导数及其应用测试题(有详细答案)
高中数学导数及其应用综合检测试题及答案

高中数学导数及其应用综合检测试题及答案第一章导数及其应用综合检测时间 120 分钟,满分150 分。
一、选择题 (本大题共12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.(2019 全国Ⅱ文, 7)若曲线 y= x2 +ax+ b 在点 (0, b)处的切线方程是 x- y+ 1=0,则 ()A.a= 1,b= 1B.a=- 1, b= 1C.a= 1,b=- 1D .a=- 1, b=- 1[答案]A[ 分析 ]y=2x+ a,y|x= 0= (2x+ a)|x= 0= a=1,将(0, b)代入切线方程得b= 1.2.一物体的运动方程为s= 2tsint+ t,则它的速度方程为()A.v= 2sint+2tcost+ 1B.v =2sint+ 2tcostC.v =2sintD .v= 2sint+2cost+1[答案]A[ 分析 ]由于变速运动在t0 的刹时速度就是行程函数y=s(t)在 t0 的导数, S=2sint+ 2tcost+ 1,应选 A.3.曲线 y=x2 + 3x 在点 A(2,10) 处的切线的斜率是()A .4B.5C.6D .7[答案] D[ 分析 ]由导数的几何意义知,曲线y= x2+ 3x 在点 A(2,10)处的切线的斜率就是函数y= x2+3x 在 x= 2 时的导数, y|x =2=7,应选 D.4.函数 y=x|x(x - 3)|+1()A .极大值为 f(2) = 5,极小值为f(0)= 1B.极大值为 f(2) = 5,极小值为f(3)=1C.极大值为 f(2) = 5,极小值为f(0)=f(3) = 1D .极大值为 f(2) = 5,极小值为f(3)= 1, f( - 1)=- 3[答案 ]B[分析 ]y=x|x(x - 3)|+ 1=x3 - 3x2+ 1 (x0 或 x3)- x3+ 3x2+1 (03)y= 3x2 -6x (x0 或 x3)- 3x2+ 6x (03)x变化时, f(x) ,f(x) 变化状况以下表:x (-, 0) 0 (0,2) 2 (2,3) 3 (3 ,+ )f(x)+0+0-0+f(x) ? 无极值? 极大值 5 ? 极小值 1 ?f(x) 极大= f(2) =5, f(x) 极小= f(3) =1故应选 B.5.(2009 安徽理, 9)已知函数 f(x) 在 R 上知足 f(x) = 2f(2 - x)-x2 + 8x- 8,则曲线 y= f(x) 在点 (1,f(1)) 处的切线方程是 ()A.y= 2x-1B.y= xC.y= 3x-2D .y=- 2x+ 3[答案]A[ 分析 ]此题考察函数分析式的求法、导数的几何意义及直线方程的点斜式.∵f(x) =2f(2 - x) -x2 + 8x-8,f(2 - x) =2f(x) - x2- 4x+ 4,f(x) =x2, f(x) = 2x,曲线 y= f(x) 在点 (1, f(1)) 处的切线斜率为2,切线方程为y-1=2(x -1), y= 2x- 1.6.函数 f(x) = x3+ax2+ 3x- 9,已知 f(x) 在 x=- 3 时获得极值,则 a 等于 ()A.2B.3C.4D .5[答案] D[ 分析 ]f(x) = 3x2 +2ax+ 3,∵ f(x) 在 x=- 3 时获得极值,x=- 3 是方程 3x2+ 2ax+3= 0 的根,a= 5,应选 D.7.设 f(x) ,g(x) 分别是定义在R 上的奇函数和偶函数.当x0时, f(x)g(x) + f(x)g(x)0 ,且 g(- 3)= 0,则不等式 f(x)g(x)0的解集是 ()A.(- 3,0)(3,+ )B.(-3,0)(0,3)C.(-,- 3)(3,+ )D .(-,- 3)(0,3)[答案] D[ 分析 ]令F(x)=f(x)g(x),易知F(x)为奇函数,又当x0 时,f(x)g(x) + f(x)g(x)0 ,即 F(x)0 ,知 F(x) 在(-, 0)内单一递加,又 F(x) 为奇函数,所以 F(x) 在 (0,+ )内也单一递加,且由奇函数知 f(0) =0, F(0)= 0.又由 g(-3)= 0,知 g(3)= 0F(- 3)= 0,从而 F(3)= 0于是 F(x) = f(x)g(x) 的大概图象以下图F(x) = f(x)g(x)0 的解集为 (-,- 3)(0,3) ,故应选 D.8.下边四图都是同一坐标系中某三次函数及其导函数的图象,此中必定不正确的序号是()A.①②B.③④C.①③D.①④[答案]B[ 分析 ]③不正确;导函数过原点,但三次函数在x= 0 不存在极值;④不正确;三次函数先增后减再增,而导函数先负后正再负.故应选 B.9. (2019 湖南理, 5)241xdx 等于 ()A .- 2ln2B.2ln2C.- ln2D .ln2[答案] D[ 分析 ]由于(lnx)=1x,所以 241xdx =lnx|42 =ln4 -ln2= ln2.10.已知三次函数f(x) = 13x3 - (4m- 1)x2+ (15m2 -2m-7)x +2 在 x( -,+ )是增函数,则m 的取值范围是 ()A .m2 或 m4B.- 4- 2C.24D.以上皆不正确[答案] D[ 分析 ]f(x) = x2- 2(4m- 1)x+ 15m2- 2m- 7,由题意得 x2 -2(4m- 1)x+ 15m2-2m-70 恒建立,= 4(4m -1)2-4(15m2 -2m-7)=64m2- 32m+ 4-60m2+ 8m+ 28=4(m2 -6m+8)0,24,应选 D.11.已知 f(x) =x3 + bx2+ cx+d 在区间 [- 1,2] 上是减函数,那么 b+ c()A .有最大值152B.有最大值- 152C.有最小值152D .有最小值- 152[答案]B[ 分析 ]由题意f(x)=3x2+2bx+c在[-1,2]上,f(x)0恒建立.所以 f( - 1)0f(2)0即 2b-c-304b+ c+120令 b+ c= z, b=- c+ z,如图过 A -6,- 32 得 z 最大,最大值为 b+c=- 6- 32=- 152.故应选 B.12.设 f(x) 、g(x) 是定义域为R 的恒大于 0 的可导函数,且f(x)g(x) - f(x)g(x)0 ,则当 ab 时有 ()A.f(x)g(x)f(b)g(b)B.f(x)g(a)f(a)g(x)C.f(x)g(b)f(b)g(x)D .f(x)g(x)f(a)g(x)[答案] C[ 分析 ]令F(x)=f(x)g(x)则 F(x) = f(x)g(x) - f(x)g(x)g2(x)0f(x) 、g(x) 是定义域为R 恒大于零的实数F(x) 在 R 上为递减函数,当 x(a,b)时, f(x)g(x)f(b)g(b)f(x)g(b)f(b)g(x) .故应选 C.二、填空题 (本大题共 4 个小题,每题 4 分,共 16 分.将正确答案填在题中横线上)13.-2- 1dx(11+ 5x)3=________.[答案 ]772[ 分析 ]取F(x)=-110(5x+11)2,从而 F(x) = 1(11+ 5x)3则- 2-1dx(11 + 5x)3= F(-1)-F(- 2)=- 11062+ 11012= 110- 1360=772.14.若函数 f(x) = ax2-1x 的单一增区间为(0,+),则实数 a的取范是 ________.[ 答案 ] a0[ 分析 ] f(x) = ax-1x= a+1x2,由意得, a+ 1x20, x(0,+ )恒建立,a- 1x2, x(0 ,+ )恒建立, a0.15. (2009 西理, 16) 曲 y= xn +1(nN*) 在点 (1,1)的切与 x 的交点的横坐xn ,令 an= lgxn , a1+ a2+⋯+a99 的 ________.[答案 ]-2[ 分析 ]本小主要考数的几何意和数函数的相关性.k= y|x= 1=n+ 1,切 l :y- 1= (n+ 1)(x - 1),令 y= 0, x=nn+ 1,an= lgnn + 1,原式= lg12 +lg23 +⋯+ lg99100=l g1223 ⋯99100= lg1100=- 2.16.如暗影部分是由曲y=1x , y2=x 与直 x= 2, y =0 成,其面________.[ 答案 ]23+ ln2[ 分析 ]由y2=x,y=1x,得交点A(1,1)由 x= 2y= 1x 得交点 B2, 12.故所求面S= 01xdx +121xdx=23x3210 + lnx21 = 23+ ln2.三、解答题 (本大题共 6 个小题,共74 分.解答应写出文字说明、证明过程或演算步骤)17.(此题满分 12 分 )(2019 江西理,19)设函数 f(x) = lnx + ln(2-x)+ ax(a0).(1)当 a= 1 时,求 f(x) 的单一区间;(2)若 f(x) 在 (0,1] 上的最大值为12,求 a 的值.[ 分析 ]函数f(x)的定义域为(0,2),f(x) =1x- 12- x+a,(1)当 a= 1 时, f(x) =- x2+2x(2 -x) ,所以 f(x) 的单一递加区间为 (0, 2),单一递减区间为 (2 ,2);(2)当 x(0,1] 时, f(x) =2-2xx(2 - x) +a0,即 f(x) 在 (0,1] 上单一递加,故f(x) 在 (0,1] 上的最大值为f(1) =a,所以 a=12.18.(此题满分12 分 )求曲线 y=2x- x2,y= 2x2 -4x 所围成图形的面积.[ 分析 ]由y=2x-x2,y=2x2-4x得x1=0,x2=2.由图可知,所求图形的面积为S= 02(2x - x2)dx + |02(2x2-4x)dx| =02(2x -x2)dx - 02(2x2 - 4x)dx.由于 x2- 13x3= 2x-x2,23x3- 2x2= 2x2-4x ,所以 S= x2-13x320 -23x3- 2x220= 4.19. (此题满分 12 分 )设函数 f(x) =x3 - 3ax+ b(a0).(1)若曲线 y= f(x) 在点 (2, f(2)) 处与直线y= 8 相切,求a,b 的值;(2)求函数 f(x) 的单一区间与极值点.[ 剖析 ]考察利用导数研究函数的单一性,极值点的性质,以及分类议论思想.[ 分析 ](1)f(x) = 3x2- 3a.由于曲线 y=f(x) 在点 (2, f(2)) 处与直线 y=8 相切,所以 f(2) = 0, f(2) =8.即 3(4-a)= 0, 8-6a+ b= 8.解得 a= 4,b= 24.(2)f(x) = 3(x2- a)(a0).当 a0 时, f(x)0 ,函数 f(x) 在 (-,+ )上单一递加,此时函数f(x) 没有极值点.当 a0 时,由 f(x) = 0 得 x= a.当 x( -,- a)时, f(x)0 ,函数 f(x) 单一递加;当 x( - a, a)时, f(x)0 ,函数 f(x) 单一递减;当 x(a,+ )时, f(x)0 ,函数 f(x) 单一递加.此时 x=- a 是 f(x) 的极大值点, x= a 是 f(x) 的极小值点.20. (此题满分 12 分 )已知函数f(x) = 12x2 +lnx.(1)求函数 f(x) 的单一区间;(2)求证:当x1 时, 12x2 + lnx23x3.[ 分析 ] (1)依题意知函数的定义域为{x|x0} ,∵f(x) =x+ 1x,故 f(x)0 ,f(x) 的单一增区间为(0,+ ).(2)设 g(x) = 23x3-12x2 - lnx ,g(x) = 2x2 -x- 1x,∵当 x1 时, g(x) = (x- 1)(2x2 + x+ 1)x0,g(x) 在 (1,+ )上为增函数,g(x)g(1) = 160,当 x1 时, 12x2 +lnx23x3.21. (此题满分 12 分 )设函数 f(x) =x3 - 92x2+ 6x- a.(1)关于随意实数x,f(x)m 恒建立,求m 的最大值;(2)若方程 f(x) =0 有且仅有一个实根,求 a 的取值范围.[ 剖析 ]此题主要考察导数的应用及转变思想,以及求参数的范围问题.[ 分析 ](1)f(x) = 3x2- 9x+ 6= 3(x- 1)(x -2).由于 x( -,+ ). f(x)m ,即 3x2- 9x+ (6- m)0 恒建立.所以= 81- 12(6- m)0,得 m- 34,即 m 的最大值为- 34. (2)由于当 x1 时, f(x)0 ;当 12 时, f(x)0 ;当 x2 时 f(x)0.所以当 x= 1 时, f(x) 取极大值 f(1) = 52-a,当 x= 2 时, f(x) 取极小值 f(2) =2- a.故当 f(2)0 或 f(1)0 时,方程 f(x) = 0 仅有一个实根,解得a2或 a52.22. (此题满分 14 分 )已知函数f(x) =- x3+ax2+ 1(aR).(1)若函数 y= f(x) 在区间 0, 23 上递加,在区间23,+上递减,求 a 的值;(2)当 x[0,1] 时,设函数 y=f(x) 图象上随意一点处的切线的倾斜角为,若给定常数a32,+,求的取值范围;(3)在 (1)的条件下,能否存在实数m,使得函数 g(x) = x4- 5x3+(2- m)x2 + 1(mR) 的图象与函数 y= f(x) 的图象恰有三个交点.若存在,恳求出实数 m 的值;若不存在,试说明原因.[ 分析 ] (1)依题意 f23 = 0,由 f(x) =- 3x2+ 2ax,得- 3232+ 2a23= 0,即 a=1.(2)当 x[0,1] 时, tan= f(x) =- 3x2+ 2ax=- 3x- a32+a23.由 a32,+,得 a312,+ .①当 a312,1,即 a32,3 时, f(x)max = a23,f(x)min =f(0) = 0.此时 0tana23.②当 a3(1,+),即 a(3,+)时,f(x)max =f(1) = 2a- 3,f(x)min =f(0) =0,此时, 0tan2a- 3.又∵ [0, ),当 323 时, 0,arctana23,当 a3 时, [0 ,arctan(2a-3)] .(3)函数 y= f(x) 与 g(x) =x4 -5x3+ (2-m)x2 + 1(mR) 的图象恰有 3 个交点,等价于方程-x3+x2 +1=x4- 5x3+ (2-m)x2 + 1 恰有 3 个不等实根,x4- 4x3+ (1-m)x2 = 0,明显 x= 0 是此中一个根 (二重根 ),方程 x2- 4x +(1- m)= 0 有两个非零不等实根,则=16- 4(1- m)01- m0“师”之观点,大概是从先秦期间的“师长、师傅、先生”而来。
导数应用测试题及参考答案

导数应用测试题一、选择题:(本大题共12小题,每小题5分, 共60分) 1.设函数f(x)在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于 ( )A .)('0x fB .)('0x f -C .)('0x f --D .)(0x f -- 2.若13)()2(lim000=∆-∆+→∆xx f x x f x ,则)('0x f 等于 ( ) A .32 B .23C .3D .2 3.曲线x x y 33-=上切线平行于x轴的点的坐标是( )A .(-1,2)B .(1,-2)C .(1,2)D .(-1,2)或(1,-2) 4.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切 线的倾斜角为( )A .90°B .0°C .锐角D .钝角5.函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是 ( )A .5,-15B .5,-4C .-4,-1D .5,-166.一直线运动的物体,从时间t 到t+△t 时,物体的位移为△s ,那么ts t ∆∆→∆0lim 为( )A .从时间t 到t+△t 时,物体的平均速度B .时间t 时该物体的瞬时速度C .当时间为△t 时该物体的速度D .从时间t 到t+△t 时位移的平均变化率7.关于函数762)(23+-=x x x f ,下列说法不正确的是( )A .在区间(∞-,0)内,)(x f 为增函数B .在区间(0,2)内,)(x f 为减函数C .在区间(2,∞+)内,)(x f 为增函数D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数8.对任意x ,有34)('x x f =,f(1)=-1,则此函数为 ( ) A .4)(x x f = B .2)(4-=x x f C .1)(4+=x x f D .2)(4+=x x f9.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( )A.5 , -15B.5 , 4C.-4 , -15D.5 , -1610.抛物线y=x 2到直线x-y-2=0的最短距离为 ( )A .2B 。
导数及其应用测试题(有详细答案)

12.已知函数f{x)=x3+ax2+bx+a2在ul处有极值为10,则犬2)等于.JT13.函数y=尤+2cosx在区间[0,—]±的最大值是14.已知函数fM=x3+ax在R上有两个极值点,则实数。
的取值范围是15.已知函数八尤)是定义在R上的奇函数,/(1)=0,二⑴;'3)>0危>0),则不等式%x2f(x)>0的解集是三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)16.设函数/(x)=2x3+3破2+3笊+8c在x=1刚好工=2取得极值.(1)求。
、b的值;(2)若对于随意的xg[0,3],都有/(x)<c2成立,求c的取值范围.17.已知函数f(x)=2x3-3x2+3.(1)求曲线y=f(x)在点工=2处的切线方程;(2)若关于工的方程/(x)+m=0有三个不同的实根,求实数m的取值范围.18.设函S/W=x3-6x+5,x e R.(1)求f(x)的单调区间和极值;《导数及其应用》一、选择题1.r(x0)=o是函数y(尤)在点气处取极值的:A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2、设曲线y=x2+l在点(x,/(x))处的切线的斜率为g(x),WI函数>=g(x)cosx的部分图象可以4.若曲线y=x2+ax+b在点(0,方)处的切线方程是x-j+l=0,贝!|()A.q=L b=lB.a=—1,b=lC.g=L b=—1D.a=—1,b=—15.函数/(x)=x3+ttx2+3x—9,已知处)在x=—3时取得极值,则0等于()A.2B.3C.4D.56.设函数f⑴的导函数为扩(x),且/(x)=x2+2x-r(l),则广(0)等于()A、0B>-4C、-2D、27.直线y=x是曲线y=a+lnx的一条切线,则实数。
的值为()A.-1B.eC.In2D.18.若函数f(x)=x3-12x^区间以-盘+1)上不是单调函数,则实数k的取值范围()A.kJ—3^4—1■ k<23B.—3<上<—l^(il<k<3C.-2<k<2D.不存在这样的实数k9.函数f(x)的定义域为(m),导函数/(%)在(。
导数及其应用测试题(有详细答案)

《导数及其应用》一、选择题1。
0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A 。
B. C 。
D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2+ax +b在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56。
设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、4-C 、2-D 、27。
直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .18。
若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个 10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11。
高考数学导数及其应用专题训练参考答案

高考数学:导数及其应用专题训练【参考答案】1.A2.A3.D4.A5.C6.C7.A8.A9.C10.⎩⎨⎧⎭⎬⎫x | 12<x<2 ; 11. 4 ; 12. 32; 13.—16 ; 14.y =3x +1 ; 15.3-1【部分习题解析】4.解析:f ′(x)=6x(x -2),∵f(x)在(-2,0)上为增函数,在(0,2)上为减函数,∴当x =0时,f(x)=m 最大.∴m =3,f(-2)=-37,f(2)=-5.答案:A5.解析:因为y ′=-x2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9是函数的极大值点,又因为函数在(0,+∞)上只有一个极大值点,所以函数在x =9处取得最大值. 答案:C6.解析:∵f(x)=-12x2+bln(x +2)在(-1,+∞)上是减函数,∴f ′(x)=-x +bx +2<0在(-1,+∞)上恒成立,即b<x(x +2)在(-1,+∞)上恒成立.设g(x)=x(x +2)=(x +1)2-1在(-1,+∞)上单调递增, ∴g(x)>-1. ∴当b ≤-1时,b<x(x +2)在(-1,+∞)上恒成立.即f(x)=-12x2+bln(x +2)在(-1,+∞)上是减函数.答案:C7.解析:由函数f(x)可知f(x -1)=⎩⎪⎨⎪⎧x x <1,-x x ≥1.①当x <1时,原不等式等价于x +(x +1)x ≤3,解得-3≤x ≤1,又x <1,所以-3≤x <1;②当x ≥1时,原不等式等价于x +(x+1)(-x)≤3,即x2≥-3恒成立,所以x ≥1,综合①②可知,不等式的解集为{x|x ≥-3}.9.解析:船速度为x(x>0)时,燃料费用为Q 元,则Q =kx3,由6=k ×103可得k =3500,∴Q =3500x3.∴总费用y =⎝⎛⎭⎫3500x3+96·1x =3500x2+96x ,y ′=6500x -96x2.令y ′=0得x =20,当x ∈(0,20)时,y ′<0,此时函数单调递减,当x ∈(20,+∞)时,y ′>0,此时函数单调递增,∴当x =20时,y 取得最小值,∴此轮船以20公里/小时的速度使行驶每公里的费用总和最小.答案:C10.[解析] 由题意可知a>0,且-2,1是方程ax2+bx +c =0的两个根,则⎩⎨⎧-ba=-1,ca =-2,解得⎩⎪⎨⎪⎧b =a ,c =-2a ,所以不等式cx2+bx +a>c(2x -1)+b 可化为-2ax2+ax +a>-2a(2x -1)+a ,整理得2x2-5x +2<0,解得12<x<2.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x | 12<x<2.11.解析:若x =0,则不论a 取何值,f(x)≥0显然成立. 当x >0,即x ∈(0,1]时,f(x)=ax3-3x +1≥0可化为a ≥3x2-1x3.设g(x)=3x2-1x3,则g ′(x)=31-2x x4,所以g(x)在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g(x)max =g ⎝⎛⎭⎫12=4,从而a ≥4. 当x <0,即x ∈[-1,0]时, 同理,a ≤3x2-1x3. g(x)在区间[-1,0)上单调递增,∴g(x)min =g(-1)=4,从而a ≤4,综上,可知a =4. 答案:412.解析:由题意得f ′(x)=3x2-12,令f ′(x)=0得x =±2,且f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,所以M =24,m =-8,M -m =32. 答案:3215.解析:f ′(x)=x2+a -2x2x2+a 2=a -x2x2+a 2,当x >a 时,f ′(x)<0,f(x)单调递减,当-a <x <a 时,f ′(x)>0,f(x)单调递增,当x =a 时,f(x)=a 2a =33,a =32<1,不合题意. ∴f(x)max =f(1)=11+a =33,a =3-1. 答案:3-116.解:(1)f ′(x)=3x2-9x +6=3(x -1)(x -2),因为x ∈(-∞,+∞),f ′(x)≥m , 即3x2-9x +(6-m)≥0恒成立.所以Δ=81-12(6-m)≤0,得m ≤-34,即m 的最大值为-34.17.解析:(1)∵f(x)=1-x ax +lnx ,∴f ′(x)=ax -1ax2(a>0).∵函数f(x)在[1,+∞)上为增函数,∴f ′(x)=ax -1ax2≥0对x ∈[1,+∞)恒成立.∴ax -1≥0对x ∈[1,+∞)恒成立.即a ≥1x 对x ∈[1,+∞)恒成立. ∴a ≥1.(2)当a =1时,f ′(x)=x -1x2.∴当x ∈⎣⎡⎭⎫12,1时,f ′(x)<0, 故f(x)在x ∈⎣⎡⎭⎫12,1上单调递减;当x ∈(1,2]时,f ′(x)>0,故f(x)在x ∈(1,2]上单调递增. ∴f(x)在区间⎣⎡⎦⎤12,2上有唯一极小值点,故f(x)min =f(x)极小值=f(1)=0. 又f ⎝⎛⎭⎫12=1-ln2,f(2)=-12+ln2,f(12)-f(2)=32-2ln2=lne3-ln162, ∵e3>16,∴f ⎝⎛⎭⎫12-f(2)>0,即f ⎝⎛⎭⎫12>f(2). ∴f(x)在区间⎣⎡⎦⎤12,2上的最大值f(x)max =f ⎝⎛⎭⎫12=1-ln2. 综上可知,函数f(x)在⎣⎡⎦⎤12,2上的最大值是1-ln2,最小值是0.(3)当a =1时,f(x)=1-x x +lnx ,f ′(x)=x -1x2,故f(x)在[1,+∞)上为增函数.当n>1时,令x =nn -1,则x>1,故f(x)>f(1)=0. ∴f ⎝⎛⎭⎫n n -1=1-n n -1n n -1+ln n n -1=-1n +ln n n -1>0, 即ln n n -1>1n . ∴ln 21>12,ln 32>13,ln 43>14,…,ln n n -1>1n .∴ln 21+ln 32+ln 43+…+ln n n -1>12+13+14+…+1n .∴lnn>12+13+14+ (1).即对大于1的任意正整数n ,都有lnn>12+13+14+…+1n .本题的关键在于f(x)=1-x x +lnx ,f ′(x)=x -1x2,故f(x)在[1,+∞)上为增函数.当n>1时,令x =n n -1,则x>1,故f(x)>f(1)=0,∴f ⎝⎛⎭⎫n n -1=1-nn -1n n -1+lnnn -1=-1n +ln n n -1>0,即ln n n -1>1n.怎么想到要这么做,主要受前面两小题的强烈提示.通过本题的学习,我们要掌握此类问题一般规律.本题出错在于同学完全没有想到利用前面的结论,而直接讨论函数f(x)=ln x x -1-1x 的单调性求解,可以试试看,肯定行不通.18.解:(1)由f(x)=g(x),得k =lnxx2.令h(x)=lnx x2,所以方程f(x)=g(x)在区间⎣⎡⎦⎤1e ,e 内解的个数即为函数h(x)=lnxx2,x ∈⎣⎡⎦⎤1e ,e 的图象与直线y =k 交点的个数.h ′(x)=1-2lnxx3,当h ′(x)=0时,x = e.当x 在区间⎣⎡⎦⎤1e ,e 内变化时,h ′(x),h(x)变化如下: x ⎣⎡⎭⎫1e ,ee (e ,e] h ′(x) + 0 - h(x)递增12e递减当x =1e 时,y =-e2;当x =e 时,y =12e ;当x =e 时,y =1e2.所以,①当k>12e 或k<-e2时,该方程无解.②当k =12e 或-e2≤k<1e2时,该方程有一个解.③当1e2≤k<12e 时,该方程有两个解.(2)由(1)知lnx x2≤12e ,∴lnx x4≤12e ·1x2.∴ln224+ln334+…+lnn n4≤12e ⎝⎛⎭⎫122+132+…+1n2. ∵122+132+…+1n2<11·2+12·3+…+1n -1·n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =1-1n <1.∴ln224+ln334+…+lnn n4<12e. 19.解析:设包装盒的高为h(cm),底面边长为a(cm).由已知得a =2x ,h =60-2x2=2(30-x),0<x <30.(1)S =4ah =8x(30-x)=-8(x -15)2+1 800,所以当x =15时,S 取得最大值.(2)V =a2h =22(-x3+30x2),V ′=62x(20-x). 由V ′=0得x =0(舍去)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12. 即包装盒的高与底面边长的比值为12.引入恰当的变量、建立适当的模型是解题的关键.第(1)中侧面积 S是关于 x 的二次函数,可以利用抛物线的性质求最值,也可以利用导数求解;而第(2)题中容积 V 是关于 x 的三次函数,因此只能利用导数求最值.20.解析:(1)f ′(x)=3ax2+2bx +c ,依题意⎩⎪⎨⎪⎧ f ′1=3a +2b +c =0,f ′-1=3a -2b +c =0⇒⎩⎪⎨⎪⎧b =0,3a +c =0. 又f ′(0)=-3,∴c =-3,a =1. ∴f(x)=x3-3x.(2)设切点为(x0,x30-3x0),∵f ′(x)=3x2-3,∴f ′(x0)=3x20-3. ∴切线方程为y -(x30-3x0)=(3x20-3)(x -x0), 又切线过点A(2,m),∴m -(x30-3x0)=(3x20-3)(2-x0). ∴m =-2x30+6x20-6. 令g(x)=-2x3+6x2-6,则g ′(x)=-6x2+12x =-6x(x -2). 由g ′(x)=0得x =0或x =2.g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2. 画出草图知(如图4-3-3),当-6<m <2时,m =-2x3+6x2-6有三解, ∴ m 的取值范围是(-6,2).21.解析:(1)由已知有f ′(x)=x +1x ,当x ∈[1,e]时,f ′(x)>0,f(x)在[1,e]上为增函数,∴f(x)max =f(e)=12e2+1,f(x)min =f(1)=12.(2)证明:设F(x)=12x2+lnx -23x3, 则F ′(x)=x +1x -2x2=1-x 1+x +2x2x当x ∈[1,+∞)时,F ′(x)<0,F(x)在[1,+∞)上为减函数,且F(1)=-16<0故x ∈[1,+∞)时,F(x)<0. ∴12x2+lnx <23x3.∴在[1,+∞)上,函数f(x)的图像在函数g(x)=23x3图像的下方.方法点睛 一般地,在闭区间[a ,b]上的连续函数f(x)必有最大值与最小值,在开区间(a ,b)内的连续函数不一定有最大值与最小值,若函数y =f(x)在闭区间[a ,b]上单调递增,则f(a)是最小值,f(b)是最大值;反之,则f(a)是最大值,f(b)是最小值.22.解析:(1)f ′(x)=3x2+2ax.由已知条件⎩⎪⎨⎪⎧ f 1=0,f ′1=-3,即⎩⎪⎨⎪⎧a +b +1=0,2a +3=-3,解得⎩⎪⎨⎪⎧a =-3,b =2. (2)由(1)知f(x)=x3-3x2+2,f ′(x)=3x2-6x =3x(x -2),f ′(x)与f(x)随x 变化情况如下:x (-∞,0) 0 (0,2) 2 (2,+∞) f ′(x)+-+f(x) 2 ↘ -2由f(x)=f(0)解得x =0,或x =3.因此根据f(x)的图像当0<t ≤2时,f(x)的最大值为f(0)=2,最小值为f(t)=t3-3t2+2; 当2<t ≤3时,f(x)的最大值为f(0)=2,最小值为f(2)=-2; 当t >3时,f(x)的最大值为f(t)=t3-3t2+2,最小值为f(2)=-2. 23.解析:(1)函数f(x)的定义域为(-∞,+∞),因为f ′(x)=x +ex -(ex +xex)=x(1-ex), 由f ′(x)=x(1-ex)>0得x <0,f ′(x)<0得x >0,则f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞). (2)由(1)知,f(x)在[0,2]上单调递减,在[-2,0)上单调递增,又f(-2)=2+3e2,f(2)=2-e2,且2+3e2>2-e2,所以x ∈[-2,2]时,[f(x)]min =2-e2,故m <2-e2时,不等式f(x)>m 恒成立.【方法点睛】 1.不等式恒成立问题一般转化为函数的最值(或值域)来求解.其解题步骤为①分离参数;②构造函数;③求函数的最值(或值域);④由恒成立得出参数的取值范围.2.在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合,用导数求解实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义该极值点就是最值点.24.规范解题:(1)f ′(x)=a ⎝⎛⎭⎫x +1x -lnx x +12-bx2.(1分)由于直线x +2y -3=0的斜率为-12,且过点(1,1).故⎩⎪⎨⎪⎧f 1=1,f ′1=-12,(3分) 即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得a =1,b =1.(4分)(2)证明:由(1)知f(x)=lnx x +1+1x ,所以f(x)-lnx x -1=11-x2⎝⎛⎭⎫2lnx -x2-1x .(5分) 考虑函数h(x)=2lnx -x2-1x(x >0),(6分)则h ′(x)=2x -2x2-x2-1x2=-x -12x2.(8分)所以当x ≠1时,h ′(x)<0.而h(1)=0,故 当x ∈(0,1)时,h(x)>0,可得11-x2h(x)>0;(9分)当x ∈(1,+∞)时,h(x)<0,可得11-x2h(x)>0.(10分)从而当x >0,且x ≠1时,f(x)-lnxx -1>0,即f(x)>lnxx -1.(12分)【方法点睛】模板构建:利用导数证明不等式的基本步骤: 第一步 作差f(x)-lnxx -1; 第二步 构造新的函数h(x); 第三步 对h(x)求导;第四步 利用h ′(x)判断11-x2h(x)的正负;第五步 结论.。
导数及其应用(小题)

)
A.2x-y-4=0 B.2x+y=0 C.x+y+1=0 D.x-y-3=0
【解析】 ∵f(1)=-2,∴点(1,-2)在函数的图像上.
1-lnx
1-ln1
∴f′(x)= x2 ,∴f′(1)= 12 =1,∴切线方程是 y-(-2)=1·(x-1),即 x-y-3=0.
故选 D.
(2)已知函数 f(x)=x3-4x2+5x-4,则曲线 f(x)过点 A(2,-2)的切 线方程为________.
【解析】 设切点坐标为(x0,x03-4x20+5x0-4), ∵f′(x0)=3x20-8x0+5,∴切线方程为 y-(-2)=(3x20-8x0+5)(x-2). 又切线过点(x0,x03-4x20+5x0-4),∴x30-4x20+5x0-2=(3x02-8x0+5)(x0-2). 整理得(x0-2)2(x0-1)=0,解得 x0=2 或 x0=1. ∴经过 A(2,-2)的曲线 f(x)的切线方程为 x-y-4=0,或 y+2=0.
(2)函数 f(x)=excosx 的图像在点(0,f(0))处的切线的倾斜角为( )
π A.4
B.0
3π C. 4
D.1
【解析】 f′(x)=excosx-exsinx,所以 f′(0)=e0cos0-e0sin0=1,所以倾斜 角 α=4π.故选 A.
【典例 2】 (求切线方程)
(1)函数 f(x)=lnx-x 2x的图像在点(1,-2)处的切线方程为(
(3)求曲线 f(x,y)=0 在(x0,y0)处的切线方程得: ①对 f(x,y)=0 两边同时对 x 求导(y2 按 x 的复合函数对待); ②解出 y′=g(x,y); ③将(x0,y0)代入上式得斜率; ④点斜式写出方程.
导数及其应用试题及详细解答(基础)

当 x 1时, f x 0 ,即 f x 1 ln x 单调递减,
x
又函数 f x 1 ln x 在区间 a, a 2 上不是单调函数,
x
a 0 所以有 a 1 ,解得 0 a 1 .故选 C.
a 2 1
8.【答案】B
(2)求曲线 y = f (x) 过原点 O 的切线方程.
20.(12 分)已知函数 (1)当 时,求曲线 (2)求 的单调区间.
. 在点
处的切线方程;
18.(12 分)设函数 f (x) a ln x bx2 ,若函数 f (x) 的图象在点 (1, f (1)) 处与直线 y 1 x 相切. 2
可得切线斜率 k 3m2 3 ,
由点斜式方程可得切线方程为 y﹣m3+3m=(3m2-3)(x﹣m),
代入点 P(2, 6) ,可得﹣6﹣m3+3m=(3m2-3)(2﹣m),解得 m=0 或 m=3,
当 m=0 时,切线方程为 3x y 0 ; 当 m=3 时,切线方程为 24x y 54 0 ,故选 A.
x
x
若函数 f x 有两个不同的极值点,则 g x x2 2x a 在(0,+∞)由 2 个不同的实数根,
Δ 4 4a 0
故
x1
2
4
4a
,解得 0 0
a
1 ,故选
D.
2
6.【答案】A
【解析】设切点为(m,m3-3m), f (x) x3 3x 的导数为 f (x) 3x2 3 ,
,即
1 3 5 2a 8 12 5 3a 27 27 5 4a
高三导数及其应用测试题及答案解析

高三数学章末综合测试题导数及其应用一、选择题:本大题共12小题,每小题5分,共60分.1.曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角面积为( ) A.19 B.29 C.13 D.232.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1) D.⎝⎛⎭⎫-∞,-12 3.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( )A .-2B .-1C .1D .24.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( ) A .4 B .-14 C .2D .-125.已知f (x )=x 3-ax 在(-∞,-1]上递增,则a 的取值范围是( ) A .a >3 B .a ≥3 C .a <3D .a ≤36.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =xf ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( ) A .f (1)与f (-1) B .f (-1)与f (1) C .f (2)与f (-2)D .f (-2)与f (2)7.若函数f (x )=13x 3+12f ′(1)x 2-f ′(2)x +3,则f (x )在点(0,f (0))处切线的倾斜角为( )A.π4B.π3C.2π3D.3π48.下图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )9.若函数f (x )在R 上满足f (x )=e x +x 2-x +sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是( )A .y =2x -1B .y =3x -2C .y =x +1D .y =-2x +310.如图,函数f (x )的导函数y =f ′(x )的图像,则下面判断正确的是( ) A .在(-2,1)内f (x )是增函数 B .在(1,3)内f (x )是减函数新 课标 第 一 网 C .在(4,5)内f (x )是增函数 D .在x =2时,f (x )取到极小值11.已知函数f (x )=x 3-px 2-qx 的图像与x 轴相切于(1,0)点,则f (x )的极大值、极小值分别为( ) A.427、0 B .0、427 C .-427、0 D .0、-42712.若函数y =f (x )的图像在点P 处的切线方程为x -y +2=0,则f (1)+f ′(1)=( ) w w w .x k b 1.c o m A .1 B .2 C .3D .4二、填空题:本大题共4个小题,每小题5分,共20分.13.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________.14.已知函数f (x )=ln x +2x ,g (x )=a (x 2+x ),若f (x )≤g (x )恒成立,则实数a 的取值范围是__________.15.设函数y =ax 2+bx +k (k >0)在x =0处取得极值,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线x +2y +1=0,则a +b 的值为__________.16.已知函数f (x )的导函数的图像如图所示,则下列说法正确的是__________. ①函数f (x )在区间(-3,1)内单调递减;②函数f (x )在区间(1,7)内单调递减; ③当x =-3时,函数f (x )有极大值;④当x =7时,函数f (x )有极小值. 三、解答题:本大题共6小题,共70分.17.(10分)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ).(1)若函数f (x )在x =1处有极值为10,求b 的值; (2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值. 18.(12分)已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围. 19.(12分)已知函数f (x )=2mx -m 2+1x 2+1(x ∈R ). (1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当m >0时,求函数f (x )的单调区间与极值. 20.(12分)已知函数f (x )=(a -12)x 2+ln x (a ∈R ).(1)当a =1时,求f (x )在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方,求a 的取值范围.21.(12分)设函数f (x )=ln x ,g (x )=ax +bx,函数f (x )的图像与x 轴的交点也在函数g (x )的图像上,且在此点有公共切线. (1)求a ,b 的值; (2)对任意x >0,试比较f (x )与g (x )的大小.22.(12分)设函数f (x )=ax 3-2bx 2+cx +4d (a ,b ,c ,d ∈R )的图像关于原点对称,且x =1时,f (x )取极小值-23. (1)求a ,b ,c ,d 的值; (2)当x ∈[-1,1]时,图像上是否存在两点,使得过两点处的切线互相垂直?试证明你的结论; (3)若x 1,x 2∈[-1,1],求证:|f (x 1)-f (x 2)|≤43.一、选择题:本大题共12小题,每小题5分,共60分.1.曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角面积为( ) A.19 B.29 C.13 D.23解析:y ′=x 2+1,当x =1时,k =y ′|x =1=2,∴切线方程为y -43=2(x -1).当x =0时,y =-23,当y =0时,x =13.∴三角形的面积S =12×|-23|×13=19.答案:A2.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1)D.⎝⎛⎭⎫-∞,-12 解析:由y =4x 2+1x ,得y ′=8x -1x 2. 令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 在⎝⎛⎭⎫12,+∞上递增. 答案:B3.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( )A .-2B .-1C .1D .2解析:据已知可得f ′(x )=sin x +x cos x ,故f ′⎝⎛⎭⎫π2=1.由两直线的位置关系可得-a2×1=-1,解得a =2. 答案:D4.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( ) A .4B .-14C .2D .-12解析:∵f (x )=g (x )+x 2,∴f ′(x )=g ′(x )+2x ,X k b 1 . c o m f ′(1)=g ′(1)+2=2+2=4. 答案:A5.已知f (x )=x 3-ax 在(-∞,-1]上递增,则a 的取值范围是( ) A .a >3 B .a ≥3 C .a <3D .a ≤3解析:由f (x )=x 3-ax ,得f ′(x )=3x 2-a , 由3x 2-a ≥0对于一切x ∈(-∞,-1]恒成立, 3x 2≥a ,∴a ≤3.若a <3,则f ′(x )>0对于一切x ∈(-∞,-1]恒成立. 若a =3,x ∈(-∞,-1)时,f ′(x )>0恒成立. x =-1时,f ′(-1)=0,∴a ≤3. 答案:D6.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =xf ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( ) A .f (1)与f (-1) B .f (-1)与f (1) C .f (2)与f (-2)D .f (-2)与f (2)解析:由y =xf ′(x )的图像知±2是y =f ′(x )的两个零点,设f ′(x )=a (x -2)(x +2).当x >2时,xf ′(x )=ax (x -2)(x +2)>0,∴a >0.由f ′(x )=a (x -2)(x +2)知,f (-2)是极大值,f (2)是极小值,故选D. 答案:D7.若函数f (x )=13x 3+12f ′(1)x 2-f ′(2)x +3,则f (x )在点(0,f (0))处切线的倾斜角为( )A.π4 B.π3 C.2π3D.3π4解析:由题意,得f ′(x )=x 2+f ′(1)x -f ′(2), 令x =0,得f ′(0)=-f ′(2), 令x =1,得f ′(1)=1+f ′(1)-f ′(2), ∴f ′(2)=1,∴f ′(0)=-1,即f (x )在点(0,f (0))处切线的斜率为-1, ∴倾斜角为3π4.答案:D8.下图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )解析:由y =f ′(x )的图像知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )图像上任意一点切线的斜率在(0,+∞)也单调递减,故可排除A ,C.又由图像知,y =f ′(x )与y =g ′(x )的图像在x =x 0处相交,说明y =f (x )与y =g (x )的图像在x =x 0处的切线斜率相同,故可排除B.故选D. 答案:D9.若函数f (x )在R 上满足f (x )=e x +x 2-x +sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是( ) A .y =2x -1 B .y =3x -2 C .y =x +1D .y =-2x +3解析:令x =0,解得f (0)=1.对f (x )求导,得f ′(x )=e x +2x -1+cos x ,令x =0,解得f ′(0)=1,故切线方程为y =x +1. 答案:C10.如图,函数f (x )的导函数y =f ′(x )的图像,则下面判断正确的是( )A .在(-2,1)内f (x )是增函数B .在(1,3)内f (x )是减函数新 课 标 第 一 网C .在(4,5)内f (x )是增函数D .在x =2时,f (x )取到极小值解析:在(-2,1)上,导函数的符号有正有负,所以函数f (x )在这个区间上不是单调函数;同理,函数f (x )在(1,3)上也不是单调函数,在x =2的左侧,函数f (x )在⎝⎛⎭⎫-32,2上是增函数.在x =2的右侧,函数f (x )在(2,4)上是减函数,所以在x =2时,f (x )取到极大值;在(4,5)上导函数的符号为正,所以函数f (x )在这个区间上为增函数. 答案:C11.已知函数f (x )=x 3-px 2-qx 的图像与x 轴相切于(1,0)点,则f (x )的极大值、极小值分别为( ) A.427、0 B .0、427C .-427、0D .0、-427解析:f ′(x )=3x 2-2px -q ,由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1.∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0,得x =13,或x =1.从而求得当x =13时,f (x )取极大值427;当x =1时,f (x )取极小值0.故选A.答案:A12.如右图,若函数y =f (x )的图像在点P 处的切线方程为x -y +2=0,则f (1)+f ′(1)=( ) w w w .x k b 1.c o m A .1 B .2 C .3D .4解析:由图像知f (1)=3,f ′(1)=1,故f (1)+f ′(1)= 3+1=4. 答案:D第Ⅱ卷 (非选择 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________. 解析:设P (a ,a 2-a +1),y ′|x =a =2a -1∈[]-1,3, ∴0≤a ≤2.从而g (a )=a 2-a +1=⎝⎛⎭⎫a -122+34. 当a =12时,g (a )min =34;a =2时,g (a )max =3. 故P 点纵坐标范围是⎣⎡⎦⎤34,3.答案:⎣⎡⎦⎤34,314.已知函数f (x )=ln x +2x ,g (x )=a (x 2+x ),若f (x )≤g (x )恒成立,则实数a 的取值范围是__________. 解析:设F (x )=f (x )-g (x ),其定义域为(0,+∞),则F ′(x )=1x +2-2ax -a =-(2x +1)(ax -1)x ,x ∈(0,+∞).当a ≤0时,F ′(x )>0,F (x )单调递增,F (x )≤0不可能恒成立. 当a >0时,令F ′(x )=0,得x =1a ,或x =-12(舍去).当0<x <1a 时,F ′(x )>0;当x >1a 时,F ′(x )<0.故F (x )在(0,+∞)上有最大值F ⎝⎛⎭⎫1a ,由题意F ⎝⎛⎭⎫1a ≤0恒成立,即ln 1a +1a -1≤0.令φ(a )=ln 1a +1a -1,则φ(a )在(0,+∞)上单调递减,且φ(1)=0,故ln 1a +1a -1≤0成立的充要条件是a ≥1. 答案:[1,+∞)15.设函数y =ax 2+bx +k (k >0)在x =0处取得极值,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线x +2y +1=0,则a +b 的值为__________.解析:∵f (x )=ax 2+bx +k (k >0),∴f ′(x )=2ax +b .又f (x )在x =0处有极值,故f ′(0)=0,从而b =0.由曲线y =f (x )在(1,f (1))处的切线与直线x +2y +1=0垂直,可知该切线斜率为2,即f ′(1)=2,∴2a =2,得a =1.∴a +b =1+0=1. 答案:116.已知函数f (x )的导函数的图像如图所示,则下列说法正确的是__________.(填写正确命题的序号) ①函数f (x )在区间(-3,1)内单调递减; ②函数f (x )在区间(1,7)内单调递减; ③当x =-3时,函数f (x )有极大值; ④当x =7时,函数f (x )有极小值.解析:由图像可得,在区间(-3,1)内f (x )的导函数数值大于零,所以f (x )单调递增;在区间(1,7)内f (x )的导函数值小于零,所以f (x )单调递减;在x =-3左右的导函数符号不变,所以x =-3不是函数的极大值点;在x =7左右的导函数符号在由负到正,所以函数f (x )在x =7处有极小值.故②④正确. 答案:②④三、解答题:本大题共6小题,共70分.17.(10分)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ). (1)若函数f (x )在x =1处有极值为10,求b 的值;(2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值. 解析:(1)f ′(x )=3x 2+2ax +b ,则⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10⇒⎩⎪⎨⎪⎧ a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.当⎩⎪⎨⎪⎧ a =4,b =-11时,f ′(x )=3x 2+8x -11,Δ=64+132>0,故函数有极值点; 当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3(x -1)2≥0,故函数无极值点; 故b 的值为-11.(2)方法一:f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 则F (a )=2xa +3x 2+b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立. ∵x ≥0,F (a )在a ∈[-4,+∞)上单调递增或为常数函数,∴得F (a )min =F (-4)=-8x +3x 2+b ≥0对任意的x ∈[0,2]恒成立,即b ≥(-3x 2+8x )max , 又-3x 2+8x =-3⎝⎛⎭⎫x -432+163≤163, 当x =43时,(-3x 2+8x )max =163,得b ≥163,故b 的最小值为163.方法二:f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 即b ≥-3x 2-2ax 对任意的a ∈[-4,+∞),x ∈[0,2]都成立,即b ≥(-3x 2-2ax )max . 令F (x )=-3x 2-2ax =-3⎝⎛⎭⎫x +a 32+a 23, ①当a ≥0时,F (x )max =0,于是b ≥0; ②当-4≤a <0时,F (x )max =a 23,于是b ≥a 23.又∵⎝⎛⎭⎫a 23max =163,∴b ≥163. 综上,b 的最小值为163.18.(12分)已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围.解析:(1)f ′(x )=3x 2-x +b ,因f (x )在(-∞,+∞)上是增函数,则f ′(x )≥0,即3x 2-x +b ≥0, ∴b ≥x -3x 2在(-∞,+∞)恒成立.设g (x )=x -3x 2,当x =16时,g (x )max =112,∴b ≥112.(2)由题意,知f ′(1)=0,即3-1+b =0,∴b =-2.x ∈[-1,2]时,f (x )<c 2恒成立,只需f (x )在[-1,2]上的最大值小于c 2即可.因f ′(x )=3x 2-x -2, 令f ′(x )=0,得x =1,或x =-23.∵f (1)=-32+c ,f (-23)=2227+c ,f (-1)=12+c ,f (2)=2+c ,∴f (x )max =f (2)=2+c ,∴2+c <c 2,解得c >2,或c <-1, 所以c 的取值范围为(-∞,-1)∪(2,+∞). 19.(12分)已知函数f (x )=2mx -m 2+1x 2+1(x ∈R ).(1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当m >0时,求函数f (x )的单调区间与极值. 解析:(1)当m =1时,f (x )=2x x 2+1,f (2)=45,又因为f ′(x )=2(x 2+1)-4x 2(x 2+1)2=2-2x 2(x 2+1)2,则f ′(2)=-625.所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -45=-625(x -2),即6x +25y -32=0. (2)f ′(x )=2m (x 2+1)-2x (2mx -m 2+1)(x 2+1)2=-2(x -m )(mx +1)(x 2+1)2.令f ′(x )=0,得到x 1=-1m ,x 2=m .∵m >0,∴-1m<m .当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎫-∞,-1m-1m ⎝⎛⎭⎫-1m ,m m (m ,+∞)f ′(x ) - 0 + 0 - f (x )递减极小值递增极大值递减从而f (x )在区间⎝⎛⎭⎫-∞,-1m ,(m ,+∞)内为减函数,在区间⎝⎛⎭⎫-1m ,m 内为增函数, 故函数f (x )在点x 1=-1m 处取得极小值f ⎝⎛⎭⎫-1m ,且f ⎝⎛⎭⎫-1m =-m 2,函数f (x )在点x 2=m 处取得极大值f (m ),且f (m )=1.20.(12分)已知函数f (x )=(a -12)x 2+ln x (a ∈R ).(1)当a =1时,求f (x )在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方,求a 的取值范围.解析:(1)当a =1时,f (x )=12x 2+ln x ,f ′(x )=x +1x =x 2+1x.对于x ∈[1,e]有f ′(x )>0, ∴f (x )在区间[1,e]上为增函数, ∴f (x )max =f (e)=1+e 22,f (x )min =f (1)=12.(2)令g (x )=f (x )-2ax =(a -12)x 2-2ax +ln x ,则g (x )的定义域为(0,+∞).在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方等价于g (x )<0在区间(1,+∞)上恒成立. ∵g ′(x )=(2a -1)x -2a +1x=(2a -1)x 2-2ax +1x=(x -1)[(2a -1)x -1]x,①若a >12,令g ′(x )=0,得极值点x 1=1,x 2=12a -1,当x 2>x 1=1,即12<a <1时,在(x 2,+∞)上有g ′(x )>0,此时g (x )在区间(x 2,+∞)上是增函数,并且在该区间上有g (x )∈(g (x 2),+∞),不符合题意; 当x 2≤x 1=1,即a ≥1时,同理可知,g (x )在区间(1,+∞)上,有g (x )∈(g (1),+∞),也不符合题意; ②若a ≤12,则有2a -1≤0,此时在区间(1,+∞)上恒有g ′(x )<0,从而g (x )在区间(1,+∞)上是减函数.要使g (x )<0在此区间上恒成立,只需满足g (1)=-a -12≤0⇒a ≥-12, 由此求得a 的取值范围是⎣⎡⎦⎤-12,12. 综上可知,当a ∈⎣⎡⎦⎤-12,12时,函数f (x )的图像恒在直线y =2ax 下方. 21.(12分)设函数f (x )=ln x ,g (x )=ax +b x,函数f (x )的图像与x 轴的交点也在函数g (x )的图像上,且在此点有公共切线.(1)求a ,b 的值;(2)对任意x >0,试比较f (x )与g (x )的大小.解析:(1)f (x )=ln x 的图像与x 轴的交点坐标是(1,0),依题意,得g (1)=a +b =0.①又f ′(x )=1x ,g ′(x )=a -b x 2, 且f (x )与g (x )在点(1,0)处有公共切线,∴g ′(1)=f ′(1)=1,即a -b =1.②由①②得,a =12,b =-12. (2)令F (x )=f (x )-g (x ),则F (x )=ln x -⎝⎛⎭⎫12x -12x =ln x -12x +12x, ∴F ′(x )=1x -12-12x 2=-12⎝⎛⎭⎫1x-12≤0. ∴F (x )在(0,+∞)上为减函数.当0<x <1时,F (x )>F (1)=0,即f (x )>g (x );当x =1时,F (1)=0,即f (x )=g (x );当x >1时,F (x )<F (1)=0,即f (x )<g (x ).22.(12分)设函数f (x )=ax 3-2bx 2+cx +4d (a ,b ,c ,d ∈R )的图像关于原点对称,且x =1时,f (x )取极小值-23. (1)求a ,b ,c ,d 的值;(2)当x ∈[-1,1]时,图像上是否存在两点,使得过两点处的切线互相垂直?试证明你的结论;(3)若x 1,x 2∈[-1,1],求证:|f (x 1)-f (x 2)|≤43. 解析:(1)∵函数f (x )的图像关于原点对称,∴对任意实数x 有f (-x )=-f (x ),∴-ax 3-2bx 2-cx +4d =-ax 3+2bx 2-cx -4d , 即bx 2-2d =0恒成立,∴b =0,d =0,∴f (x )=ax 3+cx ,f ′(x )=3ax 2+c ,∵当x =1时,f (x )取极小值-23, ∴3a +c =0,且a +c =-23, 解得a =13,c =-1. (2)当x ∈[-1,1]时,图像上不存在这样的两点使结论成立. 假设图像上存在两点A (x 1,y 1),B (x 2,y 2),使得过此两点处的切线互相垂直,则由f ′(x )=x 2-1知,两点处的切线斜率分别为k 1=x 12-1,k 2=x 22-1, 且(x 12-1)(x 22-1)=-1.(*)∵x 1,x 2∈[-1,1],∴x 12-1≤0,x 22-1≤0. ∴(x 12-1)(x 22-1)≥0.此与(*)相矛盾,故假设不成立.(3)f ′(x )=x 2-1,令f ′(x )=0,得x =±1.当x ∈(-∞,-1)或x ∈(1,+∞)时,f ′(x )>0, 当x ∈(-1,1)时,f ′(x )<0,∴f (x )在[-1,1]上是减函数,且f (x )max =f (-1)=23,f (x )min =f (1)=-23. ∴在[-1,1]上,|f (x )|≤23, 于是x 1,x 2∈[-1,1]时,|f (x 1)-f (x 2)|≤|f (x 1)|+|f (x 2)|≤23+23=43.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兴国三中高二数学(文)期末复习题《导数及其应用》命题:高二数学备课组一、选择题1.0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A. B. C. D.3.在曲线y =x 2上切线的倾斜角为π4的点是( )A .(0,0)B .(2,4) C.⎝ ⎛⎭⎪⎫14,116 D.⎝ ⎛⎭⎪⎫12,14 4.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56. 已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确 7. 直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为A .1-B .eC .ln 2D .18. 若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9. 10.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点A .1个B .2个C .3个D .4个10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为 A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11.函数sin xy x=的导数为_________________ 12、已知函数223)(a bx ax x x f +++=在x=1处有极值为10,则f (2)等于____________. 13.函数2cos y x x =+在区间[0,]2π上的最大值是14.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 15. 已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,0)()(2>-'x x f x f x )(0>x ,则不等式 0)(2>x f x 的解集是三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)16. 设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.17. 已知函数3()3f x x x =-.(Ⅰ)求)2(f '的值;(Ⅱ)求函数()f x 的单调区间.18. 设函数R x x x x f ∈+-=,56)(3. (1)求)(x f 的单调区间和极值;(2)若关于x 的方程a x f =)(有3个不同实根,求实数a 的取值范围. (3)已知当)1()(,),1(-≥+∞∈x k x f x 时恒成立,求实数k 的取值范围.19. 已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈< (1)求m 与n 的关系式; (2)求()f x 的单调区间;(3)当[1,1]x ∈-,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围。
20. 已知函数2()ln .f x x ax bx =--(I )当1a =-时,若函数()f x 在其定义域内是增函数,求b 的取值范围;(II )若()f x 的图象与x 轴交于1212(,0),(,0)()A x B x x x <两点,且AB 的中点为0(,0)C x ,求证:0'()0.f x <21. 已知函数2(),()2ln (x f x g x a x e e==为自然对数的底数) (1)求()()()F x f x g x =-的单调区间,若()F x 有最值,请求出最值;(2)是否存在正常数a ,使()()f x g x 与的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出a 的值,以及公共点坐标和公切线方程;若不存在,请说明理由。
兴国三中高二数学(文)期末复习《导数及其应用》参考答案二、填空题: 11. 2cos sin 'x x x y x -=;12. 18 13.36+π; 14.}0|{<a a ; 15.),1()0,1(+∞- 三、解答题16. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π)令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =32π.x ,f ′(x )以及f (∴f (x )的单调增区间为(0,π)和(32π,2π)单调减区间为(π,32π).f 极大(x )=f (π)=π+2,f 极小(x )=f (32π)=3π2.17. 解:(Ⅰ)33(2-='x x f ),所以9)2(='f . (Ⅱ)2()33f x x '=-,解()0f x '>,得1x >或1x <-.解()0f x '<,得11x -<<.所以(,1)-∞-,(1,)+∞为函数()f x 的单调增区间,(1,1)-为函数()f x 的单调减区间.18. 解:(1)2,2,0)(),2(3)(212=-=='-='x x x f x x f 得令 …………………1分∴当()0;,()0x x f x x f x ''<>><<,当,…………………2分∴)(x f 的单调递增区间是(,)-∞+∞和,单调递减区间是)2,2(-……3分 当245)(,2+-=有极大值x f x ;当245)(,2-=有极小值x f x .…………4分(2)由(1)可知)(x f y =图象的大致形状及走向(图略)∴当)(,245245x f y a y a ==+<<-与直线时的图象有3个不同交点,……6分即当55a -<<+α=)(x f 有三解. …………………………………7分(3))1()5)(1()1()(2-≥-+--≥x k x x x x k x f 即∵),1(5,12+∞-+≤∴>在x x k x 上恒成立. …………………………………………9分 令5)(2-+=x x x g ,由二次函数的性质,),1()(+∞在x g 上是增函数,∴,3)1()(-=>g x g ∴所求k 的取值范围是3-≤k ……………………………………12分19. 解:(1)2'()36(1).f x mx m x n =-++因为1x =是函数()f x 的一个极值点.所以'(1)0f =即36(1)0,m m n -++=所以36n m =+(2)由(1)知,22'()36(1)363(1)[(1)]f x mx m x m m x x m=-+++=--+当0m <时,有211>+,当x 为化时,()f x 与'()f x 的变化如下表:故由上表知,当0m <时,()f x 在(,1)m -∞+单调递减,在(1,1)m+单调递增,在(1,)+∞上单调 递减.(3)由已知得'()3f x m >,即22(1)20mx m x -++>又0m <,所以222(1)0x m x m m-++<,即222(1)0,[1,1]x m x x m m-++<∈- 设212()2(1)g x x x m m =-++,其函数图象开口向上,由题意知①式恒成立,所以22(1)0120(1)010g m m g ⎧-<+++<⎧⎪⇒⎨⎨<⎩⎪-<⎩ 解之得403m m -<<又所以403m -<<即m 的取值范围为4(,0)3-20.(1)由题意:bx x x x f -+=2ln )(, )(x f 在),0(+∞上递增,∴021)(≥-+='b x xx f 对),0(+∞∈x 恒成立,即x x b 21+≤对),0(+∞∈x 恒成立,∴只需min )21(x xb +≤, 0>x ,∴2221≥+x x ,当且仅当22=x 时取“=”,∴22≤b ,∴b 的取值范围为)22,(-∞ (2)由已知得,⎩⎨⎧=--==--=0ln )(0ln )(2222212111bx ax x x f bx ax x x f ⇒⎩⎨⎧-=-=22221211ln ln bx ax x bx ax x ,两式相减,得: )())((ln21212121x x b x x x x a x x -+-+=⇒])()[(ln 212121b x x a x x x x++-=, 由b ax xx f -+='21)(及2102x x x +=,得:])([221)(2211000b x x a x x b ax x x f ++-+=--='2111ln 1222x x x x x x +-+= ]ln )(2[121111222x x x x x x x x -+--=]ln )1()1(2[121212112x x x x x x x x -+--=,令)1,0(21∈=x x t , 且t t t t ln 122)(-+-=ϕ)10(<<t , 0)1()1()(22<+--='t t t t ϕ,∴)(t ϕ在)1,0(上为减函数, ∴0)1()(=>ϕϕt ,又21x x <,∴0)(0<'x f21. 解:(1)3222()()()()(0)x a x ea F x f x g x x e x ex-'''=-=-=> ①当0,()0a F x '≤>时恒成立()(0,)F x +∞在上是增函数,()F x F 只有一个单调递增区间(0,-∞),没有最值……3分②当0a >时,2(()(0)x x F x x ex-=>,若0x <<()0,()F x F x '<在上单调递减;若x >()0,())F x F x '>+∞在上单调递增,x ∴=当()F x 有极小值,也是最小值,即min ()2ln F x F a a a a ==-=-…………6分 所以当0a >时,()F x的单调递减区间为单调递增区间为)+∞,最小值为ln a a -,无最大值…………7分(2)方法一,若()f x 与()g x 的图象有且只有一个公共点, 则方程()()0f x g x -=有且只有一解,所以函数()F x 有且只有一个零点…………8分[来源:学_科_网]由(1)的结论可知min ()ln 01F x a a a =-==得…………10分此时,2()()()2ln 0x F x f x g x x e =-=-≥m i n ())0F x ==1,()()f g f x g x ∴==∴与的图象的唯一公共点坐标为又f g ''==()()f x g x 与的图象在点处有共同的切线,其方程为1y x -=-,即1y x =-…………13分综上所述,存在a 1=,使()()f x g x 与的图象有且只有一个公共点,且在该点处的公切线方程为 1.y x =-…………14分方法二:设()f x 与g(x)图象的公共点坐标为00(,)x y ,根据题意得⎩⎨⎧==)()()()(0'0'00x f x f x g x f 即20002ln 22x a x ex a ex ⎧=⎪⎪⎨⎪=⎪⎩由②得20x a e =,代入①得021ln ,2x x =∴=从而1a =…………10分此时由(1)可知min ()0F x F ==0x x ∴>≠当且()0,()()F x f x g x >>即因此除0x =0x ,使00()()f x g x =…………13分故存在1a =,使()()f x g x 与的图象有且只有一个公共点,且在该公共点处有共同的切线,易求得公共点坐标为,公切线方程为1y x =-…………14分。