坐标正反算
测量坐标正反算的方法

测量坐标正反算的方法测量坐标是一种常见的测量方法,用于确定物体在平面或者空间中的位置。
在实际测量中,我们往往需要进行坐标的正反算,即根据已知的坐标计算未知物体的位置或者根据已知物体的位置计算其坐标。
本文将介绍常见的测量坐标正反算的方法。
一、坐标的正算坐标的正算是指根据已知物体的位置计算其坐标。
在实际测量中,我们常用的方法有:1. 三角测量法三角测量法是一种基于三角关系的测量方法,适用于平面测量。
它利用视线方向的角度和边长关系推导出物体的坐标。
在三角测量法中,首先需要选择至少两个已知基准点,并确定其坐标。
然后,通过测量目标点与基准点之间的角度和边长,利用三角关系计算出目标点的坐标。
三角测量法的优点是精度较高、适用范围广,但需要测量目标点与基准点之间的角度和边长,测量过程比较复杂。
2. 几何测量法几何测量法是一种基于几何关系的测量方法,适用于平面和空间测量。
它利用测量物体与多个基准点之间的几何关系计算出物体的坐标。
在几何测量法中,首先需要选择至少三个已知基准点,并确定其坐标。
然后,通过测量目标点与基准点之间的距离、角度和方向等几何关系,利用几何图形和计算方法计算出目标点的坐标。
几何测量法的优点是简单易懂、计算方便,但需要选择合适的基准点和利用几何关系进行计算,对测量者的几何知识要求较高。
二、坐标的反算坐标的反算是指根据已知坐标计算出物体的位置。
在实际测量中,我们常用的方法有:1. 三角反算法三角反算法是一种基于三角关系的计算方法,适用于平面测量。
它利用已知基准点的坐标和目标点与基准点之间的角度和边长关系推导出目标点的位置。
在三角反算法中,首先需要选择至少两个已知基准点,并确定其坐标。
然后,通过测量目标点与基准点之间的角度和边长,利用三角关系计算出目标点的位置。
三角反算法的优点是计算简单、精度较高,但需要测量目标点与基准点之间的角度和边长。
2. 几何反算法几何反算法是一种基于几何关系的计算方法,适用于平面和空间测量。
坐标正反算定义及公式

第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。
=62°09'29.4"+180°=242°09'29.4"注意:一条直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。
工程测量坐标正反算公式

工程测量坐标正反算公式工程测量坐标正反算公式是指基于已知控制点坐标和测量仪器测量数据,通过计算获得被测物体或地形的坐标点。
在这个过程中,正算指的是从控制点计算被测点坐标的过程,而反算则是从已知被测点坐标计算控制点坐标的过程。
在本文中,我将详细介绍工程测量坐标正反算公式的原理和实际应用场景。
一、工程测量坐标正反算公式原理工程测量坐标正反算公式的原理主要是基于三角测量和距离测量原理。
三角测量法利用三角形的几何关系,通过测量三角形内角或边长,计算出三角形的各个顶点坐标。
而距离测量法则是通过测量被测物体或地形与仪器的距离,然后利用三角函数计算出被测物体或地形的坐标。
在实际工作中,测量仪器主要有全站仪、经纬仪、水准仪和电子测距仪等。
全站仪是一种常用的测量仪器,它可以测量水平角、垂直角和斜距,并输出相应的坐标值。
而经纬仪则是一种测量方位角和高度差的仪器,它常用于野外导线路线测量;水准仪则用于测量高差,电子测距仪则用于测量地形点到仪器的直线距离。
在进行工程测量坐标正反算时,需要先确定控制点坐标。
控制点分为基准控制点和工作控制点,基准控制点是指通过已知的测量结果或GPS测量等方式已知其坐标的点,而工作控制点则是在进行实测工作时测量得到的坐标点。
基准控制点与工作控制点之间的坐标关系构成了控制网络,该网络是工程测量的基础。
对于工程测量坐标正算来说,可以利用如下公式计算:X = XC + D × cos(V)Y = YC + D × sin(V) × cos(H)Z = ZC + D × sin(V) × sin(H) + hX、Y、Z为被测点的坐标;XC、YC、ZC为控制点的坐标;D为控制点与被测点的距离;V为控制点与被测点之间的垂直角;H为控制点与被测点之间的水平角;h为控制点与被测点之间的高差。
该公式利用三角函数计算出被测点的坐标,精度高且适用于不同的测量场景。
测量坐标正反算公式是什么

测量坐标正反算公式是什么引言在测量领域中,坐标正反算是一种常用的计算方法,用于将实际测量值转换为地理坐标或者将地理坐标转换为实际测量值。
本文将介绍测量坐标正反算的基本原理和公式,并通过示例进行说明。
坐标正算坐标正算是将实际测量值(如长度、角度等)转换为地理坐标的过程。
在进行坐标正算时,通常需要已知一些控制点的地理坐标,并通过测量的实际值来计算待测点的地理坐标。
点的水平坐标正算对于点的水平坐标正算,通常使用以下公式:X = X₀ + ∑(Di * cos ai)Y = Y₀ + ∑(Di * sin ai)其中,X₀和Y₀为已知控制点的地理坐标,Di为待测点到控制点的实测距离,ai 为待测点到控制点的真方位角(或差角)。
点的高程坐标正算对于点的高程坐标正算,通常使用以下公式:Z = Z₀ + ∑(Hi)其中,Z₀为已知控制点的高程坐标,Hi为待测点到控制点的高差。
坐标反算坐标反算是将已知的地理坐标转换为实际测量值的过程。
在进行坐标反算时,通常需要已知一些控制点的地理坐标,并通过测量待测点与已知控制点的实际值来计算实际测量值。
点的水平坐标反算点的水平坐标反算根据已知的控制点的地理坐标和实测距离,计算待测点与已知控制点的方位角(或差角)和距离。
其中,方位角可使用以下公式计算:tan α = (Y-Y₀) / (X-X₀)其中,X₀和Y₀为已知控制点的地理坐标,α为待测点到控制点的方位角。
待测点的距离可以使用以下公式计算:D = √((X-X₀)² + (Y-Y₀)²)点的高程坐标反算点的高程坐标反算根据已知的控制点的高程坐标和实测高差,计算待测点与已知控制点的高差。
已知控制点的高程坐标和高差可以通过以下公式计算:Hi = Z-Z₀其中,Z₀为已知控制点的高程坐标,Hi为待测点到控制点的高差。
示例为了更好地理解坐标正反算的原理,这里给出一个示例。
假设有一个测量任务,要求测量某点A的地理坐标。
坐标反算正算计算公式

坐标反算正算计算公式坐标反算和正算是地理测量学中常见的问题,用于计算地球表面上两点之间的距离、方位角和坐标。
坐标反算是根据已知的两个地点的经纬度和距离,来计算出另一个点的经纬度坐标。
坐标正算则是根据已知的一个地点的经纬度和另一个地点的方位角和距离,来计算出第二个地点的经纬度坐标。
下面简单介绍一下坐标反算和正算的计算公式。
坐标反算坐标反算通常用于计算两点间的距离和方位角。
1.距离计算两点间的距离可以通过公式:D = 2 * R * asin(sqrt(sin((lat2-lat1)/2)^2 + cos(lat1) * cos(lat2) * sin((lon2-lon1)/2)^2))其中,lat1和lon1为第一个点的经纬度,lat2和lon2为第二个点的经纬度,R为地球平均半径。
2.方位角计算两点间的方位角可以通过公式:brng = atan2(sin(lon2-lon1) * cos(lat2), cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) *cos(lon2-lon1))其中,lat1和lon1为第一个点的经纬度,lat2和lon2为第二个点的经纬度。
坐标正算坐标正算通常用于根据已知一个点的经纬度和另一个点的方位角和距离,计算出第二个点的经纬度。
1.纬度计算第二个点的纬度可以通过公式:lat2 = asin(sin(lat1) * cos(d/R) + cos(lat1) * sin(d/R) * cos(brng))其中,lat1为第一个点的纬度,d为距离,R为地球平均半径,brng 为方位角。
2.经度计算第二个点的经度可以通过公式:lon2 = lon1 + atan2(sin(brng) * sin(d/R) * cos(lat1), cos(d/R) - sin(lat1) * sin(lat2))其中,lon1为第一个点的经度,d为距离,R为地球平均半径,brng 为方位角。
坐标正反算计算程序

坐标正反算计算程序在进行坐标正反算计算之前,需要先了解一些基本概念和公式:1.大地坐标系:大地坐标系是用经纬度表示地球表面上的点的坐标系统,其中经度表示东西方向的位置,纬度表示南北方向的位置。
2.平面坐标系:平面坐标系是用平面直角坐标系表示地球上的点的坐标系统,其中X轴表示东西方向的位置,Y轴表示南北方向的位置。
3.椭球坐标参数:椭球坐标参数包括椭球体长半轴a、短半轴b和偏心率e等参数,用来描述地球表面的形状。
4.大地坐标与平面坐标的转换公式:-大地坐标转平面坐标:平面X坐标 = N * (cosB * (L - L0))平面Y坐标 = M + N * sinB * tan(B - B0)-平面坐标转大地坐标:B=B0+(Y-M)/NL = L0 + X / (N * cosB)H = (N / cosB) - N其中,N、M、B0、L0分别代表椭球的参数计算中的一些辅助数值,H 代表大地高。
下面是一个示例的坐标正反算计算程序:```pythonimport mathclass CoordinateConverter:def __init__(self, a, b, e, lon_origin, lat_origin):self.a = aself.b = bself.e = eself.lon_origin = lon_origint_origin = lat_origindef geodetic_to_plane(self, lon, lat):lon_diff = lon - self.lon_originM = self.a * (1 - self.e ** 2) / (1 - self.e ** 2 * math.sin(t_origin) ** 2) ** 1.5N = self.a / math.sqrt(1 - self.e ** 2 *math.sin(t_origin) ** 2)X = N * math.cos(t_origin) * lon_diffY = M + N * math.sin(t_origin) * math.tan(lat - t_origin)return X, Ydef plane_to_geodetic(self, X, Y):M = self.a * (1 - self.e ** 2) / (1 - self.e ** 2 *math.sin(t_origin) ** 2) ** 1.5N = self.a / math.sqrt(1 - self.e ** 2 *math.sin(t_origin) ** 2)lat = t_origin + (Y - M) / Nlon = self.lon_origin + X / (N * math.cos(lat))H = (N / math.cos(lat)) - Nreturn lon, lat, H#示例用法#大地坐标转平面坐标X, Y = converter.geodetic_to_plane(lon=121, lat=41)print("平面坐标:", X, Y)#平面坐标转大地坐标print("大地坐标:", lon, lat, H)```注意:在实际使用时,需要根据具体的椭球参数和坐标系定义进行适当修改,以满足实际需求。
坐标反算正算计算公式

坐标反算正算计算公式一、坐标正算根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角αAB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为:X B=X A + ΔX ABY B=X A+ ΔY AB(1-18)二式中,ΔX AB与ΔY AB分别称为A~B的纵、横坐标增量,其计算公式为:ΔX AB=X B-X A=D AB · cosαABΔY AB=Y B-Y A=D AB · sinαAB(1-19)注意,ΔX AB和ΔY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。
二、坐标反算根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角αAB,为坐标反算。
其计算公式为:(1-20)(1-21)注意,由(1-20)式计算αAB时往往得到的是象限角的数值,必须先根据ΔX AB、ΔY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。
三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。
深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。
角AOD为α,BO D为β,旋转AOB使OB与OD重合,形成新A'OD。
A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β))OA'=OA=OB=OD=1,D(1,0)∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)[1]两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)[编辑本段]倍角公式Sin2A=2SinA•CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=2tanA/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))[编辑本段]三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)[编辑本段]三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)[编辑本段]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.[编辑本段]和差化积sinθ+sinφ = 2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ = 2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ = 2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ = -2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) [编辑本段]积化和差sinαsinβ = -1/2*[cos(α+β)-cos(α-β)]cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]cosαsinβ = 1/2*[sin(α+β)-sin(α-β)][编辑本段]诱导公式sin(-α) = -sinαcos(-α) = cosαsin(π/2-α) = -cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα[编辑本段]万能公式[编辑本段]其它公式(sinα)^2+(cosα)^2=11+(tanα)^2=(secα)^21+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立[编辑本段]其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)[编辑本段]双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαtan(kπ+α)= tanαcot(kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)}}√表示根号,包括{……}中的内容。
坐标正算反算公式讲解

一 方位角:在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。
1、第一象限的方位角YX第一象限第二象限第三象限第四象限oAa图12、第二象限的方位角Y X第一象限第二象限第三象限第四象限oAa图23、第三象限的方位角YX第一象限第二象限第三象限第四象限o Aa图34、第四象限的方位角YX第一象限第二象限第三象限第四象限oAa图4方位角计算公式:x=a -1tanA Y O Y -AX OX-方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O )直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。
直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、当直线OA 的方位角≤180°时,其反方位角等于a+180°。
2、 当直线OA 的方位角>180°时,其反方位角等于a-180°。
二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算或:注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。
例题:方位角的推算已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α45、α51。
13图5解: α23= α12-β2+180°=30°-130°+180°=80°α34= α23-β3+180°=80°-65°+180°=195°α45=α34-β4+180°=195°-128°+180°=247°α51=α45-β5+180°=247°-122°+180°=305°α12=α51-β1+180°=305°-95°+180°=30°(检查)三坐标正算一、直线段的坐标计算oB DACEaap图6设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标1、设直线段OA长度为L,则A点坐标为X A=X O+L×Cos(F op)Y A=Y O+L×Sin(F op)2、设直线段OB长度为L OB,直线段BC长度为L BC,则C点坐标为X B=X O+L OB×Cos(F op)Y B=Y O+L OB×Sin(F op)直线BC的方位角F BC=F op+aIF F B C>360°:Then F BC-360°→F BC:IfEndX C=X B+L BC×Cos(F BC)Y C=Y B+L BC×Sin(F BC)3、设直线段OD长度为L,直线段DE长度为L DE,则E点坐标为ODX D=X O+L OD×Cos(F op)Y D=Y O+L OD×Sin(F op)直线DE的方位角F DE=F op-aIF F DE<0°:Then F DE+360°→F DE:IfEndX E=X D+L DE×Cos(F DE)Y E=Y D+L DE×Sin(F DE)二、缓和曲线段的坐标计算x Y 00=L- +=L 40R L 52s 2L3456R L 94s 4L 6R L 3s L 336R L 7s 33-90 L πRL sO2切线角=设完整缓和曲线起点O 的坐标为O (XO,YO ),方位角为F ,曲线长度为L S ,曲线上任一点的曲线长度为L,当线路右转时直线CP 的方位角Fcp=F+90°IF F cp >360°:Then F cp-360°→F cp :IfEnd当线路左转时直线CP 的方位角Fcp=F-90°IF F cp<0°:Then F cp+360°→F cp:IfEndX P=X O+Abs(x O)×Cos(F)+Abs(y O)×COS(F CP)Y P=Y O+Abs(x O)×Sin(F)+Abs(y O)×Sin(F CP)三、圆曲线段的坐标计算圆曲线的已知点数据为起点S的桩号K s、走向方位角αs、起点S 坐标为(X o,Y o)、圆曲线半径为R与曲线长为L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、坐标正算与坐标反算 1、坐标正算 已知 点的坐标、 边的方位角、 两点间的水平距离,计算待 定点 的坐标,称为坐标正算。
如图 6-6 所示,点的坐标可由下式计 算:式中 、 为两导线点坐标之差,称为坐标增量,即:【例题 6-1】已知点 A 坐标, =1000 、 =1000 、方位角 =35°17'36.5", 两点水平距离 =200.416 ,计算 点的坐标?35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知 两点的坐标,计算 两点的水平距离与坐标方位角, 称为坐标反算。
如图 6-6 可知,由下式计算水平距离与坐标方位角。
(6-3) (6-4) 式中反正切函数的值域是-90°~+90°,而坐标方位角为 0°~ 360°,因此坐标方位角的值,可根据 、 的正负号所在象限,将反 正切角值换算为坐标方位角。
【例题 6-2】 =3712232.528 、 =523620.436 、 =3712227.860 、 =523611.598 ,计算坐标方位角计算坐标方位角、水平距离 。
=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过 A 点坐标纵轴至直线 的坐标方位角,若所求坐标方位角为,则应是 A 点坐标减 点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题 6-3】坐标反算,已知 =2365.16 、 =1181.77 、=1771.03 、 =1719.24 ,试计算坐标方位角 、水平距离 。
键入 1771.03-2365.16 按等号键[=]等于纵坐标增量,按储存键[ ],键入 1719.24-1181.77 按等号键[=]等于横坐标增量,按[ ]键输入,按[ ]显示横坐标增量,按[ ]键输入,按第二功能键[2ndF],再按[ ]键,屏显为距离,再按[ ]键,屏显为方位角。
【例题 6-4】坐标正算,已知坐标方位角 =294°42'51",=200.40 ,试计算纵坐标增量 横坐标增量 。
键入 294.4251,转换为以度为单位按[DEG],按[ ]键输入,键入 200.40 ,按[ ]键输入,按第二功能键[2ndF],按[ ]屏 显 ,按[ ]屏显 。
《建筑工程测量》试题库一、填空题1、测量工作的基准线是。
2、测量工作的基准面是。
3、测量计算的基准面是。
4、真误差为减。
5、水准仪的操作步骤为、、、。
6、相邻等高线之间的水平距离称为。
7、标准北方向的种类有、、。
8、用测回法对某一角度观测 4 测回,第 3 测回零方向的水平度盘读数应配置为左右。
9、三等水准测量中丝读数法的观测顺序为 、 、、、。
10、四等水准测量中丝读数法的观测顺序为后、后、前、前、。
11、设在测站点的东南西北分别有 A、B、C、D 四个标志,用方向观测法观测水平角,以 B为零方向,则盘左的观测顺序为。
12、在高斯平面直角坐标系中,中央子午线的投影为坐标 轴。
13、权等于 1 的观测量称。
14、已知 A 点高程为 14.305m,欲测设高程为 15.000m 的 B 点,水准仪安置在 A,B 两点中间,在 A 尺读数为 2.314m,则在 B 尺读数应为m,才能使 B 尺零点的高程为设计值。
15、水准仪主要由、、组成。
16、经纬仪主要由、、组成。
17、用测回法对某一角度观测 6 测回,则第 4 测回零方向的水平度盘应配置为左右。
18、等高线的种类有、、、。
19、设观测一个角度的中误差为±8″,则三角形内角和的中误差应为。
20、用钢尺丈量某段距离,往测为 112.314m,返测为 112.329m,则相对误差为。
21、水准仪上圆水准器的作用是使,管水准器的作用是使。
22、望远镜产生视差的原因是。
23、通过海水面的水准面称为大地水准面。
24、地球的平均曲率半径为km。
25、水准仪、经纬仪或全站仪的圆水准器轴与管水准器轴的几何关系为。
26、直线定向的标准北方向有真北方向、磁北方向和方向。
27、经纬仪十字丝分划板上丝和下丝的作用是测量。
28、水准路线按布设形式分为、、。
29、某站水准测量时,由 A 点向 B 点进行测量,测得 AB 两点之间的高差为 0.506m,且 B点水准尺的读数为 2.376m,则 A 点水准尺的读数为m。
30、三等水准测量采用“后—前—前—后”的观测顺序可以削弱的影响。
31、用钢尺在平坦地面上丈量 AB、CD 两段距离,AB 往测为 476.4m,返测为 476.3m;CD往测为 126.33m,返测为 126.3m,则 AB 比 CD 丈量精度要 高 。
32、测绘地形图时,碎部点的高程注记在点的右侧、字头应。
33、测绘地形图时,对地物应选择角点立尺、对地貌应选择立尺。
34、汇水面积的边界线是由一系列连接而成。
35、已知 A、B 两点的坐标值分别为 xA 5773.633m, yA 4244.098m, xB 6190.496m,yB 4193.614m,则坐标方位角 AB 、水平距离 DAB 36、在 1∶2000 地形图上,量得某直线的图上距离为 18.17cm,则实地长度为m。
m。
37、地面某点的经度为 131°58′,该点所在统一 6°带的中央子午线经度是。
38、水准测量测站检核可以采用或测量两次高差。
39、已知路线交点 JD 桩号为 K2+215.14,圆曲线切线长为 61.75m,圆曲线起点桩号为。
40、地形图应用的基本内容包括量取、、、41、象限角是由标准方向的北端或南端量至直线的,取值范围为42、经纬仪的主要轴线有、、、、43、等高线应与山脊线及山谷线。
44、水准面是处处与铅垂线的连续封闭曲面。
45、绘制地形图时,地物符号分、和。
46、为了使高斯平面直角坐标系的 y 坐标恒大于零,将 x 轴自中央子午线西移。
。
。
km。
47、水准仪的圆水准器轴应与竖轴。
48、钢尺量距时,如定线不准,则所量结果总是偏。
49、经纬仪的视准轴应垂直于。
50、衡量测量精度的指标有、、。
51、由于照准部旋转中心与不重合之差称为照准部偏心差。
52、天文经纬度的基准是,大地经纬度的基准是。
53、权与中误差的平方成。
54、正反坐标方位角相差。
55、测图比例尺越大,表示地表现状越详细。
56、试写出下列地物符号的名称:,,,,,,,,,,,,,,,,,,,,,,,,,。
57 、 用 经 纬 仪 盘 左 、 盘 右 两 个 盘 位 观 测 水 平 角 , 取 其 观 测 结 果 的 平 均 值 , 可 以 消除、、对水平角的影响。
58、距离测量方法有、、、。
59、测量误差产生的原因有、、。
60、典型地貌有、、、。
61、某直线的方位角为 123°20′,其反方位角为。
62、圆曲线的主点有 、 、 。
63、测设路线曲线的方法有、、。
64、路线加桩分为、、和。
65、建筑变形包括 和 。
66、建筑物的位移观测包括、、、挠度观测、日照变形观测、风振观测和场地滑坡观测。
67、建筑物主体倾斜观测方法有、、、、。
68、路线勘测设计测量一般分为 和 两个阶段。
69、里程桩分 和加桩。
70、加桩分为、、和。
二、判断题(下列各题,你认为正确的,请在题后的括号内打“√”,错的打“×”。
)1、大地水准面所包围的地球形体,称为地球椭圆 体。
…………………………………………( ) 2、天文地理坐标的基准面是参考椭球 面。
………………………………………………………( ) 3、大地地理坐标的基准面是大地水准 面。
………………………………………………………( )4、视准轴是目镜光心与物镜光心的连 线。
………………………………………………………( ) 5、方位角的取值范围为 0°~± 180°。
… ……………………………………………………( ) 6、象限角的取值范围为 0°~±90°。
… ……………………………………………………() 7、双盘位观测某个方向的竖直角可以消除竖盘指标差的影 响°。
……………………………( ) 8、系统误差影响观测值的准确度,偶然误差影响观测值的精密 度。
…………………………( ) 9、经纬仪整平的目的是使视线水平。
……………………………………………………………() 10、用一般方法测设水平角时,应采用盘左盘右取中的方法。
………………………………() 11、高程测量时,测区位于半径为 10km 的范围内时,可以用水平面代替水准面。
…………()三、选择题1、我国使用高程系的标准名称是( )。
A.1956 黄海高程系 C.1985 年国家高程基准B.1956 年黄海高程系 D.1985 国家高程基准2、我国使用的平面坐标系的标准名称是( )。
A.1954 北京坐标系B. 1954 年北京坐标系C.1980 西安坐标系D. 1980 年西安坐标系3、在三角高程测量中,采用对向观测可以消除( )的影响。
A.视差B.视准轴误差C.地球曲率差和大气折光差D.水平度盘分划误差4、设对某角观测一测回的观测中误差为±3″,现要使该角的观测结果精度达到±1.4″,需观测( )个测回。
A.2B.3C.4D.55、下列四种比例尺地形图,比例尺最大的是( )。
A.1∶5000 B.1∶2000 C.1∶1000 D.1∶5006、钢尺的尺长误差对距离测量产生的影响属于( )。
A.偶然误差B.系统误差C.偶然误差也可能是系统误差D.既不是偶然误差也不是系统误差7、在地形图上有高程分别为 26m、27m、28m、29m、30m、31m、32m 的等高线,则需加粗的等高线为( )m。
A.26、31 B.27、32 C.29 D.308、高差与水平距离之( )为坡度。
A.和B.差C.比 D.积9、设 AB 距离为 200.23m,方位角为 121°23′36″,则 AB 的 x 坐标增量为( )m.。
A.-170.919 B.170.919C.104.30210、在高斯平面直角坐标系中,纵轴为( )。
D.-104.302A. x 轴,向东为正B. y 轴,向东为正C. x 轴,向北为正D. y 轴,向北为正11、在以( )km 为半径的范围内,可以用水平面代替水准面进行距离测量。
A.5B.10C.15D.2012、水准测量中,设后尺 A 的读数 a=2.713m,前尺 B 的读数为 b=1.401m,已知 A 点高程为 15.000m,则视线高程为( )m。