性能研究[D]. 武汉大学 2010[6] 彭涛. 功能电极材料在染料敏化太阳能电池中的应用[D]. 武汉大学2014[7] 黄妞. 光阳极修饰和二氧化钛形貌调制在染料敏化太阳能电池中的应用[D]. 武汉大学 2013[8] 国世上. 电子辐照铁电共聚物P(VDF-TrFE)及超声传感器的研究[D]. 武汉大学 2004[9] 韩宏伟. 染料敏化二氧化钛纳米晶薄膜太阳电池研究[D]. 武汉大学2005[10] 何荣祥. 纳米功能材料器件及其在流体和细胞检测中的应用研究[D]. 武汉大学 2013[11] 周聪华. 染料敏化太阳能电池中电极材料和寄生电阻的研究[D]. 武汉大学 2009[12] 胡浩. 碳材料对电极在染料敏化太阳能电池中的应用[D]. 武汉大学2011[13] 李伟平. 铁电共聚物P(VDF-TrFE)的性能和换能器的模拟研究[D].武汉大学 2004[14] 蓝才红,蒋炳炎,刘瑶,陈闻. 聚合物微流控芯片键合微通道变形仿真研究[J]. 塑料工业. 2009(05)[15] 叶美英,方群,殷学锋,方肇伦. 聚二甲基硅氧烷基质微流控芯片封接技术的研究[J]. 高等学校化学学报. 2002(12)[16] 龙驭球编着.有限元法概论[M]. 出版社, 1991[17] Lo?g Kergoat,Beno?t Piro,Magnus Berggren,GillesHorowitz,Minh-Chau Pham. Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors[J]. Analytical and Bioanalytical Chemistry . 2012 (5)[18] Tao Sun,Hywel Morgan. Single-cell microfluidic impedance cytometry: a review[J]. Microfluidics and Nanofluidics . 2010 (4)[19] Ieong Wong,Chih-Ming Ho. Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices[J]. Microfluidics and Nanofluidics . 2009 (3)[20] 齐小花,张新祥,常文保. 微流控芯片仪器进展[J]. 现代仪器. 2002(04)[21] 张扬军,吕振华,徐石安,涂尚荣,丛艳吉. 汽车空气动力学数值仿真研究进展[J]. 汽车工程. 2001(02)[1] 梁瑞冰,孙琪真,沃江海,刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究[J]. 物报. 2011(10)[2] 钱银博. 基于SOA的长距离无源光网络理论与实验研究[D]. 华中科技大学 2010[3] 赵攀,隋成华,叶必卿. 微纳光纤构建M-Z干涉光路进行液体折射率变化测量[J]. 浙江工业大学学报. 2009(03)[4] 李宇航,童利民. 微纳光纤马赫-泽德干涉仪[J]. 激光与光电子学进展. 2009(02)[5] 刘盛春. 基于拍频解调技术的光纤激光传感技术研究[D]. 南京大学2011[6] 高学强,杨日杰. 潜艇辐射噪声声源级经验公式修正[J]. 声学与电子工程. 2007(03)[7] 胡家艳,江山. 光纤光栅传感器的应力补偿及温度增敏封装[J]. 光电子·激光. 2006(03)[8] 牛嗣亮. 光纤法布里-珀罗水听器技术研究[D]. 国防科学技术大学2011[9] 曹锋. 新一代周界防入侵软件系统研究及其应用[D]. 华中科技大学2010[10] 唐天国,朱以文,蔡德所,刘浩吾,蔡元奇. 光纤岩层滑动传感监测原理及试验研究[J]. 岩石力学与工程学报. 2006(02)[11] 詹亚歌,蔡海文,耿建新,瞿荣辉,向世清,王向朝. 铝槽封装光纤光栅传感器的增敏特性研究[J]. 光子学报. 2004(08)[12] 孙运强. 激光内通道传输的气体热效应研究[D]. 国防科学技术大学2011[13] 刘浩吾,吴永红,丁睿,文利. 光纤应变传感检测的非线性有限元分析和试验[J]. 光电子·激光. 2003(05)[14] 邓磊. OFDM技术在无源光网络及光无线系统中的应用与研究[D]. 华中科技大学 2012[15] 胡家雄,伏同先. 21世纪常规潜艇声隐身技术发展动态[J]. 舰船科学技术. 2001(04)[16] Zuyuan He,Qingwen Liu,Tomochika Tokunaga. Ultrahigh resolution fiber-optic quasi-static strain sensors for geophysical research[J]. Photonic Sensors . 2013 (4)[17] Yi Jiang,Wenhui Ding. Recent developments in fiber optic spectral white-light interferometry[J]. Photonic Sensors . 2011 (1)[18] AnSun,YuliyaSemenova,GeraldFarrell. A novel highly sensitive optical fiber microphone based on single mode-multimode-single mode structure[J]. Microw. Opt. Technol. Lett. . 2010 (2)[1] 孙运强. 激光内通道传输的气体热效应研究[D]. 国防科学技术大学2011[2] 赵兴涛. 掺镱、亚波长空芯及新型高非线性光子晶体光纤的研究[D]. 北京交通大学 2015[3] 杨春勇. GMPLS智能光网络中波长路由器的研究[D]. 华中科技大学2005[4] 许荣荣. 光纤环形腔光谱技术与传感应用的研究[D]. 华中科技大学2012[5] 张磊. 基于光子晶体光纤非线性效应的超宽带可调谐光源[D]. 清华大学 2014[6] 王超. 基于高频等离子体法制备掺镱微结构光纤及其特性的研究[D]. 燕山大学 2014[7] 林桢. 新型大模场直径弯曲不敏感单模及少模光纤的研究[D]. 北京交通大学 2014[8] 苏伟. 新型光子准晶光纤及石英基光纤的微观机制研究[D]. 北京交通大学 2015[9] 许艳. 基于飞秒光频梳的绝对距离测量技术研究[D]. 华中科技大学2012[10] 钱新伟. PCVD单模光纤高速拉丝工艺与光纤性能研究[D]. 华中科技大学 2009[11] 刘国华. 高功率光纤激光器的理论研究[D]. 华中科技大学 2007[12] 常宇光. 光纤射频传输(ROF)接入系统及无线局域网应用研究[D]. 华中科技大学 2009[13] 张雅婷. 基于光子晶体光纤的表面等离子体传感技术研究[D]. 华中科技大学 2013[14] 张小龙. 同轴电缆接入网信道建模与故障诊断方法研究[D]. 华中科技大学 2013[15] 张传浩. 电信级以太无源光网络接入理论与实验研究[D]. 华中科技大学 2009[16] 吴广生. 无源光网络与电网络复合接入技术研究[D]. 华中科技大学2009[17] 江国舟. 10Gbps以太无源光网络关键技术与应用研究[D]. 华中科技大学 2009[18] 张利. 以太无源光网络安全性与增强技术研究[D]. 华中科技大学2009[19] 冯亭. MOPA光纤激光系统放大级增益光纤特性与高质量种子源关键技术研究[D]. 北京交通大学 2015[20] 张曙. EPON和WLAN融合网络架构下的上行链路调度算法研究[D]. 华中科技大学 2009[21] 孙琪真. 分布式光纤传感与信息处理技术的研究及应用[D]. 华中科技大学 2008[22] 孙运强. Ⅰ钳式镍配合物的合成及性质反应研究Ⅱ有机氟化物的合成新方法研究[D]. 山东大学 2014拓展阅读传感器主要作用人们为了从外界获取信息,必须借助于感觉器官。
基于荧光猝灭效应的光纤传感器研究进展

第41卷㊀第10期2020年10月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 41No 10Oct.ꎬ2020文章编号:1000 ̄7032(2020)10 ̄1269 ̄10基于荧光猝灭效应的光纤传感器研究进展陈㊀静ꎬ杨㊀曌ꎬ黄宇豪ꎬ周明辉ꎬ赵奔阳ꎬ夏㊀历∗ꎬ李㊀微(华中科技大学光学与电子信息学院ꎬ湖北武汉㊀430074)摘要:光纤荧光传感器结合了荧光检测灵敏度高㊁鉴别性强和光纤体积小㊁抗干扰能力强等优点ꎬ由于部分荧光检测物质对荧光强度有猝灭作用ꎬ所以基于猝灭效应的光纤荧光传感器具有重要的研究意义ꎮ本文对基于荧光猝灭效应光纤传感器的研究进展进行综述ꎬ简要描述了荧光猝灭效应的检测机理ꎬ并根据传感光纤结构的不同ꎬ对光纤与荧光检测的结合机理进行了分类总结ꎮ在此基础上阐述了基于荧光猝灭效应的光纤荧光传感器在重金属离子检测㊁爆炸物检测等领域的应用ꎬ分析了猝灭剂㊁荧光材料的相互作用和传感器的性能指标ꎬ最后对其发展方向进行了展望ꎮ关㊀键㊀词:光谱检测ꎻ光纤传感ꎻ发光机理ꎻ荧光猝灭中图分类号:O433㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.37188/CJL.20200206ResearchProgressofOpticalFiberSensorsBasedonFluorescenceQuenchingEffectCHENJingꎬYANGZhaoꎬHUANGYu ̄haoꎬZHOUMing ̄huiꎬZHAOBen ̄yangꎬXIALi∗ꎬLIWei(SchoolofOpticsandElectronicInformationꎬHuazhongUniversityofScienceandTechnologyꎬWuhan430074ꎬChina)∗CorrespondingAuthorꎬE ̄mail:xiali@hust.edu.cnAbstract:Opticalfiberfluorescencesensorcombinestheadvantagesofhighsensitivityꎬstrongdis ̄criminationofthefluorescencedetectionandsmallsizeꎬstronganti ̄interferenceabilityoffiber.Be ̄causesomeofthefluorescentdetectionsubstanceshaveaquenchingeffectonthefluorescenceinten ̄sityꎬtheopticalfiberfluorescencesensorbasedonthequenchingeffecthasimportantresearchsig ̄nificance.Inthispaperꎬtheresearchprogressoftheopticalfibersensorbasedonthefluorescencequenchingeffectisreviewed.Thedetectionmechanismofthefluorescencequenchingeffectisbrief ̄lydescribed.Thecombinationmechanismoftheopticalfiberandthefluorescencedetectionisclas ̄sifiedandsummarizedaccordingtothestructureofthesensingopticalfiber.Onthisbasisꎬtheap ̄plicationsoftheopticalfiberfluorescentsensorbasedonthefluorescencequenchingeffectinthefieldsofheavymetaliondetectionꎬexplosivedetectionandotherfieldsaredescribed.Theinterac ̄tionbetweenthequencherandfluorescentmaterialꎬandtheperformanceindexofthesensorarean ̄alyzed.Finallyꎬthedevelopmentdirectionoftheopticalfibersensorsbasedonfluorescencequench ̄ingeffectisprospected.Keywords:spectraldetectionꎻopticalfibersensingꎻluminescencemechanismꎻfluorescencequenching㊀㊀收稿日期:2020 ̄07 ̄14ꎻ修订日期:2020 ̄08 ̄04㊀㊀基金项目:国家自然科学基金(61775065)资助项目SupportedbyNationalNaturalScienceFoundationofChina(61775065)1270㊀发㊀㊀光㊀㊀学㊀㊀报第41卷1㊀引㊀㊀言荧光检测法具有极高的灵敏度㊁良好的鉴别性和实时监测性ꎬ可以很好地将化学问题物理化处理[1]ꎮ2020年1月ꎬ新型冠状病毒肺炎疫情(简称新冠肺炎)全面爆发ꎮ荧光聚合酶链式反应(PCR)检测仪在病毒确诊中起着关键作用[2]ꎻ但荧光PCR检测仪仍在一些缺点ꎬ例如对操作人员及操作技术要求高㊁检测时间长㊁仪器体积庞大不易携带等[3]ꎮ而光纤具有体积小㊁价格便宜等优势ꎬ如果将光纤与荧光检测技术相结合ꎬ可以避免上述缺点ꎮ荧光猝灭是指溶剂分子使荧光分子发生猝灭的现象[4]ꎮ1931年ꎬKautsky在叶绿素荧光诱导实验[5 ̄6]中发现氧分子可以猝灭荧光ꎬ于是提出荧光猝灭原理[7]ꎮ氧分子㊁重金属离子㊁温度等都可以作为 荧光猝灭剂 ꎬ对荧光强度产生猝灭作用ꎬ基于荧光猝灭效应的传感器有效地利用了这一特点ꎬ具有重大的研究意义和应用价值ꎮ本文以基于荧光猝灭效应的光纤传感器为主题ꎬ通过对传感光纤结构进行分类的方式ꎬ详细地阐述了光纤与荧光检测的有机结合ꎬ综述了基于荧光猝灭效应的光纤传感器的应用领域ꎬ最后对其未来发展进行了展望ꎮ2㊀荧光猝灭原理2.1㊀荧光检测机理当光照射到某物质上时ꎬ其原子核周围的电子吸收光能量ꎬ从基态跃迁到高能级激发态ꎮ由于单线态的不稳定性ꎬ电子会恢复到基态自发辐射产生荧光ꎬ该现象称为弛豫[8]ꎬ荧光光谱较吸收光谱波长的红移称为斯托克斯位移[9]ꎮ根据待测物的不同ꎬ可以通过解调发射光谱[10 ̄11]㊁荧光强度[12 ̄13]和荧光寿命[14 ̄15]等参数来定量分析待测物ꎮ荧光检测法主要是基于具有荧光效应的物质进行直接检测或利用荧光染料标记法进行间接检测ꎮ2.2㊀荧光猝灭效应荧光猝灭可以简单地描述为通过荧光分子和猝灭分子的相互作用来减少荧光分子的荧光强度[16]ꎮ荧光猝灭可以分为两个类别ꎬ分别是静态猝灭和动态猝灭ꎮ静态猝灭指两分子弱结合形成的复合物使荧光完全消失ꎻ动态猝灭则是一种电子转移或能量转移的过程ꎬ荧光的猝灭程度和猝灭剂有关[17 ̄18]ꎮ动态猝灭主要包括:浓度猝灭㊁杂质猝灭㊁温度猝灭等ꎬ其过程通常遵循Stern ̄Volmer方程:τ0τ=I0I=1+KSVCQꎬ(1)其中ꎬI0㊁τ0㊁I和τ分别是浓度为CQ的指示剂染料在不存在和存在猝灭剂时的荧光强度和荧光寿命ꎻKSV是Stern ̄Volmer猝灭常数ꎬ单位通常为浓度单位的倒数ꎬ与猝灭剂的猝灭效率有关ꎮ荧光信号取决于猝灭剂浓度ꎬ所以在包含或添加了荧光化合物的样品中ꎬ可以通过猝灭作用来确定其信息ꎮ3㊀传感光纤结构3.1㊀空间光耦合型光纤在荧光检测中最简单的应用是将其用于激发光和接收光的传输ꎬ荧光检测过程则在光纤外的空间中进行ꎮ由于激发光纤和接收光纤的分离式结构会导致大部分的荧光信号丢失ꎬ所以经典的结构是由1根激发光纤和6根接收光纤构成的组合光纤[19]ꎮ但是在该光纤模式中ꎬ大量的入射光会被耦合进入低阶模式ꎬ并且被噪声信号干扰的接收光纤存在阈值饱和问题ꎬ影响荧光信号的解调ꎮ为解决上述问题ꎬSandra等[20]将两根标准多模光纤组成一个直径约为150μm的光纤探针ꎬ如图1所示ꎮ该结构的传输功率损耗小于0.2dBꎬ由于波导纤芯不耦合ꎬ不会造成无关干扰ꎮMoradi等[21]则利用微流控芯片的高度集成化㊁低消耗等优势ꎬ提出如图2所示的蛇形通道微流控结构ꎬ同样可以有效地减少信号干扰ꎮ60滋m(a)PVC tube(2mm/1mm)Catheter21G(0.8mm/0.55mm)Dual fiber tip(b)(c)图1㊀双光纤探针的端面(a)㊁组成材料(b)㊁传感探头(c)ꎮFig.1㊀(a)Endfaceofthedual ̄fiberprobe.(b)Constitutesmaterial.(c)Sensingprobe.㊀第10期陈㊀静ꎬ等:基于荧光猝灭效应的光纤传感器研究进展1271㊀0.60i n c h2.40inchMixing channelsHPTS injection portSample injection portOutlet图2㊀蛇形结构微流控芯片Fig.2㊀Serpentinestructuremicrofluidicchip3.2㊀微结构光纤型光在纤芯中以驻波形式传输ꎬ传输过程中光波会部分透射进入光纤包层大约一个波长深度ꎬ而后反射回到纤芯ꎮ如图3所示ꎬ该透射光波的振幅随穿透深度的增加呈指数衰减ꎬ故称为倏逝波[22]ꎮ拉锥光纤㊁裸芯光纤等微结构光纤可以有效地使倏逝波泄露ꎬ光纤泄露的倏逝波则可以激发荧光物质产生荧光ꎮn 2n 1波传播方向x倏逝场区驻波场强度zn 1>n 2图3㊀光纤倏逝波原理图Fig.3㊀SchematicdiagramofopticalfiberevanescentwaveLi等利用拉锥光纤结构搭建了如图4(a)所示的荧光传感系统[23]ꎬ激光光源在光纤拉锥区泄露倏逝波ꎬ从而激发荧光染料罗丹明6G产生荧光ꎮ荧光信号在拉锥区域产生并且耦合进入光纤ꎬ图4(b)~(d)分别表示自然状态㊁激光入射时和激发荧光时锥形光纤的扫描电子显微镜图像ꎮ(a )(b )(c )FilterLaserSlot vial array Biconical taper Moving directionMicrochannel Capillary Syringe(d )Filter SpectrographH OS 3H OS 2S 1H OS l o t v i a l图4㊀拉锥光纤荧光传感系统的实验装置ꎮ(a)显微镜下的自然状态ꎻ(b)激光入射ꎻ(c)荧光激发ꎻ(d)图像ꎮFig.4㊀Experimentaldeviceoftaperedfiberfluorescencesensingsystem.(a)Naturalstateunderthemicro ̄scope.(b)Laserincidence.(c)Fluorescenceexci ̄tation.(d)Image.上述实验中需要将拉锥光纤嵌入检测皿中ꎬ无法实现方便快速地进行检测ꎬZhang等[24]提出裸芯结构的光纤探针ꎬ直接将制备好的光纤探针伸入大肠杆菌溶液中进行快速检测ꎮ图5(a)为FC connector Inlet Fiber probe OutletFC adaptorFC connectorFiber couplerLaserCollimator FilterPCR 1R 2n con cl 兹i兹i 1(z )茁1琢1(z )琢2(z )茁2n mL 1L 2Taper 2Taper 1(a )(b )Sample cellFluorescent signalExcitation light R 3n clzPMTClad section图5㊀裸芯光纤探针荧光传感系统的实验装置(a)与裸芯结构(b)Fig.5㊀Experimentaldeviceofbare ̄corefiberprobefluorescentsensingsystem(a)andbare ̄corestructure(b)活菌死菌碘化丙啶抗体激光荧光图6㊀功能化处理光纤探针原理图Fig.6㊀Schematicdiagramoffunctionalizedopticalfiberprobe光纤荧光传感系统ꎬ图5(b)为裸芯锥形光纤结构ꎬ利用管腐蚀法来去除光纤包层ꎮ而上述光纤探针不具有特异性检测能力ꎬZhang等[25]在原有结构的基础上用化学手段功能化处理光纤探针ꎬ使光纤探针表面交联抗体ꎬ抗体能够与大肠杆菌特异性结合ꎮ如图5所示ꎬ实验用荧光染料碘化丙啶标记了大肠杆菌死菌ꎬ倏逝波激发碘化丙啶1272㊀发㊀㊀光㊀㊀学㊀㊀报第41卷产生荧光ꎬ实现了对死菌的检测ꎮ3.3㊀空心光纤荧光检测过程都需要在暗室中进行ꎬ避免外界环境因素对检测结果产生较大影响ꎮ如果将荧光检测过程置于空心光子晶体光纤(HC ̄PCF)中进行ꎬ则可以有效地抵抗环境的干扰ꎮ并且HC ̄PCF通过纤芯空气孔导光提供基模传输ꎬ能够将99%的光都限制在纤芯内传输ꎬ实现低损耗传输[26]ꎮ为估算HC ̄PCF纤芯传播模式数ꎬCregan等[27]推导了近似估算公式如下:NPBG=(β2H-β2L)r2core4ꎬ(2)NPBG=(k2n21-β2L)r2core4ꎬ(3)其中ꎬNPBG为传播的导模数ꎬn1为纤芯折射率ꎬβH㊁βL分别为定波长下传播常数最大值和最小值ꎮ由公式可知ꎬHC ̄PCF纤芯半径必须适中ꎬ以接近理想传输模式ꎮ在该原理基础上ꎬChen等[28]提出如图7所示的HCPCF结构ꎬ空心孔尺寸为4.8μmꎮ包层孔用融合拼接技术密封ꎬ中心孔保持开放ꎬ并允许通过聚合诱导发射(AIE)分子溶液ꎮ在基于该结构的AIE分子检测中ꎬ仅需0.36nL样本就可以完成实验ꎮHC ̄PCF结构设计多样ꎬYu等[29]设计并制造了如图8所示的HC ̄PCF结构ꎬ将花青素Cy3㊁Cy5的混合溶液作为荧光染料注入到中空纤芯中ꎬ成功实现了激光的荧光共振能量转移ꎮAlE moleculeOutputFilled coreHollow core photonics crystal fiberCore 4.8滋mCladding 81滋m 图7㊀基于AIE诱导分子的HC ̄PCF传感原理图Fig.7㊀HC ̄PCFsensingprinciplediagrambasedonAIEin ̄ducingmolecule图8㊀基于花青素染料的HC ̄PCF结构Fig.8㊀HC ̄PCFstructurebasedonanthocyanindyes4㊀基于荧光猝灭效应的光纤传感器应用4.1㊀重金属离子检测工业排出的污水中还有大量的Cu2+㊁Fe3+㊁Hg2+等重金属离子ꎬ重金属离子对人体危害极大ꎬ痕量重金属离子的检测也是研究热点[30 ̄31]ꎮ利用重金属离子对荧光的猝灭效应ꎬ基于荧光猝灭效应的光纤传感器也广泛应用于重金属离子检测中ꎮZhou等[32]在裸芯光纤探针结构表面交联碲化镉(CdTe)量子点(QDs)ꎬ并掺杂水凝胶ꎮQDs是把激子在三维空间方向上束缚住的半导体纳米结构作为一种特殊的纳米材料ꎬ具有特殊的光学㊁电学性质[33 ̄34]ꎮ在该结构中ꎬQDs可以被扩散到水凝胶基质ꎬ待测液中的Fe3+对其进行选择性猝灭ꎬ可用于实时现场检测ꎮ传感器浓度响应在0~3.5μmol/L范围内呈线性ꎬ检测限为14nmol/LꎮLiu等[35]利用聚乙烯醇将AgInZnS ̄QDs沉积在光纤尖端制成光纤探针检测Cu2+含量ꎬ如图9所示为检测过程中的光谱图和其浓度响应ꎮ随着浓度的增加ꎬ荧光强度逐渐减小ꎬ在2.5~800nmol/L浓度范围传感器呈线性响应ꎮ5k 500800姿/nmI n t e n s i t y /a .u .6k 4k 3k 2k 1k0nmol/L07517535050060070080025100250425550650750800nmol/L600700(a )5k 0800[Cu 2+]/(nmol ·L -1)I n t e n s i t y /a .u .6k 4k 3k 2k 1k 0400600(b )I =5438.63-4.97×109[Q ]R 2=0.997200Measured data Fitting curve图9㊀用于Cu2+检测的AgInZnS ̄QDs光纤探针光谱(a)与浓度响应(b)Fig.9㊀(a)AgInZnS ̄QDsfiberprobespectraforCu2+detec ̄tion.(b)Concentrationresponse.㊀第10期陈㊀静ꎬ等:基于荧光猝灭效应的光纤传感器研究进展1273㊀Helena等[36]提出一种基于碳点纳米颗粒的Hg2+浓度传感系统ꎬ该纳米颗粒利用溶胶 ̄凝胶方法在光纤探针表面生成一层薄膜ꎮ实验可检测亚微米级浓度的Hg2+水溶液ꎬ在pH=6.8环境下ꎬ其Stern ̄Volmer常数KSV达到5.3ˑ105L/molꎮ为寻求更加便捷的实验装置ꎬLiu等[37]用智能手机取代光谱仪ꎬ利用硒化镉/硫化锌(CdSe/ZnS)QDs改性后的光纤探针进行Hg2+检测ꎮ如图10所示为QDs改性原理图ꎬQDs通过键合的方式与光纤探针表面交联ꎮ荧光信号由智能手机收集和处理ꎬ最终得到检测范围为1~1000nmol/Lꎬ检测限可以达到1nmol/LꎮOH OH OH OHOH OH OHAPTESSiOC2H5NH2OC2H5C2H5OOHOHOHOOOO SiSiSiSiOC2H5OOONH2NH2NH2NH2OC2H5COOHHOOCOHOHOHOOOO SiSiSiSiOC2H5OOOOC2H5EDC/NHSCOOHCOOHCOOHCOOHOOOOQDsQDsQDsQDsQDsQDsQDs QDsHOOC COOHNCNNHOOCCNNNHOOOOOCOOHCOONOONHNHNHNHNH图10㊀CdSe/ZnS ̄QDsQDs改性原理Fig.10㊀CdSe/ZnS ̄QDsmodificationprinciple4.2㊀爆炸物检测微量炸药的准确测量与国际安全和日常生活安全息息相关ꎬ光纤荧光传感技术因其方便㊁快捷㊁灵敏度高等优点成为炸药检测领域的关键技术之一ꎮ中国科学院上海微系统与信息技术研究所从2005年开始研制的SIM系列痕量爆炸物探测器[38]ꎬ采用了荧光聚合物猝灭传感技术ꎮ通过擦拭采样或吸气采样ꎬ可以快速检测三硝基甲苯(TNT)㊁二硝基甲苯(DNT)㊁硝化甘油(NG)㊁硝酸铵(AN)㊁黑火药(BP)㊁塑性炸药(C4)等爆炸物ꎮChu等[39]基于荧光猝灭原理对硝基芳香族炸药TNT进行检测ꎬ将光纤绕棒缠绕构成的螺旋结构作为传感部位ꎬ荧光猝灭剂为聚[2 ̄甲氧基 ̄5 ̄(2 ̄乙基己氧基) ̄1ꎬ4 ̄苯乙炔](MEH ̄PPV)ꎬ测定荧光强度和寿命来确定TNT浓度ꎬ传感器灵敏度达到了5ng/mLꎮ中国科学院软物质化学重点实验室Liu等[40]制作了锥形光纤探针ꎬ并交联荧光多孔聚合物膜结合在其表面ꎬ其存在的多面体低聚硅倍半氧烷(POSS)使膜呈现出有序的多孔结构ꎬ同时该膜存在具有聚集诱导发射特性的四苯基乙烯(TPE)以产生强烈的荧光ꎮ利用激光光源激发荧光对TNT和DNT浓度进行检测ꎬ图11为TNT检测的光谱和浓度响应ꎻTNT浓度在100ˑ10-9情况下ꎬ荧光猝灭在30s时达到25.2%ꎬ在120s时达到51.8%ꎬ在5min内达到了73.5%ꎮTPE及其衍生物具有聚集诱导发光特性ꎬ在光电材料领域应用前景广阔ꎮYang等[41]提出了基于荧光猝灭效应的HC ̄PCF挥发性痕量炸药传感器ꎬ该传感器是将烯丙基四苯乙烯(AL ̄TPE)荧光纳米薄膜涂覆在HC ̄PCF芯空气孔内ꎮ如图12所示为AL ̄TPE膜与TNT之间的电子转移过程ꎬ激发态AL ̄TPE分子与处于基态的爆炸分子之间发生电子转移ꎬ导致荧光强度降低ꎬ产生猝灭效应ꎮ当膜厚为155nm时ꎬ对TNT的检测灵敏度达到了0.309ˑ109ꎬ最小检测限0.340ˑ10-9ꎻ膜厚为110nm时ꎬDNT的响应时间达到120sꎮ1274㊀发㊀㊀光㊀㊀学㊀㊀报第41卷30000500700姿/nmF l i n t e n s i t y /a .u .40000(a )0s720s 6002000010000100700t /s(I 0-I )/I 00.8(b )400NO 3NO 3CH 3O 3N0.702003005006008000.60.50.40.30.20.10图11㊀用于TNT检测的光纤锥形探针光谱(a)与浓度响应(b)Fig.11㊀(a)FibertaperprobespectraforTNTdetection.(b)Concentrationresponse.Electron transferFluorescent bright stateQuenchers(TNT)Non 鄄fluorescent dark stateh 淄eee图12㊀AL ̄TPE膜和TNT之间的电子转移过程Fig.12㊀ElectrontransferprocessbetweenAL ̄TPEfilmandexplosive㊀4.3㊀溶解气体检测溶解气体的精准检测在环境㊁生物㊁工业领域都具有重要意义ꎬ例如一氧化氮(NO)溶液的浓度检测可以诊断高血压㊁心衰㊁糖尿病等疾病ꎬ氧溶液的检测可以应用于污水处理厂㊁自来水厂水质的诊断ꎮ许多气体分子对荧光存在猝灭效应ꎬ因此也开拓了基于荧光猝灭效应的光纤传感器在溶解气体检测领域的应用ꎮDing等[42]搭建了荧光探针结构传感系统ꎬ将CdSe ̄QDs和醋酸纤维素(CA)作为敏感膜来检测水溶液中的NOꎬ其中CdSe ̄QD通过简单的杂交方法嵌入CA中ꎮNO自由基可以很容易地与水中的溶解氧发生反应并与Cd2+发生配位ꎬ对敏感膜中CdSe ̄QDs的荧光有明显的猝灭作用ꎮ使用这种新型的光纤传感器ꎬ通过相位调制荧光法确定了NO浓度ꎮ如图13所示ꎬ在最佳条件下ꎬ1.0ˑ10-7~1.0ˑ10-6mol/L检测范围中的线性拟合系数为0.9908ꎬ最低检测限达到了1.0ˑ10-8mol/Lꎮ邓辉等[43]利用动态化学腐蚀法制备锥尖型光纤端面ꎬ以提拉法镀溶胶凝胶敏感膜组装了基于荧光猝灭的直径仅1.5μm的光纤氧溶液传感探头ꎮ探头锥面的长径比可通过调控腐蚀参数调控ꎬ构建相移测量系统ꎬ优化参数后进行0~21%范围内的氧含量测定ꎬ工作曲线呈现良好的线性特征ꎬ拟合系数为0.9996ꎬ偏差小于测量值的5%ꎮ此外ꎬ德国E+H公司研制的溶解氧传感器OxymaxCOS61D[44]ꎬ同样基于荧光猝灭原理进行传感ꎮ该传感器检测范围0~20mg/Lꎬ在<12mg/L范围内ꎬ最大测量误差为ʃ1%ꎻ在12~20mg/L范围内ꎬ最大测量误差为ʃ2%ꎮ-78.46004800t /sP h a s e s h i f t 准/a .u .1200-79.2180024003000[NO]:滋mol/L0.10.20.30.40.50.60.70.80.91.03600420054006000图13㊀不同浓度NO溶液的相位变化Fig.13㊀PhasechangeinNOsolutionwithdifferentconcen ̄tration4.4㊀温度检测温度会使荧光强度降低产生荧光猝灭现象ꎬ基于荧光猝灭效应的光纤传感技术也可以对温度进行检测ꎮ这种基于荧光猝灭效应的光纤传感技术不受传感器外部变形的影响ꎬ是一种能够消除周围环境和背景噪声干扰的温度选择性传感器ꎮZhao等[45]利用微结构双拉锥结构光纤作为探针进行温度的检测ꎬ将Mg6As2O11ʒMn4+作为荧光材料ꎮ通过对荧光强度的解调ꎬ得到该温度传感器的精度为2ħꎬ温度范围30~210ħꎬ该微传感器的响应时间比传统传感器快50~100倍ꎮ而日本安立(Anritsu)公司研制的荧光式光纤温度计[46 ̄47]已经完全商业化ꎬ达到了-195.0~450.0ħ的检测范围ꎬ精度为0.1ħꎮ其产品由FX系㊀第10期陈㊀静ꎬ等:基于荧光猝灭效应的光纤传感器研究进展1275㊀列发展到FL系列[48]ꎬ如图14所示为FL ̄2000型号产品探头结构ꎮ基于荧光猝灭原理ꎬ利用光纤前端表面存在的荧光物质进行温度检测ꎬ从接收激励光到衰减的寿命作为温度传感信息ꎮin sensorIndentation the connector of the instrument(×2)Protrusion of the sensor(×2)Key ring图14㊀FL ̄4000型号光纤探头Fig.14㊀FL ̄4000typefiberopticprobe4.5㊀其他领域应用除了上述参量的检测ꎬ基于荧光猝灭效应的光纤荧光传感器也在其他领域检测中得到了应用ꎮTon等[49]在光纤波导上涂覆含有荧光信号基团的MIPꎬMIP由萘基荧光单体组成ꎬ用于检测除草剂中的2ꎬ4 ̄二氯苯氧乙酸和桔霉素ꎮ萘基单体与分析物的羧酸基分子结合后荧光增强ꎬ从而降低了氮给电子的能力ꎬ阻止负责荧光猝灭的光诱导电子转移ꎬ使MIP的荧光强度增强具有浓度依赖性ꎮ中国科学院软物质化学重点实验室Zhu等[50]利用三烯丙基异氰脲酸酯㊁烷烃二硫醇和酸碱D ̄天冬氨酸复合(PBIM/D ̄Asp)在光纤探针末端形成MIP膜用于D ̄Asp含量检测ꎬ当pH值达到碱性条件时ꎬPBIM结构会发生变化从而导致荧光猝灭ꎮNguyen等[51]制备了光纤探针ꎬ选择吖啶作为荧光染料ꎬ利用Cl-的荧光猝灭效应对其进行检测ꎬ检测限达到0.1mol/Lꎮ美国国家基础科学研究中心Polley等[52]在光纤探头表面交联乙锭染料ꎬ实现对DNA的检测ꎮ5㊀未来发展2017年ꎬ清华大学杨昌喜研究团队提出一种由有机硅聚合物制成的可穿戴式光纤传感器[53]ꎬ该传感器能够承受和检测伸长率达100%的形变ꎬ可以实时㊁有效地感测人体运动ꎮ该有机硅聚合物为聚二甲基硅氧烷(PDMS)ꎬ制造出的PDMS光纤表现出很好的机械柔韧性ꎮ为了辅助传感ꎬ研究人员将荧光染料罗丹明B混入光纤中ꎬ当光通过光纤时ꎬ部分光被荧光染料吸收ꎻ光纤拉伸越大ꎬ染料吸收的光就越多ꎬ因此由分光镜检测投射光就可以测量光纤的拉伸和弯曲程度ꎮ相较于一般的电子传感器ꎬ光纤型传感器具有体积小㊁弹性强㊁不受电磁干扰的优点ꎮ基于荧光猝灭效应的光纤传感技术同样有望与可穿戴式传感相结合ꎬ光纤可作为类纤维嵌入衣物中ꎬ可以实时监测温度㊁湿度等环境情况ꎬ也可以监测呼吸㊁心跳等人类生理特征ꎮ这些特点都可以在医疗行业㊁特种部队㊁工业养殖等领域得到广泛应用ꎮ荧光材料选择的多样性决定了其应用领域的广泛性ꎬ基于荧光猝灭效应的光纤传感器结合了荧光和光纤的优点ꎬ应用前景可观ꎬ但是目前光纤荧光传感技术仍面临一些挑战ꎮ5.1㊀增强集光能力上述提及的空间光耦合型㊁微结构光纤型等多样的光纤结构ꎬ目的都是为了使光纤能够最大程度地收集产生的荧光ꎬ提高传感器灵敏度的同时ꎬ减少杂散光的干扰ꎮ荧光猝灭材料中的共轭聚合物消光系数可达106L mol-1 cm-1ꎬ具有较强的集光能力[54]ꎻ在HC ̄PCF空气孔内进行荧光反应ꎬ能够极大地接收荧光ꎬ但是其实验要求高难以实用化ꎮ用多种方式增强光纤收集荧光的能力ꎬ仍然是目前的研究热点ꎮ5.2㊀提高荧光产率荧光产率是指发射荧光的光子数n2与被激活物质从泵浦源吸收的光子数n1之比ꎬ是评价荧光材料性能最直观的参考数据ꎮ目前的研究除了寻求和制备高荧光产率的荧光分子外ꎬ也会通过在原有荧光材料基础上掺入杂质物质来提高ꎮ例如ꎬ钇掺杂的碳量子点荧光产率达到41%[55]ꎬ相较于未掺杂情况提升了17.3%ꎮ但目前荧光材料的荧光产率仍有待提高ꎮ而且通过从材料入手来提高荧光产率的方式ꎬ可以避免改变传感系统性能来提高灵敏度ꎬ可靠性更强ꎮ5.3㊀便携实时原位检测原位检测是不破坏待测物自身结构㊁状态而进行的无损伤检测方式ꎬ对于荧光猝灭光纤传感来说至关重要ꎮ荧光检测环境不能够仅仅局限于在实验室进行ꎬ最终目标仍然是实现便捷实时原位的现场检测ꎮ目前荧光猝灭光纤传感器产品已涉及爆炸物㊁水质等领域ꎬ但是设计紧凑便捷传感系统结构㊁开拓更多应用领域㊁实时地实地快速检1276㊀发㊀㊀光㊀㊀学㊀㊀报第41卷测ꎬ仍然是研发工作人员的研究目标ꎮ6㊀结㊀㊀论基于荧光猝灭效应的光纤传感技术能够有效地利用光纤体积小㊁抗干扰能力强等优点ꎬ实现快速㊁便捷地特异性检测ꎮ本文以荧光猝灭原理为基础ꎬ从传感光纤结构㊁基于荧光猝灭效应的光纤传感器应用两个方面简要叙述了光纤与荧光检测的结合机理及传感器相关应用ꎮ基于荧光猝灭的光纤传感器有望作为类纤维嵌入衣物中ꎬ从而实现实时的智能传感ꎮ而基于荧光猝灭效应的光纤传感技术也面临挑战ꎬ未来将朝着集光能力更强㊁荧光产率更高㊁便携实时原位检测方向发展ꎮ参㊀考㊀文㊀献:[1]史慧超.基于神经网络的光纤荧光海藻测量理论及应用研究[D].秦皇岛:燕山大学ꎬ2010:10 ̄17.SHIHC.StudyonTheoryandApplicationofOpticalFiberFluorescenceMeasurementforAlgaeBasedonNerveNetwork[D].Qinhuangdao:YanshanUniversityofChinaꎬ2010:10 ̄17.(inChinese)[2]NÖRZDꎬFISCHERNꎬSCHULTZEAꎬetal..ClinicalevaluationofaSARS ̄CoV ̄2RT ̄PCRassayonafullyautomatedsystemforrapidon ̄demandtestinginthehospitalsetting[J].J.Clin.Virol.ꎬ2020ꎬ128:104390 ̄1 ̄3. [3]何关金.基于微流控技术的数字PCR检测仪设计与实现[J].天津科技ꎬ2020ꎬ47(1):35 ̄40.HEGJ.DesignandimplementationofdigitalPCRdetectorbasedonmicrofluidictechnology[J].TianjinSci.Technol.ꎬ2020ꎬ47(1):35 ̄40.(inChinese)[4]MCEVOYAKꎬMCDONAGHCMꎬMACCRAITHBD.Dissolvedoxygensensorbasedonfluorescencequenchingofoxy ̄gen ̄sensitiverutheniumcomplexesimmobilizedinsol ̄gel ̄derivedporoussilicacoatings[J].Analystꎬ1996ꎬ121(6):785 ̄788.[5]KAUTSKYHꎬDEBRUIJNH.DieAufklärungderPhotoluminescenztilgungfluorescierenderSystemedurchSauerstoff:dieBildungaktiverꎬdiffusionsfähigerSauerstoffmoleküledurchSensibilisierung[J].Naturwissenschaftenꎬ1931ꎬ19(52):1043 ̄1043.[6]KAUTSKYH.Energie ̄UmwandlunganGrenzflächenꎬVII.Mitteil.:H.KautskyꎬH.deBruijnꎬR.NeuwirthundW.Baumeister:photo ̄sensibilisierteoxydationalswirkungeinesaktivenꎬmetastabilenzustandesdessauerstoff ̄moleküls[J].Eur.J.Inorg.Chem.ꎬ1933ꎬ66(10):1588 ̄1600.[7]KAUTSKYH.Quenchingofluminescencebyoxygen[J].Trans.FaradaySoc.ꎬ1939ꎬ35:216 ̄219.[8]KUZMINAVꎬPLEKHANOVМSꎬLESNICHYOVAAS.Influenceofimpuritiesonthebulkandgrain ̄boundaryconduc ̄tivityofCaZrO3 ̄basedproton ̄conductingelectrolyte:adistributionofrelaxationtimestudy[J].Electrochim.Actaꎬ2020ꎬ348:136327.[9]HONGJXꎬXIAQFꎬZHOUEBꎬetal..NIRfluorescentprobebasedonamodifiedrhodol ̄dyewithgoodwatersolubilityandlargeStokesshiftformonitoringCOinlivingsystems[J].Talantaꎬ2020ꎬ215:120914.[10]PIERCEMEꎬGRANTSA.DevelopmentofaFRETbasedfiber ̄opticbiosensorforearlydetectionofmyocardialinfarction[C].ProceedingsofThe26thAnnualInternationalConferenceofTheIEEEEngineeringinMedicineandBiologySocietyꎬSanFranciscoꎬ2004:2098 ̄2101.[11]ZHAOJWꎬZHENGYYꎬPANGYYꎬetal..Graphenequantumdotsasfull ̄colorandstimulusresponsivefluorescenceinkforinformationencryption[J].J.ColloidInterfaceSci.ꎬ2020ꎬ579:307 ̄314.[12]LIAOKCꎬHOGEN ̄ESCHTꎬRICHMONDFJꎬetal..Percutaneousfiber ̄opticsensorforchronicglucosemonitoringinvi ̄vo[J].Biosens.Bioelectron.ꎬ2008ꎬ23(10):1458 ̄1465.[13]HEWYꎬLIURQꎬLIAOYHꎬetal..Anew1ꎬ2ꎬ3 ̄triazoleanditsrhodamineBderivativesasafluorescenceprobeformercuryions[J].Anal.Biochem.ꎬ2020ꎬ598:113690.[14]JINCZꎬLIANGFYꎬWANGJQꎬetal..Rationaldesignofcyclometalatediridium(Ⅲ)complexesforthree ̄photonphos ̄phorescencebioimaging[J].Angew.Chem.ꎬ2020ꎬ132(37):16121 ̄16125[15]PENJWEINIRꎬROARKEBꎬALSPAUGHGꎬetal..Singlecell ̄basedfluorescencelifetimeimagingofintracellularoxygen ̄ationandmetabolism[J].RedoxBiol.ꎬ2020ꎬ34:101549 ̄1 ̄25.㊀第10期陈㊀静ꎬ等:基于荧光猝灭效应的光纤传感器研究进展1277㊀[16]BENITO ̄PEÑAEꎬVALDÉSMGꎬGLAHN ̄MARTÍNEZBꎬetal..Fluorescencebasedfiberopticandplanarwaveguidebio ̄sensors.Areview[J].Anal.Chim.Actaꎬ2016ꎬ943:17 ̄40.[17]STENKENJA.Introductiontofluorescencesensing[J].J.Am.Chem.Soc.ꎬ2009ꎬ131(30):10791.[18]VALEURBꎬBERBERAN ̄SANTOSMN.MolecularFluorescence:PrinciplesandApplications[M].2nded.Weinheim:Wiley ̄VCHꎬ2012.[19]UTZINGERUꎬRICHARDS ̄KORTUMRR.Fiberopticprobesforbiomedicalopticalspectroscopy[J].J.Biomed.Opt.ꎬ2003ꎬ8(1):121 ̄147.[20]SÁNCHEZ ̄ESCOBARSꎬHERNÁNDEZ ̄CORDEROJ.Fiberopticfluorescencetemperaturesensorsusingup ̄conversionfromrare ̄earthpolymercomposites[J].Opt.Lett.ꎬ2019ꎬ44(5):1194 ̄1197.[21]MORADIVꎬAKBARIMꎬWILDP.Afluorescence ̄basedpHsensorwithmicrofluidicmixingandfiberopticdetectionforwiderangepHmeasurements[J].Sens.ActuatorsA:Phys.ꎬ2019ꎬ297:111507.[22]帅彬彬.光子晶体光纤表面等离子体共振传感机理及其技术研究[D].武汉:华中科技大学ꎬ2013.SHUAIBB.ResearchonThePhotonicCrystalFiberBasedPlasmonicSensingMechanismandItsTechnique[D].Wuhan:HuazhongUniversityofScienceandTechnologyꎬ2013.(inChinese)[23]LIZYꎬXUYXꎬFANGWꎬetal..Ultra ̄sensitivenanofiberfluorescencedetectioninamicrofluidicchip[J].Sensorsꎬ2015ꎬ15(3):4890 ̄4898.[24]ZHANGZHꎬHUAFꎬLIUTꎬetal..Adouble ̄taperopticalfiber ̄basedradiationwaveotherthanevanescentwaveinall ̄fi ̄berimmunofluorescencebiosensorforquantitativedetectionofEscherichiacoliO157:H7[J].PLoSOneꎬ2014ꎬ9(5):e95429.[25]刘婷.基于荧光与表面增强拉曼光谱的光纤生化传感器[D].北京:清华大学ꎬ2014:26 ̄27.LIUT.OpticalFiberBiochemicalSensorBasedonFluorescenceandsurfaceenhancedRamanSpectra[D].Beijing:Tsing ̄huaUniversityꎬ2014:26 ̄27.(inChinese)[26]邸志刚ꎬ贾春荣ꎬ姚建铨ꎬ等.基于银纳米颗粒的HCPCFSERS传感系统优化设计[J].红外与激光工程ꎬ2015ꎬ44(4):1317 ̄1322.DIZGꎬJIACRꎬYAOJQꎬetal..OptimizationonHCPCFSERSsensorbasedonsilvernanoparticles[J].InfraredLaserEng.ꎬ2015ꎬ44(4):1317 ̄1322.(inChinese)[27]CREGANRFꎬMANGANBJꎬKNIGHTJCꎬetal..Single ̄modephotonicbandgapguidanceoflightinair[J].Scienceꎬ1999ꎬ285(5433):1537 ̄1539.[28]CHENHFꎬJIANGQJꎬQIUYQꎬetal..Hollow ̄core ̄photonic ̄crystal ̄fiber ̄basedminiaturizedsensorforthedetectionofaggregation ̄induced ̄emissionmolecules[J].Anal.Chem.ꎬ2019ꎬ91(1):780 ̄784.[29]YUJꎬZHAOXMꎬLIUBHꎬetal..Reductioninlasingthresholdofhollow ̄coremicrostructuredopticalfiberoptofluidiclaserbasedonfluorescenceresonantenergytransfer[J].Opt.FiberTechnol.ꎬ2020ꎬ58:102281.[30]BODOMꎬBALLONISꎬLUMAREEꎬetal..Effectsofsub ̄toxiccadmiumconcentrationsonbonegeneexpressionprogram:resultsofaninvitrostudy[J].Toxicol.Vitroꎬ2010ꎬ24(6):1670 ̄1680.[31]FATTA ̄KASSINOSDꎬKALAVROUZIOTISIKꎬKOUKOULAKISPHꎬetal..Therisksassociatedwithwastewaterreuseandxenobioticsintheagroecologicalenvironment[J].Sci.TotalEnviron.ꎬ2011ꎬ409(19):3555 ̄3563.[32]ZHOUMJꎬGUOJJꎬYANGCX.RatiometricfluorescencesensorforFe3+ionsdetectionbasedonquantumdot ̄dopedhy ̄drogelopticalfiber[J].Sens.ActuatorsB:Chem.ꎬ2018ꎬ264:52 ̄58.[33]ZHAOLXꎬDIFꎬWANGDBꎬetal..Chemiluminescenceofcarbondotsunderstrongalkalinesolutions:anovelinsightin ̄tocarbondotopticalproperties[J].Nanoscaleꎬ2013ꎬ5(7):2655 ̄2658.[34]MURRAYCBꎬNORRISDJꎬBAWENDIMG.SynthesisandcharacterizationofnearlymonodisperseCdE(E=sulfurꎬse ̄leniumꎬtellurium)semiconductornanocrystallites[J].J.Am.Chem.Soc.ꎬ1993ꎬ115(19):8706 ̄8715.[35]LIUYFꎬTANGXSꎬHUANGWꎬetal..Afluorometricopticalfibernanoprobeforcopper(Ⅱ)byusingAgInZnSquantumdots[J].Microchim.Actaꎬ2020ꎬ187(2):146.[36]GONÇALVESHMRꎬDUARTEAJꎬESTEVESDASILVAJCG.OpticalfibersensorforHg(Ⅱ)basedoncarbondots[J].Biosens.Bioelectron.ꎬ2010ꎬ26(4):1302 ̄1306.[37]LIUTꎬWANGWQꎬJIANDꎬetal..Quantitativeremoteandon ̄siteHg2+detectionusingthehandheldsmartphonebased1278㊀发㊀㊀光㊀㊀学㊀㊀报第41卷opticalfiberfluorescencesensor(SOFFS)[J].Sens.ActuatorsB:Chem.ꎬ2019ꎬ301:127168.[38]创新.SIM系列痕量爆炸物探测器[J].军民两用技术与产品ꎬ2007(12):31.CHUANGX.SIMseriestraceexplosivedetector[J].Univers.Technol.Prod.ꎬ2007(12):31.(inChinese)[39]CHUFHꎬYANGJJ.Coil ̄shapedplasticopticalfibersensorheadsforfluorescencequenchingbasedTNTsensing[J].Sens.ActuatorsA:Phys.ꎬ2012ꎬ175:43 ̄46.[40]LIUFKꎬCUIMXꎬMAJJꎬetal..Anopticalfibertaperfluorescentprobefordetectionofnitro ̄explosivesbasedontetra ̄phenylethylenewithaggregation ̄inducedemission[J].Opt.FiberTechnol.ꎬ2017ꎬ36:98 ̄104.[41]YANGJCꎬSHENRꎬYANPXꎬetal..Fluorescencesensorforvolatiletraceexplosivesbasedonahollowcorephotoniccrystalfiber[J].Sens.ActuatorsB:Chem.ꎬ2020ꎬ306:127585.[42]DINGLYꎬFANCꎬZHONGYMꎬetal..AsensitiveopticfibersensorbasedonCdSeQDsfluorophorefornitricoxidede ̄tection[J].Sens.ActuatorsB:Chem.ꎬ2013ꎬ185:70 ̄76.[43]邓辉ꎬ王晓英ꎬ肖吉群ꎬ等.基于荧光猝灭的锥尖型光纤氧传感探头[J].仪表技术与传感器ꎬ2015(7):14 ̄17.DENGHꎬWANGXYꎬXIAOJQꎬetal..Conicaltaperedtipfiberopticaloxygensensorprobebasedonfluorescencequenching[J].Instrum.Tech.Sens.ꎬ2015(7):14 ̄17.(inChinese)[44]ENDRESS+HAUSER.TechnicalinformationoxymaxCOS61D/COS61[EB/OL].(2018 ̄07 ̄17)[2020 ̄05 ̄29].ht ̄tps://portal.endress.com/wa001/dla/5000543/5894/000/04/TI00387CEN_1312.pdf.[45]ZHAOYTꎬPANGCLꎬWENZꎬetal..Amicrofibertemperaturesensorbasedonfluorescencelifetime[J].Opt.Com ̄mun.ꎬ2018ꎬ426:231 ̄236.[46]ANRITSUMETERCO.ꎬLTD.FiberOpticthermometerFL ̄2000user smanual[EB/OL].(2019 ̄01 ̄21)[2020 ̄05 ̄29].http://www.anritsu ̄meter.com.cn.[47]ANRITSUMETERCO.ꎬLTD.4 ̄channelFiberOpticthermometer AMOTH FL ̄2400user smanual[EB/OL].(2019 ̄01 ̄21)[2020 ̄05 ̄29].http://www.anritsu ̄meter.com.cn.[48]萩原康二ꎬ郝文杰.荧光式光纤温度计[J].传感器技术ꎬ1993(6):56 ̄58.KOJIHꎬHAOWJ.Fluorescentfiberopticthermometer[J].J.Trans.Technol.ꎬ1993(6):56 ̄58.(inChinese)[49]TONXAꎬACHAVꎬBONOMIPꎬetal..Adisposableevanescentwavefiberopticsensorcoatedwithamolecularlyimprin ̄tedpolymerasaselectivefluorescenceprobe[J].Biosens.Bioelectron.ꎬ2015ꎬ64:359 ̄366.[50]ZHUYYꎬCUIMXꎬMAJJꎬetal..Fluorescencedetectionofd ̄asparticacidbasedonthiol ̄enecross ̄linkedmolecularlyimprintedopticalfiberprobe[J].Sens.ActuatorsB:Chem.ꎬ2020ꎬ305:127323.[51]NGUYENTHꎬLINYCꎬCHENCTꎬetal..Fibreopticchloridesensorbasedonfluorescencequenchingofanacridiniumdye[C].ProceedingsofThe20thInternationalConferenceonOpticalFibreSensorsꎬEdinburghꎬ2009:750314 ̄1 ̄5.[52]POLLEYNꎬSINGHSꎬGIRIAꎬetal..UltrafastFRETatfibertips:potentialapplicationsinsensitiveremotesensingofmo ̄lecularinteraction[J].Sens.ActuatorsB:Chem.ꎬ2015ꎬ210:381 ̄388.[53]GUOJJꎬNIUMXꎬYANGCX.Highlyflexibleandstretchableopticalstrainsensingforhumanmotiondetection[J].Op ̄ticaꎬ2017ꎬ4(10):1285 ̄1288.[54]崔红.胆甾修饰OPE衍生物薄膜的创制及其荧光传感性能研究[D].西安:陕西师范大学ꎬ2013:31 ̄37.CUIH.CreationofCholestericModifiedOPEDerivativeFilmandItsFluorescenceSensingPerformance[D].Xi an:ShaanxiNormalUniversityꎬ2013:26 ̄27.(inChinese)[55]李晓峰.稀土掺杂碳量子点的制备及其荧光性能的研究[D].济南:济南大学ꎬ2019:17 ̄20.LIXF.PreparationandFluorescencePropertiesofRareEarthDopedCarbonQuantumDots[D].Jinan:UniversityofJi ̄nanꎬ2014:17 ̄20.(inChinese)陈静(1997-)ꎬ女ꎬ重庆人ꎬ硕士研究生ꎬ2015年于重庆邮电大学获得学士学位ꎬ主要从事光纤荧光传感的研究ꎮE ̄mail:m201972458@hust.edu.cn夏历(1976-)ꎬ男ꎬ湖北武汉人ꎬ博士ꎬ教授ꎬ博士研究生导师ꎬ2004年于清华大学获得博士学位ꎬ主要从事光纤通信与光纤传感的研究ꎮE ̄mail:xiali@hust.edu.cn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SensorsandActuatorsA106(2003)8–14AdvancesinfluxgatesensorsPavelRipka∗DepartmentofMeasurement,FacultyofElectricalEngineering,CzechTechnicalUniversity,Technicka2,16627Praha6,CzechRepublic
AbstractThispaperreviewsrecentachievementsinthetechnologyanddesignoffluxgatesensorsandmagnetometers.Themajorrecenttrendsweredecreasingofthesensorsize,powerconsumptionandprice,and,ontheotherhand,increasingoftheprecisioninthelargerangeofthemeasuredfields.ThepotentialfrequencyrangewasincreaseduptounitsofkHz.Presentfluxgatesensorshavearesolutioncomparablewithhigh-temperaturesuperconductingquantuminterferencedevices(SQUIDs),whiletheirprecisionisthebestofvectorialfieldsensors.©2003ElsevierScienceB.V.Allrightsreserved.
Keywords:Fluxgatesensor;Fluxgatemagnetometer
1.IntroductionFluxgatesensorsmeasuredcorlow-frequencyacmag-neticfields.Theyarevectordevices,i.e.sensitivetothefielddirectionintherangeofupto1mTwithachievableresolu-tiondownto10pT.Althoughfirstfluxgatesensorsappearedinearly1930s,thesesensorsarestillbeingusedinmanyapplications.Recentdevelopmentofmagnetoresistors,es-peciallyanisotropicmagnetoresistancesensors(AMR),limitthemarketforclassicalfluxgatetoapplicationsrequir-inghighprecisionandresolution.Thispaperreviewsrecentadvancesanddevelopmentinthefluxgatetechnologysincethelastreview[1].Somerecenttrendswerealreadycom-mentedin[2].Broaderoverviewofapplicationsoffluxgatesandothermagneticfieldsensorsandmagnetometersismadein[3].Recentcomparativestudyofuncooledmagne-tometersandsuperconductingquantuminterferencedevices(SQUIDs)withproposedhybridsystemscanbefoundin[4].Fluxgateprinciplewasfirstusedinmagneticmodulators.TheexcitationcurrentIexcthroughtheexcitationcoilpro-
ducesfieldthatperiodicallysaturates(inbothdirections)thesoftmagneticmaterialofthesensorcore(Fig.1).Insatura-tionthecorepermeabilitydropsdownandthedcfluxasso-ciatedwiththemeasureddcmagneticfieldB0isdecreased.
Thenameofthedevicecomesfromthis“gating”ofthefluxthatoccurswhenthecoreissaturated.Whenthemeasuredfieldispresent,thevoltageViisinducedintothesensing(pick-up)coilatthesecond(andalsohighereven)harmonicsoftheexcitationfrequency.Thisvoltage,proportionaltothe
∗Tel.:+420-2-2435-3945;fax:+420-2-3333-9929.
E-mailaddress:ripka@feld.cvut.cz(P.Ripka).
measuredfield,isusuallythesensoroutput,butsomeflux-gatesalsoworkintheshort-circuitedmode(current-output).Althoughthefluxgateeffectisknownfordecades,itstillattractsinterestoftheoreticalwork.KaplanandSuissahadshownadualitybetweenelectricantennaandgappedflux-gate[5,6].Theyalsonewlyderivedthesensorresponsetonon-uniformfields.Althoughtheirresultsarenotdirectlyapplicableforcommonlyused“short”fluxgates,theyhelptounderstandfluxgateeffect.Trujilloetal.analyzefluxgateusingsimplespicemodel[7].ThistoolallowstoevaluatetheinfluenceofthecoreBHloopshapeandexcitationwaveformontheopen-loopperformanceofthesensor.Fluxgatemagnetometersareusedingeophysicsandforspaceapplications.SpaceapplicationsoffluxgatesensorswererecentlyreviewedbyAcuna[8].Fluxgatecompassesareexploitedforaircraftandvehiclenavigation.Theflux-gateprincipleisalsoemployedincurrentsensorsandpre-cisecurrentcomparatorsandforremotemeasurementofdccurrents.Forreadingmagneticmarksandlabelsandforde-tectionofferromagneticobjects,compactfluxgatemagne-tometersareused.Fluxgatesensorsarereliablesolid-statedevices,work-inginawidetemperaturerange.Resolutionof100pTand10nTabsoluteprecisionisstandardincommerciallypro-duceddevices,buttheycanreach10pTresolutionand1nTlong-termstability.Manydcfluxgatemagnetometershaveacut-offfrequencyofseveralHertz,butwhennecessary,theycanworkuptokilohertzfrequencies[9].Thetemperaturestabilityisthefollowing:theoffsetdriftmaybewellbe-low0.1nT/◦C,andthesensitivitytempcoisusuallyaround
50–30ppm/◦C,butsomefluxgatesarecompensatedupto
0924-4247/$–seefrontmatter©2003ElsevierScienceB.V.Allrightsreserved.doi:10.1016/S0924-4247(03)00094-3P.Ripka/SensorsandActuatorsA106(2003)8–149Fig.1.Fluxgateprinciple.1ppm/◦C.Iftheyworkinthefeedbackmode,theresult-ingmagnetometerlinearityerrormaybeaslowas10−5
[10].Ifresolutioninthenanoteslarangeisrequired,fluxgatesarethebestselection.Comparedtohigh-temperaturesu-perconductingquantuminterferencedevicetheymayhavesimilarnoiselevel,butthemeasurementrangeoffluxgateismuchlarger.IfpTorevensmallerfieldsaremeasured,alow-temperatureSQUIDshouldbeused.Magnetoresis-tors,mainlyanisotropicmagnetoresistancesensors,arethemaincompetitorsoffluxgatesensors.Commerciallyavail-ableAMRmagnetoresistorssuchasPhilipsKMZhaveares-olutionworsethan10nT,buttheyaresmallerandcheaperandmayconsumelessenergy.LinearityofthebestpresentcompensatedAMRsensorsis0.05%[11,12].Themostlyusedmodernlow-noisefluxgatesensoristhe“parallel”typewithring-core.“Parallel”typemeansthattheexcitationandthemeasuredfieldhavethesamedirection.Orthogonaltypeisrarelyused,mostlyinthin-filmdevices.Thesecondharmonicintheinducedvoltageisextractedbyaphase-sensitivedetector,andthepick-upcoiloftenservesalsoforthefeedback.Current-outputisalsousedinsomedesigns.Otherdesignsareusedforspecialpurposes,suchasrod-typesensorsfornon-destructivetestingorpositionsensing[13].