《全等三角形的判定》PPT课件四

合集下载

1三角形全等的判定(第4课时)PPT课件(华师大版)

1三角形全等的判定(第4课时)PPT课件(华师大版)

当堂检测
1.为班级中每名同学准备了长分别为a、b、c三根木条,所有同学都
用三根木条,首尾顺次拼接组成三角形,这时小陈同学说:“我们所
有人的三角形,形状和大小是完全一样的”小陈同学的说法根据
_______.
SSS
根据:三个木条长度a,b,c,无论怎么摆放,长度不变,利用三
角形全等的判定理由:SSS
当堂检测
(简写为“边边边”或“S.S.S.”)
A
几何语言:
在△ABC和△ DEF中,
AB=DE,
B
C
D
BC=EF,
CA=FD,
∴ △ABC ≌△ DEF(S.S.S.).
E
F
讲授新课
典例精析
【例1】如图,在四边形 ABCD 中,AD = CB,AB = CD.
求证: ∠B = ∠D.
证明:在△ABC 和△CDA 中,
=,
= ,
=.
∴△ABC≌△DFC(SSS).
讲授新课
变式1 若将上题中右边的三角形向左平移(如图),若AB=DF,
AC=DE,BE=CF.问:△ABC和△DFE全等吗?
解:全等.
A
B
E
D
C
F
∵ BE=CF ,
∴BE+EC=CF+EC.
即BC=FE .
在△ABC和△DFE中,
在△ABD和△CDB中,
=(已知),
= (已知),
=(公共边).
∴△ABD≌△CDB(SSS),
∴∠A=∠C.(全等三角形的对应角相等).
②证明:∵ △ABD≌△CDB(已证) ,
∴∠ABD=∠CDB, ∠ADB=∠CBD .
(全等三角形的对应角相等)

三角形全等的判定(第四课时)教学课件(共19张PPT)初中数学人教版八年级上册

三角形全等的判定(第四课时)教学课件(共19张PPT)初中数学人教版八年级上册

【总结】斜边和一条直角边分别相等的两个直角三角形全 等(简写成“斜边、直角边”或“HL”).
A
几何语言: 由此,你又能受到什么启发?你能发现证明“三角形内角和等于180°”的
思路吗?在 Rt△ABC 和 Rt△A′B′C′ 中,
B
C
AB = A′B′,
A′
BC = B′C′,
∴ Rt△ABC ≌ Rt△DEF(HL).
谢谢观看
∴ Rt ABE≌Rt BCDHL .
练习 5 如图,点 B、C、E、F 在同一直线上, BE CF,AC BC 于点 C, DF EF 于点 F, AB DE , 求证: AB∥DE .
证明:∵ AC BC,DF EF ,
∴ ACB DFE 90 ,
∵ BE CF ,∴ BE CE CF CE ,
证明: DE AB , DF AC ,
BED CFD 90,
D 是 BC 上的中点,BD CD ,

Rt△BED

Rt△CFD
中,
BD DE
CD DF
Rt△BED≌Rt△CFD(HL) ,B C .
斜边、直角边 (HL)
斜边和一条直角边分别相等的两个直角三 角形全等(HL)
SSS、AAS、ASA、SAS适用于一般三角 形; HL只适用于直角三角形.
D A
C B
已知
一般三 角形
三边 两边一角
两角一边
方法 SSS
SAS
ASA AAS
直角三
两边
HL SAS
角形
一边一角
ASA AAS
特别说明
其中角为两边的夹角 对于两个三角形只需有两个角和一边
对应相等则其全等 两边可以为斜边和直角边,或两直角边

直角三角形全等的判定 PPT课件 4 人教版

直角三角形全等的判定 PPT课件 4 人教版
A
B
C
E
例题示范2:
已知:在△ABC中∠B=∠C.AD 为 △ABC的中线DE⊥AB于E.DF⊥AC 于F
求证:∠BAD=∠CAD
A
E B
F
D C
达成训练
想一想
1、你能够用几种方法说明两个直 角三角形全等?
五种:
SAS、ASA、AAS、SS一端系在旗杆上,另 一端分别固定在地面上的 两跟木桩上,两跟木桩离 旗杆底部的距离相等吗? 请说明你的理由。
斜边、直角边公理:有斜边和一条直角 边对应相等的两个直角三角形全等。
自学指导2
1)认真自学例2,例3两道例题,体 会“斜边,直角边”公理的应用。
(2)自学例题时要注意证明的格式。 (3)画出例3的分析思路图,并与同 学交流。
例题示范1:
已 知: AD⊥BE于C. AB=DE,C是BE的中点. 求 证:AB∥DE
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。

全等三角形的判定ppt课件

全等三角形的判定ppt课件

全等三角形也是数学竞赛中常见 的考点之一,涉及到的知识点包
括边角关系、判定方法等。
02
全等三角形的判定方法
边边边定理
总结词
三边对应相等的两个三角形全等 。
详细描述
根据三角形的基本性质,如果两 个三角形的三边长度相等,则这 两个三角形必然全等。
边角边定理
总结词
两边对应相等且夹角相等的两个三角 形全等。
全等三角形的判定
• 全等三角形概述 • 全等三角形的判定方法 • 全等三角形的证明步骤 • 全等三角形在几何中的应用 • 全等三角形的实际应用案例
01
全等三角形概述
全等三角形的定义
定义
两个三角形全等,是指能够完全重合的两个三角形,即它们的形状相同,大小 也相同。
符号表示
记作△ABC≌△DEF或ABCDH≌EFGH。
全等三角形在几何中的其他应用
证明其ቤተ መጻሕፍቲ ባይዱ几何命题
通过证明两个三角形全等,可以证明一些其他几何命题,比如平 行线性质、勾股定理等。
研究三角形和多边形的性质
利用全等三角形研究三角形和多边形的性质,可以发现一些新的几 何定理和性质。
解决其他实际问题
利用全等三角形解决其他实际问题,比如面积计算、周长计算等。
THANKS
证明线段相等
总结词
全等三角形的对应边相等
详细描述
全等三角形的对应边也称为对应边。因此,全等三角形的对应边是相等的。这个性质常常被用来证明 两条线段相等。
证明线段垂直
总结词
全等三角形可以用来证明线段垂直
详细描述
在几何图形中,有时候需要证明某条线段与 另一条线段垂直。这时,可以利用全等三角 形的性质,通过证明两个三角形全等来证明 这两条线段垂直。

全等三角形的判定PPT课件共34张

全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)
使用几何拼接条探究三个元素相等的三角形是否全等?1.用绿色、蓝色、橙色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?2.用红色、蓝色、黄色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?
三角相等:
三边相等:
基本事实一
如果两个三角形的三边对应相等,那么这两个三角形全等.
基本事实一可简记为“边边边”或“SSS”.
拓展提升
1.如图,已知AB=AE,AD=AC,BC=ED,BC,DE交于点O.求证:∠BAD=∠EAC.
证明:在△BAC和△EAD中,AB=AE,AC=AD,BC=ED.∴△BAC≌△EAD(SSS).∴∠BAC=∠EAD.∴∠BAC-∠DAC=∠EAD-∠DAC,即∠BAD=∠EAC.
归纳小结
能够完全重合的两个三角形叫做全等三角形.
全等三角形的性质:全等三角形的对应边相等,对应角相等.
探究一
新知探究
知识点1 边边边
通过作图探究一个元素相等能否判定两个三角形全等?
一条边相等:
一个角相等:
探究二
通过几何拼接条探究两个元素相等的三角形是否全等?
两条边相等:
两个角相等:
一边一角相等:
探究三
探究四
知识点2 三角形的稳定性
用拼接条制作三角形和四边形框架,并拉动它们,你发现了什么?
三角形的形状和大小是固定不变的,而四边形的会改变.
三角形所具有的这一性质叫做三角形的稳定性.四边形具有不稳定性.
在生活中,我们经常会看到应用三角形稳定性的例子.
在生活中,我们也经常会看到应用四边形不稳定性的例子.
随堂练习
1.已知:如图,AB=EF,AC=ED,BF=CD.求证:∠A=∠E.
证明:∵BF=CD,∴BF+FC=CD+FC∴BC=FD∵AB=EF,AC=ED∴△ABC≌△EFD(SSS)∴∠A=∠E.

三角形全等的判定(第4课时) —初中数学课件PPT

三角形全等的判定(第4课时) —初中数学课件PPT
明全等了,应如何办呢?
过A作BC的垂线,则AC就只有一种情
况.如图所示.
如图所示,舞台背景的形状是两个直角三角形,工作 人员想知道这两个直角三角形是否全等,但两个三角形都 有一条直角边被花盆遮住无法测量长度.
方法
方法一:测量斜边和一个对应的锐角(AAS); 方法二:测量没遮住的一条直角边和一个对应的锐 角(ASA或AAS).
把画好的△A'B'C'剪下来放在△ABC上,观 察这两个三角形是否全等.
判定两个直角三角形全等的一个方法:斜边和一条直角 边分别相等的两个直角三角形全等(可以简写成“斜边、直
角边”或“HL”).
对于两个直角三角形,满足一边一锐角分别相等,或 两直角边分别相等,这两个直角三角形就全等了.
如果满足斜边和一直角边分别相等,这两个直角三
工作人员测量了每个三角形没有被遮住 的直角边和斜边,发现它们分别相等,于是他就 肯定“两个直角三角形是全等的”.你相信他 的结论吗?
提 醒
三角形全等的判定方法,说明所有 判定方法都适合直角三角形全等的
判定.
特殊三角形的直角三角形有特殊的判定方法.
一、“斜边、直角边”判定定理的探究
任意画出一个Rt△ABC,使∠C=90°.再画一个 Rt△A'B'C',使∠C'=90°,B'C'=BC,A'B'=AB.把画好 的Rt△A'B'C'剪下来,放到Rt△ABC上,它们全等吗?
3.如图所示,要用“HL”判定Rt△ABC和Rt△DEF全等
的条件是 ( C )
A.AC=DF,BC=EF B.∠A=∠D,AB=DE C.AC=DF,AB=DE D.∠B=∠E,BC=EF

全等三角形的四种判定方法ppt课件

全等三角形的四种判定方法ppt课件

在△ABC与△ADC中, ∠B=∠D(已证) ∠1=∠2(已知) AC=AC(公共边)
∴ △ABC≌△ADC(AAS)
∴ AB=AC(全等三角形对应边相等)
8
LOGO
三角形全等判定(四)
边边边公理: 三边 对应 相等的两个三角形
全等. (SSS)
A
应用表达式:(如图)
在△ABC与△DEF中 B
C
D
E
F
∴ △ABC≌△DEF (SSS)9
LOGO
例3:如图19.2.15,在四边形ABCD中,AD= BC, AB=CD.
求证:△ABC≌△CDA.
证明:在△ABC和△CDA中, CB=AD (已知) AB=CD (已知) AC=CA (公共边)
图 19.2.15
∴ △ABC≌△CDA(S.S.S.).
∠ABC=∠ DCB(已知) A
D
BC=CB(公共边)
∠ACB=∠ DBC(已知)
∴ △ABC≌△DCB(ASA) B
图19.2.9
C
5
相信你一定行!
LOGO
如图,已知∠ABC=∠D,∠ACB=∠CBD.
判断图中的两个三角形是否全等,并说明理由.
答:不全等。因为虽然有两 组内角相等,且BC=BC,但 都不是两个三角形两组内角的 夹边,所以不全等
解:∵AB⊥BD,ED ⊥BD垂足分别是B、D,
∴∠ABC=∠EDC=90°(垂直的定义) 在△ABC与△EDC中,
∠ABC=∠EDC (已证) BC=DC (已知)
∠ACB=∠ECD(对顶角)
∴△ABC≌△EDC(ASA). ∴AB=ED(全等三角形的对应边相等)
所以测得DE的长就是AB的长.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一边一角对应相等时,两个三角形不
一定全等。
思考
• 当有三个元素对应相等两个三角形 会全等吗?这三个条件会有几种组 合方式呢?
三条边、三个角、两 边一角、两角一边
操作
分小组活动:
• 1)用一根长 13 cm 的细铁丝,折成一个边长分 别是 3 cm , 4 cm , 6 cm 的三角形.把你做的三 角形和同学做的三角形进行比较,它们能重合吗?
身体健康,
学习进步!

当两个三角形只有两条边或两个角或 PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
• 2)用同一根细铁丝,余下 1 cm ,用其余部分折 成一个边长分别是 3cm , 4 cm , 5 cm 的三角形, 再和同学做的三角形进行比较,它们能重合吗?
• 3)不同小组用同一根细铁丝,任取一组能构成三 角形的三边长的数据,和同桌同学分别按这些数 据折三角形ucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
实验探究:
• 取三根长度适当的木条,用钉子钉 成一个三角形的框架,你所得到的 框架的形状固定吗?用四根木条钉 成的框架的形状固定吗?
结论
• 三角形具有稳定性 • 四边形具有不稳定性
请你举出几个 生活中的实例
反思:
• 画一个角等于已知角,你能说说 这两个角相等的原因吗?
课堂总结
• 同学们,这节课学会了哪些 知识,掌握了什么方法?还 有什么收获?
前后两个三角形的元素; • (3)三个对应相等的元素按顺序
排列,并用半个大括号括起来。
练习:
• 1、已知:如图,AB EF, AC ED, BF CD. 求证:(1)ABC ≌ EFD(2) A E (3)你还能证明出什么结论?
交流:
• 如图,已知, AB AD, AC AE, BC DE 你能证明 BAD CAE 吗?
课堂小测:
• 如图是一个房梁支架的示意图。 其中,AB AC, BD CD.B 和 C
相等吗?如果不相等,请说明理由; 如果相等,请证明。
感谢聆听
所谓“人”,就是你在它上面再加上任何一样东西它就不再是“人”了。 我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯 你一定不要做丑恶的人,但是世态炎凉,你也别太善良!马善被人骑,人善被人欺,过于善良就是一种懦弱和无能! 被朋友伤害了和被陌生人伤了其实是一样的,别怀疑友情,人家不欠你的,但要提防背叛你的人。 觉得自己做得到和做不到,只在一念之间。 人生里面总是有所缺少,你得到什么,也就失去什么,重要的是你应该知道自己到底要什么。追两只兔子的人,难免会一无所获。 想哭的时候就哭出来。 明天的希望会让我们忘了今天的痛苦。 如果你受苦了,感谢生活,那是它给你的一份感觉;如果你受苦了,感谢上帝,说明你还活着。人们的灾祸往往成为他们的学问。 地球无时不刻都在运动,一个人不会永远处在倒霉的位置。 情感和愿望是人类一切努力和创造背后的动力,不管呈现在我们面前的这种努力和创造外表上是多么高超。——爱因斯坦 唯书籍不朽。——乔特
全等三角形的判定
基本事实——边边边
写出下面命题的逆命题
• 全等三角形的对应边相等,对 应角相等
•对应边相等,对应角相等的 三角形全等
猜想
• 每个三角形有三条边,三个角,要 想判断两个三角形全等,是不是必 须三条边对应相等,三个角对应相 等呢?能不能减少条件?最少几个? 分别是什么?
填表
归纳
• 当两个三角形只有一条边或一个角对 应相等时,两个三角形不一定全等。
• 如果两个三角形的三边对应相等, 那么这两个三角形全等.
简称:边边边(SSS)
解题格式
例题
• 例:已知:如图, AB DB, AC DC. 求证: ABC ≌ DBC
证明: 在ABC 和 DBC 中
AB DB
AC
DC
BC BC
∴ ABC ≌ DBC
书写要求:
• (1)对应顶点写在对应的位置上; • (2)等号左右两边的元素必须是
相关文档
最新文档