高密度聚乙烯研究论文

合集下载

聚乙烯毕业论文

聚乙烯毕业论文

聚乙烯毕业论文聚乙烯是一种常见的塑料材料,广泛应用于包装、建筑、汽车等领域。

本文将从聚乙烯的制备、性质以及应用等方面进行论述,以探讨聚乙烯在工业中的重要性和潜力。

首先,聚乙烯的制备是通过乙烯单体的聚合反应来实现的。

乙烯是一种无色、无味的气体,具有较高的反应活性。

在合适的催化剂存在下,乙烯分子可以发生聚合反应,形成聚乙烯链。

聚乙烯的制备方法有多种,如高压聚合法、低压聚合法等。

其中,高压聚合法是最常用的方法之一,通过高压条件下的聚合反应,可以得到高密度聚乙烯。

而低压聚合法则可以得到线性低密度聚乙烯和高密度聚乙烯。

聚乙烯具有许多优良的性质,使其成为广泛应用的塑料材料。

首先,聚乙烯具有良好的化学稳定性,能够抵抗酸、碱等化学物质的侵蚀。

其次,聚乙烯具有较高的抗冲击性和韧性,能够承受较大的外力作用而不易破裂。

此外,聚乙烯还具有良好的电绝缘性能和耐候性能,适用于电线电缆、水管等领域的应用。

聚乙烯在包装领域有着广泛的应用。

由于其良好的柔韧性和可塑性,聚乙烯可以制成各种包装薄膜、袋子等产品。

这些产品不仅可以保护商品,延长货物的保质期,还可以减少包装材料的使用量,降低成本。

此外,聚乙烯还可以制成瓶子、容器等包装材料,用于食品、药品等行业。

在建筑领域,聚乙烯也扮演着重要的角色。

聚乙烯制成的管道可以用于输送水、气体等介质,具有良好的耐腐蚀性和耐高压性能。

此外,聚乙烯还可以制成绝缘材料,用于电缆的绝缘层。

这些应用不仅提高了建筑材料的性能,还降低了建筑成本。

汽车工业也是聚乙烯的重要应用领域之一。

聚乙烯可以制成汽车内饰件、外饰件等零部件,具有较低的密度和良好的抗冲击性能。

这些零部件不仅可以提高汽车的安全性能,还可以减轻汽车的重量,提高燃油效率。

除了以上几个领域,聚乙烯还有许多其他的应用。

例如,聚乙烯可以制成农膜,用于农业领域的地膜覆盖,提高作物产量。

聚乙烯还可以制成塑料袋、塑料瓶等日常用品,方便人们的生活。

总之,聚乙烯作为一种常见的塑料材料,具有广泛的应用前景。

高密度聚乙烯生产技术的研究进展

高密度聚乙烯生产技术的研究进展

高密度聚乙烯生产技术的研究进展【摘要】1953年高压合成HDPE,与LDPE、LLDPE比较,HDPE 支链化程度最小,分子能紧密地堆砌,密度最大(0.941~0.965 gPcm3),结晶度高。

HDPE目前是世界生产能力和需求量位居第三大类的聚烯烃品种,其主要用于薄膜、吹塑、管材等。

【关键词】高密度聚乙烯;聚乙烯;生产技术;探讨研究前言高密度聚乙烯的生产工艺技术主要有:浆液聚合、气相聚合和溶液聚合。

1.浆液聚合法此法是生产HDPE主要方法,工艺成熟,生产技术主要有Hostalen、Phillips、Innovene S、Equistar、Borieas、CX、Equistar 等。

1.1 搅拌釜式浆液聚合(Z-N催化剂己烷溶剂,双釜聚合工艺)双釜聚合技术主要分为:basell:hostalen技术和CX技术,这两种技术具有很相似的工艺。

浆液法连续工艺:操作温度压力低;采用并联及串联不同形式生产单、双峰产品;原料要求不高。

1.2 环管反应器工艺(Cr系催化剂异丁烷反应介质)环管反应器工艺主要分为Phillips:Phillips工艺(单环管)和NNOS:Innovene S工艺(双环管)。

环管反应器工艺特点:设备较少,投资成本低;细粉少和颗粒形态好。

原料要求高。

2.世界聚乙烯技术的最新进展气相法工艺:Univation公司的Unipol工艺、BP公司的Innovene工艺和Basell 公司的Spherilene工艺。

气相法工艺由于流程较短、投资较低、生产灵活等特点发展较快,目前的生产能力约占世界聚乙烯总生产能力的34%,新建的LLDPE 装置近70%采用气相法技术。

BP低压气相工艺:与Unipol非常相似。

均采用冷凝态技术。

只是冷凝液送入流化床的方式稍有不同。

BP的方法是先将冷凝液与循环物流分离,然后用置于流化床内的喷嘴雾化,将其送入流态化床层。

Unipol则不进行分离,冷凝液随循环物流一起进入流化床反应器。

浅谈高密度聚乙烯的结构与性能分析

浅谈高密度聚乙烯的结构与性能分析

浅谈高密度聚乙烯的结构与性能分析摘要:HDPE(高密度聚乙烯)是一种具有小弹性、结晶型的热塑性树脂,可提供良好的力学、物理和耐腐蚀化学性能。

高密度聚乙烯可以通过挤出、吹塑、注塑等各种加工方法调整和成型性能所需的材料。

它广泛应用于排水、燃气管道、中空空容器、薄膜、拉丝和电缆等领域,是最常用的树脂材料之一。

采用淤浆聚合技术、气相和溶液聚合技术生产优质聚乙烯产品,满足高密度聚乙烯生产的技术要求。

材料结构的差异可能会导致使用材料时的性能差异。

因此,研究结构材料差异与性能之间的关系很重要。

关键词:高密度聚乙烯;分子量;性能本文研究了两种高密度聚乙烯(HD-1和HD-2)的结构差异,对其基本性能、分子和分布、热工性能、拉伸流变和力学性能进行了综合分析。

其结果是,两种高密度聚乙烯的密度、熔融温度和结晶度相似,HD-1的分子分布大于HD-2,从而允许进行更广泛的调整。

对于熔融特性,HD-2提供更高的抗冲击强度。

一、高密度聚乙烯技术的发展趋势采用创新生产高密度聚乙烯,优化催化剂体系,保护新产品开发。

不断推动新型聚乙烯产品的开发,通过应用新技术生产高密度聚乙烯,最大限度地提高产品效率。

发展高密度聚乙烯制造工艺的技术措施的必要性,结合了新技术的现状、发展和研制、催化剂的升级改造、聚乙烯生产成本的降低和生产力与安全性。

1.催化剂的进化。

高密度聚氯乙烯生产中使用的催化剂是以各种金属催化剂为基础的,其影响越来越大,满足了聚乙烯生产的要求。

关于高密度聚乙烯的生产特性,经过现场实验和实践,对催化剂体系进行了研究,选择了一种经济高效的聚氯乙烯体系来提高聚乙烯的生产效率。

作为生产高密度、高活性、高性能聚乙烯的催化剂,为聚合物反应提供了可靠的条件。

过渡金属催化剂和复合系统催化剂的应用增强了催化剂。

不断简化制备催化剂的技术措施,降低催化剂生产成本,合理平衡催化剂,确保计划中的催化剂。

快速调整产品结构和性能,实现高密度聚乙烯产品的高质量,选择催化剂体系提高催化剂性能,最大限度地提高催化剂的灵活性,大幅降低催化剂使用成本。

高密度聚乙烯力学性能试验研究

高密度聚乙烯力学性能试验研究

高密度聚乙烯力学性能试验研究摘要:高密度聚乙烯(HDPE)作为一种可塑性强,造价低廉和耐腐蚀性能较好的热塑性树脂,被广泛运用于化工,建筑,军工等各个领域,同时国内外各个学者也对该材料的力学性能展开大量研究。

本文主要工作是研究两种低温条件下高密度聚乙烯单轴准静态拉伸性能,和常温高密度聚乙烯不同应变率条件下动态拉伸和压缩力学性能分析。

关键词:高密度聚乙烯;力学性能;试验研究1、低温拉伸性能试验高密度聚乙烯常用于金属输油管道的外包裹层,用于保护金属输油管道不受外界环境腐蚀甚或损坏,延长金属输油管道的使用寿命。

本文研究的高密度聚乙烯为PE100,常温下弹性模量为1GPa,拉伸屈服强度为25MPa,在GB/T1040.1—2006中,拉伸屈服强度被定义为:出现应力不增加而应变增加时的最初应力。

本文所研究的输油管道敷设在我国寒冷地区,敷设管道所处位置冬季常处于0℃以下,有时可达到-10℃,为了研究高密度聚乙烯在低温下的拉伸性能,并与常温下的相关力学参数进行比较分析,本文选取了两种典型温度,分别是0℃和-10℃,拉伸速率为500mm/min,检测依据参照文献。

低温拉伸性能试验主要得到了材料的以下力学性能参数:拉伸屈服强度、拉伸屈服应变、拉伸断裂应变和弹性模量。

试验温度0℃时,PE100的拉伸屈服强度平均值为27.34MPa,试验温度-10℃时,PE100的拉伸屈服强度平均值为29.72MPa,而常温条件下是25MPa。

试验数据说明,随着温度的降低,PE100的拉伸屈服强度增大,材料的拉伸屈服应变减小,拉伸断裂应变减小,材料的弹性模量反而增大,比常温条件下的弹性模量分别增大了20%和40%多。

两种典型温度下,PE100的拉伸屈服强度与最大拉伸强度相等,随着温度的降低,拉伸屈服强度增大,拉伸屈服应变和拉伸断裂应变都变小,从某种意义上温度的降低使得材料的延性变差。

图1不同温度条件下应力应变关系曲线2、动态压缩试验本次动态(冲击)压缩试验所选设备为φ14.5的分离式Hopkinson压杆,简称SHPB。

高密度聚乙烯管材性能的研究

高密度聚乙烯管材性能的研究

高端管材 领域 , 已成为发达 国家和地 区在给水 管道 度 下熔融 , 通 过 毛细管 口模 被 柱塞 均匀 挤 出 ; 熔体
料 条 向下 落 人 一 组 反 向旋 转 的 夹 辊 中 , 夹 辊 以恒 定
2 种 不 同类 型 的催 化 剂 生产 高 密度 聚 乙烯 管材 料
HD 4 8 0 1 E X, 我 们 对 不 同 催 化 剂 生 产 的 管 材 进 行 性能 分析 。
u l a r ma s s a n d me l t s t r e ng t h a n d o x i d a t i o n i nd uc t i o n t i me o f H D 4 8 0 1 - 2 i S l o we r t ha n t ha t o f H D 4 8 0 1 - 1, bu t t h e s h e a r v i s c os i t y o f H D 4 8 01 — 2 i S i nf e r i o r t O H D 4 8 0卜 1 .Th e p r o c e s s a b i l i t y o f H D 4 8 01 — 1 i S e x— c e l l e d t h a n t ha t o f H D 4 8 01 — 2 . Key wor d s: c a t a l y s t ;p ol y e t hy l e ne;t u be r e s i n;pe r f o r ma nc e
( 1 .Du s h a n z i Pe t r o c h e mi c a l C o mp a n y, Pe t r o Ch i n a , Du s h a n z i 8 3 3 6 0 0, Ch i n a ; 2 . ‘ X i n j i a n g Ke y L a b o r a t o r y o f Ru b b e r — P l a s t i c s Ma t e r i a l , D u s h a n z i 8 3 3 6 0 0 , C h i n a )

高密度聚乙烯_蒙脱土复合材料的制备及性能的研究

高密度聚乙烯_蒙脱土复合材料的制备及性能的研究
AG=△H.T△S。
由于马来酸酐上的羧基和蒙脱土上的胺基相互作用使A G<0,同时极性的
高密度聚乙烯/蒙脱土复合材料的制备及性能的研究
作者:曲静波
学位授予单位:青岛科技大学
1.柯扬船.皮特·斯壮聚合物--无机纳米复合材料 2002
2.刘吉平.郝向阳纳米科学与技术 2001
3.都有为超微颗粒的物理特性[期刊论文]-材料导报 1992(5)
36.舒文艺功能性聚烯烃的开发现状[期刊论文]-塑料 1995(4)
37.漆宗能.马永梅.张世民.张泽源.岳群纳米塑料[期刊论文]-石化技术与应用 2001(5)
38.张国耀.易国祯.吴立衡.徐翔.宋青.杨宇.金剑.钟淑芳.漆宗能聚对苯二甲酸乙二酯/蒙脱土纳米复合材料的制备和性能[期刊论文]-高分子学报 1999(3)
10.Moet A.Akelah A Polymer-clay nanocomposites: polystyrene grafted onto montmorillonite interlayers 1993
11.Kato C查看详情 1989
12.Aranda P.Ruiz_Hitzky E Poly(ethylene oxide)-silicate intercalation materials 1992
4.Birriiner R.Gleiter H Structure of Nanocomposites 1984
5.张立德.牟季美纳米材料和纳米结构 2001
6.Okada A.Kawasumi M.Kurauchi T查看详情 1987
7.Giannelis E P Polymer Layered Silicate Nanocomposites 1996

高密度聚乙烯调研报告

高密度聚乙烯调研报告
茂名石化
不详
TR-130TR-144HHM5502HXM50100EHM6007TR-480H516BTR418TR-210
中海油
南海石化
不详
3721C5021D 5121B 5421B 5621D
二、催化剂研究现状及分析
催化剂对聚合物的微观和宏观结构有重要影响,决定了产品在其应用目标中的表现。要想从根本上解决产品结构和产品开发,新型催化剂的研究开发是关键。我国一直重视聚烯烃催化剂的研制、开发和国产化工作,催化剂的研制促进了国产化聚烯烃成套技术的开发,国产化装置生产的产品已占据相当份额。催化剂的开发有两个主要目的:满足消费者对更高性能聚合物的需求,包括现存应用领域和未来新的应用领域;改善生产的经济性。催化剂只占生产成本的很小一部分,通常仅占聚合物销售额的1%-2%,但却对聚合物的市场价值有巨大影响。
1.1浆液法PE工艺催化剂
北京化工研究院研制成功的HDPE浆液法BCH催化剂,性能超过了进口PZ催化剂。30t/aBCH催化剂生产装置已于1994年在燕山燕化高新股份公司建成,同年实现工业化生产。从1995年开始,BCH催化剂逐步替代日本三井化学公司的PZ催化剂,应用于三井淤浆法HDPE工艺(如燕山石化公司、大庆石化公司、扬子石化公司、兰州石化公司),市场占有率为70%左右,基本上取代了PZ催化剂。BCH催化剂能够生产注塑、吹塑、挤塑等几十种牌号的HDPE产品。
总之,新型乙烯聚合催化剂的研制成功,对于我国提高PE产品档次,PE产品向多样化、系列化、专用化、高性能化发展有着重要意义。同时,也必将对国产化PE成套技术的开发起到关键作用。
2发展措施
(1)加快我国聚乙烯催化剂技术发展,为从根本上解决聚乙烯产品结构和新产品开发提供保障。同时,聚烯烃催化剂的国产化必将促进国产化聚烯烃成套技术的开发。

高密度聚乙烯的合成工艺研究

高密度聚乙烯的合成工艺研究

绵阳职业技术学院材料工程系高分子材料应用技术专业毕业论文论文题目:高密度聚乙烯的合成工艺研究学院:绵阳职业技术学院系部:材料工程系班级:高分子111班学生:石鑫指导老师:唐云、王燕时间:2013.9.30——2013.11.05高密度聚乙烯的合成工艺研究摘要:自1953 年在低压下使乙烯聚合生成HDPE, 迄今已有50 多年, 高密度聚乙烯的开发生产突飞猛进, 技术进展突出表现在催化剂开发的进展、生产工艺技术的进展。

本文介绍了高密度聚乙烯在工业生产中所采用的技术、所采用的设备及其用途、发展前景等内容。

主要研究高密度聚乙烯的合成方法及工艺条件。

关键词:高密度聚乙烯,合成工艺Abstract: Since 1953, in the ethylene polymerization under pressure HDPE, far more than 50 years, the development of high-density polyethylene.Production by leaps and bounds, technological advances outstanding performance in catalyst development progresses, the progress of production technology. This article describes the high-density polyethylene used in the industrial production of the latest technology, using equipment and its use, development prospects and so on.The synthesis and processing conditions of high density polyethylene.Keywords: high-density polyethylene synthesis process目录1.聚乙烯介绍 (2)1.1聚乙烯结构 (1)1.2聚乙烯性质 (2)2.高密度聚乙烯介绍 (3)2.1高密度聚乙烯特性 (3)2.2高密度聚乙烯历史发展背景 (4)3.高密度聚乙烯的生产方法 (5)3.1浆液聚合法 (5)3.2气相聚合法 (7)3.3溶液聚合法 (8)3.4三种HDPE技术比较 (9)4.高密度聚乙烯的生产工艺 (9)5. 高密度聚乙烯制品生产工艺和质量影响因素分析 (12)5.1加工成型生产工艺分类 (12)5.2影响塑料制品(聚乙烯)产品的质量相关因素 (14)5.3机械设备的性能和模具的质量与精度分析 (14)6.高密度聚乙烯市场应用 (15)参考文献 (16)致谢 (17)1.聚乙烯介绍1.1聚乙烯结构简写:nCH2=CH2→—[CH2—CH2]n—聚乙烯的分子是长链线型结构或支结构,为典型的结晶聚合物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Thermochimica Acta 502 (2010) 35–42Contents lists available at ScienceDirectThermochimicaActaj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /t caThermal properties of silicon powder filled high-density polyethylene compositesT.K.Dey ∗,M.TripathiThermophysical Measurements Laboratory,Cryogenic Engineering Centre,Indian Institute of Technology,Kharagpur,Kharagpur 721302,West Bengal,Indiaa r t i c l e i n f o Article history:Received 14June 2009Accepted 2February 2010Available online 10 February 2010Keywords:High-density polyethylene/Si composites Thermal stabilityEffective thermal conductivityCoefficient of thermal expansion (CTE)a b s t r a c tThermal conductivity and coefficient of thermal expansion (CTE)of silicon particulates reinforced high-density polyethylene (HDPE)composites are posite samples were fabricated by mixing the components in proper volumetric ratio,molding and hot pressing.Incorporation of Si powder in HDPE enhances both the thermal stability and the effective thermal conductivity of the composites.CTE of the composites display substantial reduction with increasing Si content in HDPE,while with increasing temperature CTE increases linearly.Effective thermal conductivity for HDPE containing 20-volume fraction (%)Si becomes double than that for unfilled HDPE.Results on both the effective thermal conductivity and CTE of the composites have been discussed in light of various theoretical models.Our analysis confirms that the effective thermal conductivity of HDPE/Si composites is predicted extremely well by the model proposed by Agari et al.and conductive channels are not easily formed in HDPE/Si composites.We also show that CTE data could be successfully explained taking into account the role of the interphase volume and the strength of the polymer–filler interactions.© 2010 Elsevier B.V. All rights reserved.1.IntroductionWith miniaturization of microelectronics and associated increase in power densities,thermal management has become a critical issue to achieve sustained device performance and their lifetime [1].Polymer filled with appropriate fillers having improved thermal conductivity offers possibilities of its applications as heat sinks in electronic packaging [2].In addition,thermally conduc-tive polymer composites are advantageous due to their enhanced chemical resistance,processability and non-corrosive nature.Poly-mer composites can offer a varied combination of properties,which cannot be achieved by a single element.Investigations on the thermophysical and mechanical properties of polymers contain-ing various kinds of fillers have been widely reported [3–7]and it is now known that the thermal properties of particles filled polymers is a complex function of their geometry,thermal con-ductivity of different phases,distribution in the matrix and contact between the particles.Further,the physical properties of polymer composites can be tailored according to the need by reinforcing the polymer with different kind of fillers and their amount in polymeric matrix.Though,many theoretical and empirical mod-els have been proposed to predict the thermophysical properties of particulate composites,the accurate prediction of the effective thermal conductivity still remains a challenge and consequently measurement of thermal conductivity of the composites is impor-∗Corresponding author.E-mail address:tapasdey@hijli.iitkgp.ernet.in (T.K.Dey).tant.The metal–polymer and/or,ceramic–polymer composites are widely used in electronic packaging of integrated circuits,in which polymer films act as the interlayer dielectrics.Heat dissipation problems are very critical now a days due to the miniaturization and the increase in power density of integrated circuits.Conse-quently,the CTE mismatch in materials adjacent to each other tends to become a major source of failure in microelectronic devices [8].Typically,thermal expansion coefficient of an electronic device composed of silicon is about 4×10−6/◦C,while that of polymer is about 50–100×10−6/◦C.One of the most effective approaches to improve the CTE of a polymer is the addition of particulate inorganic filler material with low ually,higher loading of fillers is required to decrease the CTE of the polymer.Fillers generally incorporated for control of CTE of elastomers,include mica,chalk,kaolin,carbon black and glass fibers [9,10].Iyer et al.[11]recently reported significant reductions in CTE for boron nitride elastomeric composites as compared to pure elastomers.High-density polyethylene (HDPE)is one of the most widely used commercial polymers,because of its superior mechanical and phys-ical properties.However,its toughness,weather resistance,and environmental stress cracking resistance are not good enough which limited its application in many high-technology areas.Rein-forcing HDPE with fillers (viz.,aluminum and copper particles,short carbon fibers,carbon,graphite,aluminum nitrides and magnetic particles)has been found to improve its properties.Tavman and co-worker [12]reported a significant improvement of thermal con-ductivity of HDPE containing 33%by volume of aluminum particles and more recently,Sofian et al.[13]and Kuriber and Alam [14]also observed a moderate enhancement in the effective thermal0040-6031/$–see front matter © 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.tca.2010.02.00236T.K.Dey,M.Tripathi/Thermochimica Acta502 (2010) 35–42conductivity of metal powder and aligned carbon nanoscalefibers filled in HDPE and polypropylene,respectively.Silicon being the primary material used in microelectronic devices,use of Si-based polymer composite as material for elec-tronic packaging material is expected to reduce appreciably the problems associated with thermal mismatch in the device.It may be noted that relatively large thermal conductivity(∼140W/mK) and very low CTE of silicon are favorable for the above applications. In the present communication,we report our results on the use of silicon powder as afiller material to enhance the effective thermal conductivity and to reduce the coefficient of thermal expansion of high-density polyethylene(HDPE).Results obtained have been discussed and analyzed in light of various theoretical models.2.Theoretical models2.1.Models on thermal conductivity of compositesThe effective thermal conductivity of a composite material is dependent on several factors,viz.,filler concentration,particle size and shape,and homogeneity of the dispersed phase in the matrix, the thermal conductivity of different phases and contact between thefiller particles,etc.The review and derivation of these models are out of the scope of the present study and only a brief sum-mary for the background of the equations is given.Over the years, numerous theoretical models have been reported to predict the precise value of the thermal conductivity of two phase and mul-tiphase composites.By solving Laplace’s equation and assuming absence of any interactions between thefiller particles,Maxwell [15]calculated the effective thermal conductivity of a random dis-tribution of spheres in a continuous medium which worked well for lowfiller concentrations.Starting with Maxwell model,Brugge-man[16]derived another exact model for the effective thermal conductivity,under different assumptions for permeability and field strength.However,the model failed to predict the measured data on AlNfilled epoxy system[17].Hamilton and Crosser[18] extended Maxwell’s model to include an empirical factor n to account for the shape of the particles(n=3for spheres and n=6for cylinders).It may be noted that both Maxwell,nor,the Hamilton and Crosser model contains any dependence on particle size,and they also imply that the temperature dependence of the thermal conductivity is approximately the same as that of the basefluid.A useful theoretical model for highfiller-loaded composites was first suggested by Meredith and Tobias[19],with a reasonable suc-cess[20].Cheng and Vachon[21]assumed a parabolic distribution of the discontinuous phase in a continuous medium and deter-mined the parabolic distribution constants by analysis,which was related to the discontinuous phase volume fraction.The effective thermal conductivity was then derived for the two-phase solid mix-ture.A semi-empirical model was reported by Lewis and Neilson [22],which was based on modification of the Halpin–Tsai equa-tion[23,24].Their proposition takes into account the effect of the shape and the orientation of the particle or,the type of packing for a two-phase system.The constant A,in their equation,takes care of the particle shape and how they are oriented with respect to the direction of the heatflow,while the type of packing is accounted by the term m,For example,for randomly packed spherical particles, A=1.5and m=0.637;where as for randomly packed aggregates of sphere or for randomly packed irregularly shaped particles,A=3 and m=0.637.This model has been reported to be more success-ful for low and mediumfiller-loaded composites(<20%).Agari and Uno[25]also proposed another semi-empirical model,which is based on the argument that the enhanced thermal conductivity of highfiller-loaded composites originates from forming conductive channels or,chains offillers.Their expression contains two param-eters,C1and C2,which respectively accounts for the effect of the crystallinity of the polymer and the ease in formation of conductive chains offillers.The equations used in the present study to describe the effective thermal conductivity of polymer composites are given in Table1.2.2.Models on CTE of compositeSeveral theoretical or,empirical equations exist in the litera-tures to predict the thermal expansion coefficient of composites. Some of them are based on the theory of elasticity,some others uses mechanics of materials approach or,express a law of mixtures,and some try to match theoretical expressions to the experimental data by suitably defining the existing constants in these expressions. Amongst them,most widely used ones are,the rule of mixtures (ROM).In the absence of the interaction between the matrix and thefillers,the rule of mixtures[26]serves as thefirst-order approx-imation to estimate the CTE of composites.The rule of mixtures model was modified by Turner[27]to take into account of the mechanical interactions between materials in the composite[28]. Turner et al.derived thefinal equation(11)assuming the same dimensional changes with temperature for all the constituents present in the composite.Kerner[29]and Schapery[30]derived the CTE equations(12)and(13),respectively,considering simple spherical shape of the second phase.Schapery model,modified by Hashim[31]derived the bounds on effective thermal expansion coefficients of isotropic and anisotropic composites consisting of isotropic phases by employing extremum principles of thermoelas-ticity.Among these bounds for elastic constants,H–S bounds could cover most of the experimental data on elastic modulas[32,33]. Based on the experimental data,Thomas[34]and by Chen et al.[35]suggested purely empirical equations(16)and(17),respec-tively.Recently,Vo et al.[36]proposed a novel microscopic model for predicting the effective CTE of underfills and other polymeric composites by considering the effect of an interface zone surround-ing thefiller particles in a polymer matrix.The model appears to resolve several conflicts associated with the effect offiller concen-tration,filler size and shape,and thefiller–polymer interaction on the effective CTE of polymeric composite materials.3.Experimentalposites preparation and characterizationHDPE/Si composite for the present studies are prepared using commercial grade high-density polyethylene(HDPE)powder(den-sity of0.94g/cm3)andfine Si powder(density2.3g/cm3)obtained from Loba Chemicals(India).Si powder used in the present inves-tigation is approximately spherical in shape and particle size between5and10␮m.Various volume concentration of Si powder is mechanically mixed with appropriate amount of HDPE powder for30min.Calculated amount of xylene is then added and the mix-ture is slowly heated to about70◦C for about2h.The heating is accompanied with vigorous stirring of the viscousfluid mixture to ensure a homogeneous distribution of Si powder.Heating and stir-ring is continued till xylene is completely evaporated.The resultant homogeneous mixture of HDPE and Si is then slowly cooled to room temperature.Pieces cut from the solidified HDPE–Si mixture is transferred to a stainless steel die and subjected to hot compression molding at120◦C.After cooling and complete solidification under pressure,the HDPE/Si composite sample is carefully taken out of the die.Typical size of the HDPE/Si composite prepared for the thermal conductivity measurements was35mm long and25mm diameter.Typical XRD patterns of HDPE composites containing7and 10vol.%Si are shown in Fig.1a and ing Debye–Scherer equa-T.K.Dey,M.Tripathi /Thermochimica Acta 502 (2010) 35–4237T a b l e 1M o d e l p r e d i c t i o n s f o r t h e e f f e c t i v e t h e r m a l c o n d u c t i v i t y o f p a r t i c l e fil l e d p o l y m e r s .M o d e lP r e d i c t i o nM a x w e l l [15]k c =k mk f +2k m +2 (k f −k m )k f +2k m − (k f −k m )(1)B r u g g e m a n [16](1− )=(k f −k c )(k m /k c )1/3(k f −k m )(2)H a m i l t o n a n d C r o s s e r [18]k c =k f +(n −1)k m +(n −1)(k f −k m )k f +(n −1)k m −(k f −k m )k m(3)M e r i d t h a n d T o b i a s [19]k c k m =2(2+k f /k m )−2(1−k f /k m ) 2(2+k f /k m )+(1−k f /k m ) ×(2− )(2+k f /k m )−2(1−k f /k m ) (2− )(2+k f /k m )+(1−k f /k m )(4)C h e n g a n d V a s h o n [21]1k c=1C (k f −k m )(B (k f −k m ))l nk m +B (k f −k m )+B /2C (k f −k m )k m +B (k f −k m )−B /2C (k f −k m )+1−Bk mw h e r e ,B =3 2a n d ,C =−423(5)L e w i s a n d N i e l s e n [22]k c =k m1+A ˇ 1−ˇ,w h e r e ˇ=k f /k m −1k f /k m +Aa n d =1+1− m2m(6)A g a r i a n d U n o [25]l o g k c = C 2l o g k f +(1− )l o g (C 1k m )(7)k c ,k m a n d k f a r e t h e t h e r m a l c o n d u c t i v i t y o f t h e c o m p o s i t e s ,p o l y m e r a n d fil l e r ,r e s p e c t i v e l y .ϕi s t h e c o n c e n t r a t i o n o f t h e a d d e d fil l e r ; m i s t h e m a x i m u m p a c k i n g f r a c t i o n o f t h e d i s p e r s e d p a r t i c l e s ,A i s a c o n s t a n t d e p e n d s o n t h e s h a p e a n d o r i e n t a t i o n o f t h e d i s p e r s e d p a r t i c l e s ,C 1i s a f a c t o r i n flu e n c i n g t h e e f f e c t o f c r y s t a l l i n i t y o f t h e p o l y m e r ;C 2r e p r e s e n t s e a s e i n f o r m a t i o n o f t h e c o n d u c t i v e c h a i n s o f t h e fil l e r p a r t i c l e s .Fig.1.Typical XRD patterns for HDPE/7vol.%Si and HDPE/10vol.%Si composites.tion corresponding to the most intense peak,the average crystallite sizes of the filler are estimated to be ∼10␮m.Fig.2a and b is two typical scanning electron micrographs of the prepared composites.SEM photographs show that the Si fillers are mostly spherical in shape and are distributed fairly uniformly in the HDPE matrix.Thermo-gravimetric analysis of the prepared composites is per-formed in nitrogen atmosphere using PerkinElmer Pyris Diamond DTA/TGA Analyzer between 45and 650◦C,with a heating rate of ∼10◦C/min.TGA curves of pure HDPE and HDPE composites with different silicon loadings are shown in Fig.3.The temperature at which sample looses 35%of its weight of given composites (T 35)is taken as measure of thermal stability of the composites.It may be seen that the thermal decomposition of all the composites occurs mostly between 300and 500◦C.It is apparent from Fig.3that Si loading in HDPE enhances the thermal stability of the composites.Observed increase in thermal stability is thought to be due to the restriction of mobility of segmental movement of HDPE,due to the enhanced interaction between Si and the polymer matrix.3.2.Measurement of thermal conductivityEffective thermal conductivity of HDPE–Si composites is mea-sured by a 30mm long duel needle sensor (SH-1),which is coupled to the thermal properties analyzer (model KD2Pro,Decagon Device,Inc).KD2Pro thermal analyzer is based on transient hot wire method,which has the advantages of convenience,ease of construction,accuracy and short measurement time.The duel nee-38T.K.Dey,M.Tripathi /Thermochimica Acta502 (2010) 35–42Fig.2.Typical SEM micrographs for HDPE/7vol.%Si and HDPE/10vol.%Si compos-ites.dle probe (SH-1)consists of two parallel needles spaced 6mm apart.One needle contains a line heat source and the other a thermo-couple.The probe (SH-1)is buried in the homogeneous material (sample)and the heater is excited to produce a constant heat output per unit length.Temperature distribution in the material depends on the thermal properties of the material.Rise in temperature with time is recorded by the temperature sensor located 6mm away from the heat source.When a quantity of constant heat flux per unit wire length q (w/m)is applied to the line heat source over a period of time,the temperature rise at distance,r from theheatFig.3.TGA curves of HDPE/Si composites.source is given by [37]: T (r,t )=−q4 ÄEi−r 24at0<t ≤t 1(8)where,k and a is the thermal conductivity and diffusivity of the medium,respectively,t 1is the heating time and Ei is the exponen-tial integral.The decrease in temperature after the heat is turned off is given by: T =−q4 k−Ei−r 24at+Ei−r 24a (t −t 1)t >t 1(9)Thermal conductivity (K)of the composite is determined by fitting the time-temperature data during heating to Eq.(8),and to Eq.(9)during cooling.Thermal conductivity at 300K for each sample is measured at least five times and the mean value is recorded.Overall uncertainty in the measurement of thermal conductivity is ∼3%.3.3.Measurement of coefficient of thermal expansion (CTE)CTE measurement on the prepared samples were performed between 30and 100◦C at 5◦C/min using Thermo Mechanical Analyzer (TMA)(M/S,PerkinElmer,Diamond TMA).The average dimension of the sample used for TMA was 5mm ×5mm ×5mm.TMA measures linear or volumetric changes in the dimension of the material as a function of time,temperature,or force.The coef-ficient of thermal expansion was determined from the slope of the plot between thermal expansion and temperature by using TMA data analysis software.4.Results and discussions4.1.Thermal conductivity of HDPE–Si compositeThermal conductivity of HDPE/Si composites at room tempera-ture as a function of filler (Si)concentration is shown in Fig.4a.It is seen that with the increase in filler loading,the effective thermal conductivity of the composite increases.Effective thermal conduc-tivity of 0.833W/mK is achieved for HDPE containing 20-vol.%Si,which is more than double of pure HDPE.The enhancement in the effective thermal conductivity of HDPE/Si composites is expected,as the thermal conductivity of the filler (Si)is significantly higher (K Si =140W/mK)than that of HDPE (K HDPE =0.362W/mK).With the increase in volume content of silicon in HDPE,the interac-tion between Si particles increases and they come in contact with each other,resulting in the ease in transfer of heat and consequent enhancement of thermal conductivity.Fig.4b shows the temper-ature dependence of the thermal conductivity of the composites.For all the filler contents in HDPE/Si composites,only a marginal decrease in thermal conductivity is observed between room tem-perature and 80◦C.The decrease observed in thermal conductivity with increased in temperature is expected due to the dominance of both phonon–phonon and phonon–electron scattering.Measured effective thermal conductivity of the HDPE/Si com-posite and those predicted by the various models (Table 1)are plotted (Fig.5a)over a wide range of filler content between 0and 20%.Most of the models fail to predict the measured effective ther-mal conductivity of HDPE/Si composites over the entire range of filler concentration used in the present study.It may be noted that Maxwell,Bruggeman and Russell equations largely over estimate the experimental data over the entire range of filler concentration,while Hamilton Crosser model (with n =3,spherical shape of fillers)severely under estimates the effective thermal conductivity.Geo-metric mean model as well as Meredith equation predicts fairly well the effective thermal conductivity only for very low concentration of Si in HDPE.Meredith and Tobias model [19],which is based on theT.K.Dey,M.Tripathi/Thermochimica Acta502 (2010) 35–4239Fig.4.(a)Room temperature effective thermal conductivity of HDPE/Si composites as a function of Si content.(b)Temperature dependence of the effective thermal conductivity of HDPE/Si composites.generalization of models for parallel and series conduction in com-posites usually,predicts the thermal conductivity of composites with high conductivityfillers and for highfiller content.However, in the present case,thermal conductivity calculated by Geomet-ric mean and Meredith equations for composites with highfiller concentration(>5vol.%)of Si gives∼40%higher and∼30%lower effective thermal conductivity compared to the measured values, respectively.It may be pointed out that Cheng-Vashon model[21] is derived for composites with k f/k m>100.However,our analysis shows that even with k f/k m∼380(for HDPE/Si),satisfactory agree-ment with the measured data is achieved only up to∼15vol.% Si and at higherfiller concentration it largely over estimates the effective thermal conductivity.As is evident from Fig.5b,models proposed by both Neilson and co-worker[22]and Agari and co-worker[25]predicts well the effective thermal conductivity of the present composite over the studied range offiller concentration. Neilsen equation(6),which takes into account the shape and ori-entation of the dispersed medium,predicts our data more closely for A=3andϕ=0.74.This indicates that the dispersed phase in the composite are randomly oriented aggregates of spherical par-ticles with hexagonal close/face centered cubic type of packing.It is interesting to note from Fig.5b that Agari and Uno model[25] also predicts extremely well( 2=8×10−5),the effectivethermal Fig.5.(a)Comparison between the measured and predicted values of effective ther-mal conductivity in terms of various models.(b)Effective thermal conductivity of HDPE/Si plotted with the predicted values using Eqs.(6)and(7).(c)Deviation(%) (=((k measured−k calculated)/k measured)×100)vs.Si volume fraction.40T.K.Dey,M.Tripathi /Thermochimica Acta 502 (2010) 35–42conductivity of the HDPE/Si composite in the whole range of Si con-centration (0–20vol.%).The situation becomes clear from Fig.5c,where deviation (%)from the measured thermal conductivity has been compared for both Neilson and Agari models.As seen from Fig.5c,thermal conductivity of HDPE/Si composites calculated from Agari et al.model [25]fits the measured data to better than 2%both for lower and higher concentration range.The values of the param-eters C 1and C 2obtained from the best fit of Eq.(7)are 0.98092and 0.66116,respectively.According to Agari and Uno,the param-eters C 1and C 2should be in between 0and 1.The parameter C 1obtained from the fit is close to 1,which indicates that the intro-duction of Si into HDPE does not have any effect on the crystallinity of the polymer.Further,the closure C 2values are to 1;more easily the conductive chains/channels are formed in composites.It may be noted that,depending on the dispersion state of the particu-lates,the thermal conductivity of the composites may be different,even if the composition of the composites is same.Zhou et al.[38]reported that composites with smaller particle size of the filler give higher value of C 2.This is because a better state of filler dispersion can be achieved in smaller particles reinforced composites com-pared to the larger particles and formation of conductive channels in smaller particles filled composites is more likely [39,40].How-ever,in the present composite,the average filler size is ∼10␮m and the value of C 2(viz.,0.66116)obtained from the fit indicates that the conductive channels/chains are not easily formed in HDPE/Si composites.This is in agreement with the observations of Zhou et al.[38]on HDPE/BN composites,prepared with filler (BN)of various sizes.4.2.CTE of HDPE–Si compositesCoefficient of thermal expansion (CTE)of HDPE/Si composites have been measured both as function of volume fraction of the filler concentration and temperature.Fig.6a shows the variation of (CTE)of the composites with various filler loading at different temperatures between 40and 100◦C.It is seen that for all com-positions CTE steadily decreases with Si volume fraction (%).The temperature dependence of CTE for composites with different filler concentration is shown in Fig.6b.CTE of all the studied compos-ites increases linearly with temperature.However,the slope of the dimensional change versus temperature becomes shallower for the entire temperature interval as the reinforcement volume frac-tion increases from 3%to 20%.As is expected,the composite with higher filler loading shows consistently lower CTE values than the composites with lower filler pared to the CPE of pure HDPE,CTE of HDPE composite with 0.2Si concentrations decreases by more than an order of magnitude at around room temperature.The decrease in CTE of the composites depends on the difference between the CTE of the polymer matrix and the filler particles.In the present case,the filler (Si)particle has a very low CTE value (4.1×10−6/◦C)as compared to HDPE (∼100×10−6/◦C).The reduction of CTE is,however,also influenced by the strength of the interfacial adhesion between the matrix and the filler.Fig.7shows the comparison of the experimental CTE with the values calculated by various models (Table 2).It is seen that most of the models display significant deviations from the measured data.The primary reason for the observed deviation lies on the fact that thermal expansion of the composite is influenced by several fac-tors that could not be fulfilled by any single model.The rule of mixtures (ROM),which is widely used for the calculation of the effective CTE of the composite,fails to predict the measured CTE in the present case.It may be noted that estimation of CTE based on Turner model [27]significantly under-predicts the measured CTE values of the HDPE/Si composites.Turner model [27]predicts fairly well the CTE of composites,only when bulk modulus of both filler and the matrix are of comparable magnitude.In the presentT a b l e 2M o d e l p r e d i c t i o n s f o r t h e c o e f fic i e n t o f t h e r m a l e x p a n s i o n o f p a r t i c l e fil l e d p o l y m e r s .M o d e lP r e d i c t i o nR u l e o f m i x t u r e (R O M )[26]˛c =˛m (1− )+˛f(10)T u r n e r m o d e l [27]˛c =(1− )K m ˛m + K f ˛f(1− )K m + K f(11)K e r n e r m o d e l [29]˛c =˛m (1− )+˛f +[ (1− )(˛f −˛m )]×K f −K m(1− )K m + K f +(3K f K m /4G m )(12)S c h a p e r y ’s m o d e l [30]˛c =˛f +(˛m −˛f )1/K c −1/K f1/K m −1/K f(13)K (−)c=K m +(1/(K f −K m ))−((1− )/(K m +(4/3)G m ))(l o w e r b o u n d s )(14)K (+)c =K f +1− (1/(K m −K f ))−( /(K f +(4/3)G f ))(u p p e r b o u n d s )(15)T h o m a s m o d e l [34]˛a c =˛a m +˛a f (1− ),e x p o n e n t ‘a ’m a y v a r y f r o m +1t o −1(16)C h e n e t a l .m o d e l [35]˛c =a ˛m e x p− b+(1−a )˛m ;a a n db a r ec o n s t a n t s(17)V o e t a l .m o d e l [36]˛c =11+k 0 (1− )[ ˛f +(1− )˛m +k 0 (1− )(˛f +˛m )+k 0 (1− )k 1](18)˛c ,˛m a n d ˛f a r e r e s p e c t i v e l y t h e C T E o f t h e c o m p o s i t e ,p o l y m e r a n d t h e fil l e r . :t h e fil l e r v o l u m e f r a c t i o n .K a n d G a r e t h e b u l k a n d s h e a r m o d u l i ,r e s p e c t i v e l y a n d t h e s u b s c r i p t s m a n d f s t a n d s f o r m a t r i x a n d fil l e r ,r e s p e c t i v e l y .T h e s h e a r m o d u l u s i s c a l c u l a t e d u s i n g t h e s t a n d a r d r e l a t i o n s h i p ,K =E /(3(3−E /G )).K 0r e fle c t s t h e m a t r i x –fil l e r i n t e r a c t i o n s t r e n g t h :K 1i s a m e a s u r e o f t h e t e m p e r a t u r e d e p e n d e n c e o f K 0.。

相关文档
最新文档