新人教版六年级数学下册数学广角──鸽巢原理同步试题
人教版六年级下第五单元数学广角(鸽巢问题)测试卷及答案

《数学广角一鸽巢原理》同步试题浙江省诸暨市暨阳街道新世纪小学顾巧玲(初稿)浙江省诸暨市教育局教研室汤骥(统稿)一、填空考查目的:简单的抽屉原理。
答案:没有余数时,至少放入的物体数就等于();当除得的商有余数时,至少放入的物体数就等于()。
考查目的:解决简单抽屉原理问题的一般思路。
答案:抽屉;商;商+1。
解析:重点考查学生的归纳概括能力,加深对已学知识的理解。
根据简单的抽屉原理:把多于叮个的物体放到冷个抽屉中,至少有一个抽屉里的东西的个数不少于2;把多于叱(脇乘以呛)个物体放到兀个抽屉中,至少有一个抽屉里有不少于(勰+1 )个物体。
3•箱子中有5个红球,4个白球,至少要取出()个才能保证两种颜色的球都有,至少要取()个才能保证有2个白球。
考查目的:灵活运用抽屉原理的知识解决问题。
答案:6; 7。
解析:把两种颜色分别看作2个抽屉,考虑最差情况,5个红球全部取出来,那么再任意取出一个都是白球,所以至少取出6个才能保证两种颜色的球都有;要保证有2个白球,在取完所有红球的情况下再取2个即可。
4•六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。
考查目的:排列与组合的知识;抽屉原理。
答案:7; 11。
解析:在已知的四种水果中任意选择两种,共有6种不同的选择方法,那么至少要有7个小朋友才能保证有两个人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么共有10种不同的选择方法,至少要有11个小朋友才能保证有两人拿的水果相同。
5•将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出()顶帽子;要保证三种颜色都有,则至少应取出()顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出()顶。
小学数学-有答案-人教版数学六年级下册第五单元《数学广角—鸽巢问题》单元测试卷

小学数学-有答案-人教版数学六年级下册第五单元《数学广角—鸽巢问题》单元测试卷一、解答题1. 10只鸽子飞回3个鸽舍,至少有几只鸽子要飞进同一个鸽舍里?2. 我校四年级共有735名学生,总有至少多少名学生在同一天过生日?3. 有红、黄、蓝三种颜色的小球各110个,混放在一个布袋里,一次至少摸出多少个球,才能保证有5个是同一种颜色的?4. 一个布袋里有红、白、蓝、绿四种球各10个,它们的大小和质量都一样,至少要摸出多少个,才能保证其中至少有4个颜色相同的球?至少要摸出多少个,才能保证有4种不同颜色的球?5. 盒子里有大小相同的红、黄、蓝、白四种颜色的球各12个,要想摸出的球一定有2个是同色的,至少要摸出几个球?6. 有13个箱子,现在往里面装苹果,要求每个箱子里装的苹果都是奇数个,无论这些苹果怎么放,总能找到4个箱子的苹果个数是一样的,问:最多有多少个苹果?7. 重阳节那天,敬老院买来了3种水果,每位老人任选两个,那么至少应有多少位老人才能保证必有两位或两位以上的老人所选的水果相同?8. 从1到2006中,至少要取出多少个奇数,才能保证其中必定存在两个数,他们的和为2008?9. 一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。
问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?10. 某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?11. 六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种.问:至少有多少名学生订阅的杂志种类相同?12. 篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?参考答案与试题解析小学数学-有答案-人教版数学六年级下册第五单元《数学广角—鸽巢问题》单元测试卷一、解答题1.【答案】4只【考点】抽屉原理整数的加法和减法有余数的除法应用题【解析】此题暂无解析【解答】根据10只鸽子飞回3个鸽舍,10÷3=3...1,即平均每个鸽舍飞进3只鸽子后,剩下的一只鸽子无论怎么飞至少3+1=4(只)鸽子要飞进同一个鸽舍里.所以至少有4只鸽子要飞进同一个鸽舍里.2.【答案】3名【考点】抽屉原理整数的加法和减法整数的乘法及应用【解析】此题暂无解析【解答】一年最多有366天,735+366=2.……3人,最坏的情况是,每天都有两名学生过生日,还余3名学生,所以总有至少2+4=3名学生在同一天过生日.答:至少3名学生在同一天过生日.3.【答案】13个球【考点】抽屉原理可能性的大小数学广角——鸽巢问题此题暂无解析【解答】建立鸽巢:把红黄蓝三种颜色分别看做3个鸽巢.考虑最差情况:摸出12个小球,每个鸽巢都有4个小球,此时再任意摸出1个小球,无论放到哪个鸽巢都会出现5个颜色相同的小球,所以12+|=33(个).答:一次至少摸出13个球,才能保证有5个是同一种颜色的.4.【答案】13个,31个【考点】抽屉原理可能性的大小数学广角——鸽巢问题【解析】此题暂无解析【解答】把10种不同颜色看作10个抽屉,把40种不同颜色的球看作40个元素,从最不利情况考虑:(1)每个抽屉放3个需要3×4=12个,再取出1个不论是什么颜色,总有一个抽屉里的球和它同色,所以至少要取出12+1=13(个).(2)先把其中的3种球取尽,共需要3×10=30个,再取出1个(剩下的球),就能保证有4种不同颜色的球,所以至少要取出30+1=3(个)答:至少要摸出13个,才能保证其中至少有4个颜色相同的球;至少要摸出31个,才能保证有4种不同颜色的球.5.【答案】5个球【考点】抽屉原理可能性的大小数学广角——鸽巢问题【解析】此题暂无解析【解答】盒子里有同样大小的红、黄、蓝、白四种颜色的球,最坏的情况是,当摸出4个球的时候,红、黄、蓝、白四种颜色的各一个,此时只要再任意摸出一个球,摸出的球一定有2个同色的,即至少要摸出4+|=5个.答:至少要摸出5个球,摸出的球一定有2个同色的.6.【答案】公约数与公倍数问题奇偶性问题整数的除法及应用【解析】此题暂无解析【解答】把箱子分成3组,每组4个,共12个,另外还剩下一个单独的箱子,每组4个箱子里分别放入1、3、5、7个苹果,为使苹果数最多,则第13个箱子里也放入7个苹果,所以最多共有(1+3+5+7)×3+7=55个苹果.7.【答案】7位【考点】抽屉原理数学广角——鸽巢问题排列组合【解析】此题暂无解析【解答】三种水果,假设是苹果、橘子、梨;每位老人任意选两个,共有3×2=6种可能(苹果苹果,橘子橘子,梨梨,苹果橘子,苹果梨,橘子梨),最差情况是6位老人拿的不同,所以应有6+|=7位老人,才能保证有两个或两个以上的老人拿的一样.答:至少应有7位老人才能保证必有两位或两位以上的老人所选的水果相同.8.【答案】503个奇数【考点】抽屉原理2、3、5的倍数特征数学广角——鸽巢问题【解析】此题暂无解析【解答】从1到2006中总共有2006−2=1003个奇数,3+2005=2008,5+2003=2008到1003+1005=2008,和为2008的奇数对有1003+2=50对...1个.最坏的情况是一直取不到符合条件的奇数对,一直到不成对的全部取完,即每对只取一个;因此,第500+1+|=503个奇数一定能在之前取到的奇数中找到与其之和为2008的对应奇数.答:至少要取出503个奇数才能保证其中必定存在两个数,他们的和为2008.9.抽屉原理数学广角——鸽巢问题因数和倍数的意义【解析】此题暂无解析【解答】将1,2,3,4四种号码看成4个抽屉.要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品.所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块.10.【答案】至少会有一个小朋友得到4件或4件以上的玩具【考点】整数的除法及应用整数、小数复合应用题图文应用题【解析】此题暂无解析【解答】将40名小朋友看成40个抽屉.今有玩具122件,122=3×40+2.应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具.也就是说,至少会有一个小朋友得到4件或4件以上的玩具.11.【答案】15名【考点】抽屉原理排列组合数学广角——鸽巢问题【解析】此题暂无解析【解答】首先应当弄清订阅杂志的种类共有多少种不同的情况.订一种杂志有:订甲、订乙、订丙3种情况;订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;订三种杂志有:订甲乙丙1种情况.总共有3+3+1=7(种)订阅方法.我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品.因为100=14×7+2.根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相9个【考点】抽屉原理数学广角——鸽巢问题因数和倍数的意义【解析】此题暂无解析【解答】首先应弄清不同的水果搭配有多少种.两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子.所以不同的水果搭配共有4+6=10(种).将这10种搭配作为10个“抽屉”.84÷10=8...1(个).根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同.。
人教版六年级数学下册第五单元 第1课时 数学广角(鸽巢问题)(同步练习)

人教版六年级数学下册课时作业第五单元第1课时数学广角(鸽巢问题)一、填空题1. 把9本书放入8个抽屉里,总有一个抽屉里至少放入本书。
2. 袋里有形状、大小完全相同的红、黄、白3种颜色的小球各3个,一次最少摸出个小球,才能保证至少有2个小球的颜色相同。
3. “六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择一种不同水果,那么至少要有个小朋友才能保证有两人选的水果是相同的。
4. 六(1)班有学生37人,同一个月份出生的学生至少有人。
5. 黑、白两种颜色的袜子各8只混在一起,闭上眼睛随便拿,至少要拿只,才能保证一定有一双同色袜子;至少要拿只才能保证有4只同色袜子。
6. 英才小学六(2)班有29名男同学,20名女同学,至少有名同学是同一个月过生日。
7. 2022年冬奥会中国体育代表团总人数为387人,其中运动员176人,是史上参赛规模最大的一届。
运动员中至少有人在同一个月生日。
8. 从扑克牌中取出两张王牌,在剩下的52张中至少抽出张,才能保证至少有2张是不同花色的;至少抽出张,才能保证至少有2张是相同花色的。
9. 黄老师给家人买衣服,有红、黄、白三种颜色,但结果总是至少有两个人的颜色一样,她家里至少有人。
10. 贤鲁岛是以“生态花岛+水乡人家”为主题的生态旅游度假区,学校组织50名同学参观贤鲁岛上的“万顷园艺世界”、“鲁岗村”、“贤僚村”三个景点。
行程安排每人至少参观一个景点,那么至少有人游玩的景点相同。
二、判断题11. 六(1)班有52位学生,至少有5个人在同一个月过生日。
()12. 把32个篮球分给6个小组,总有1个小组至少分到6个篮球。
( ) 13. 六个同学在一起练习投篮,共投进了21个球,那么有一人至少投进了4个球。
( ) 14. 龙一鸣玩掷骰子游戏,要保证掷出的骰子的点数至少有两次相同,他最少应掷7次。
() 15. 5只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
人教版六年级下第五单元数学广角(鸽巢问题)测试卷及答案

《数学广角──鸽巢原理》同步试题浙江省诸暨市暨阳街道新世纪小学顾巧玲(初稿)浙江省诸暨市教育局教研室汤骥(统稿)一、填空1.把一些苹果平均放在3个抽屉里,总有一个抽屉至少放入几个呢请完成下表:考查目的:简单的抽屉原理。
答案:解析:解决此类抽屉原理问题的一般思路为:放苹果最多的抽屉至少放进的个数=苹果个数除以抽屉数所得的商+1(有余数的情况下)。
2.研究发现,在抽屉原理的问题中,“抽屉”至少放入物体数的求法是用物体数除以()数,当除得的商没有余数时,至少放入的物体数就等于();当除得的商有余数时,至少放入的物体数就等于()。
考查目的:解决简单抽屉原理问题的一般思路。
答案:抽屉;商;商+1。
解析:重点考查学生的归纳概括能力,加深对已学知识的理解。
根据简单的抽屉原理:把多于个的物体放到个抽屉中,至少有一个抽屉里的东西的个数不少于2;把多于(乘以)个物体放到个抽屉中,至少有一个抽屉里有不少于()个物体。
3.箱子中有5个红球,4个白球,至少要取出()个才能保证两种颜色的球都有,至少要取()个才能保证有2个白球。
考查目的:灵活运用抽屉原理的知识解决问题。
答案:6;7。
解析:把两种颜色分别看作2个抽屉,考虑最差情况,5个红球全部取出来,那么再任意取出一个都是白球,所以至少取出6个才能保证两种颜色的球都有;要保证有2个白球,在取完所有红球的情况下再取2个即可。
4.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。
考查目的:排列与组合的知识;抽屉原理。
答案:7;11。
解析:在已知的四种水果中任意选择两种,共有6种不同的选择方法,那么至少要有7个小朋友才能保证有两个人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么共有10种不同的选择方法,至少要有11个小朋友才能保证有两人拿的水果相同。
人教版六年级数学下册第五单元《数学广角──鸽巢原理》同步试题

人教版六年级数学下册第五单元《数学广角──鸽巢原理》同步试题一、填空1.把一些苹果平均放在3个抽屉里,总有一个抽屉至少放入几个呢?请完成下表:考查目的:简单的抽屉原理。
答案:解析:解决此类抽屉原理问题的一般思路为:放苹果最多的抽屉至少放进的个数=苹果个数除以抽屉数所得的商+1(有余数的情况下)。
2.研究发现,在抽屉原理的问题中,“抽屉”至少放入物体数的求法是用物体数除以()数,当除得的商没有余数时,至少放入的物体数就等于();当除得的商有余数时,至少放入的物体数就等于()。
考查目的:解决简单抽屉原理问题的一般思路。
答案:抽屉;商;商+1。
解析:重点考查学生的归纳概括能力,加深对已学知识的理解。
根据简单的抽屉原理:把多于个的物体放到个抽屉中,至少有一个抽屉里的东西的个数不少于2;把多于(乘以)个物体放到个抽屉中,至少有一个抽屉里有不少于()个物体。
3.箱子中有5个红球,4个白球,至少要取出()个才能保证两种颜色的球都有,至少要取()个才能保证有2个白球。
考查目的:灵活运用抽屉原理的知识解决问题。
答案:6;7。
解析:把两种颜色分别看作2个抽屉,考虑最差情况,5个红球全部取出来,那么再任意取出一个都是白球,所以至少取出6个才能保证两种颜色的球都有;要保证有2个白球,在取完所有红球的情况下再取2个即可。
4.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。
考查目的:排列与组合的知识;抽屉原理。
答案:7;11。
解析:在已知的四种水果中任意选择两种,共有6种不同的选择方法,那么至少要有7个小朋友才能保证有两个人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么共有10种不同的选择方法,至少要有11个小朋友才能保证有两人拿的水果相同。
人教版六年级下册数学 数学广角(鸽巢问题) 练习(含答案)

5 数学广角(鸽巢问题)1.篮球队有13个同学,其中至少有( )个同学生日在同一个月。
A.3B.2C.122.一个袋子里装着红球、黄球,各3个,这些球的大小都相同,问一次摸出3只球,其中至少有()只球的颜色相同.A.1B.2C.3D.43.有5个小朋友,每人都从装有许多黑白棋子的布袋里随意摸出3枚棋子.试证明这5个小朋友中至少有两人摸出的棋子的颜色是一样的.4.一个圆形跑道400米,如果每10米树一道警示牌,共需()道警示牌。
A.4B.40C.395.把7只鸡放进3个鸡笼里,至少有()只鸡要放进同一个鸡笼里。
A.2B.3C.46.清平中心小学98班有52人,彭老师至少要拿()作业本随意发给学生,才能保证至少有1个学生拿到2本或2本以上的本子.A.53本B.52本C.104本D.106本7.5只小鸟飞进两个笼子,至少有()只小鸟在同一个笼子里.A.1B.2C.38.18个小朋友中,()小朋友在同一个月出生.A.恰好有2个B.至少有2个C.有7个D.最多有7个9.15个小朋友中至少有()个小朋友是同一个月出生的.A.2B.3C.410.26个小朋友乘5只小船至少有()人坐在同一船里。
A.4B.5C.6D.711.在493681︰︰中,4和81是比例的(____),9和36是比例的(____)。
12.如果把6本书放到4个抽屉里,至少有(______)本书要放到同一个抽屉里。
13.5只小鸟飞进两个笼子,至少有(____)只小鸟飞进同一个笼子。
14.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种不同水果,那么至少要有______个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有______个小朋友才能保证两人拿的水果是相同的。
15.把红、黑、白三种颜色的筷子各10根混在一起。
如果让你闭上眼睛,每次最少拿出(____)根才能保证一定有2根同色的筷子。
小学数学人教版六年级下册第五单元《数学广角──鸽巢问题》测试题(附参考答案和解析)

六年级数学下册《第五单元》测试题班级考号姓名总分一.填空题(每空4分,共56分)。
1.一只袋子里有许多规格相同但颜色不同的玻璃球,颜色有红黄绿三种,至少取出()个球才能保证有2个球的颜色相同。
2.抽屉里有4枝红铅笔和3枝蓝铅笔,如果闭着眼睛摸,一次必须拿()枝才能才能保证至少有1枝蓝色铅笔。
3.从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出()个苹果。
4.从()个抽屉中拿出25个苹果,才能保证一定能找出一个抽屉,从它当中至少拿出7个苹果。
5.一个联欢会有100人参加,每个人在这个会上至少有一个朋友。
那么这100人中至少有()个人的朋友数目相同。
6.一个口袋里有四种大小相同颜色不同的小球。
每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸()次。
7.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取()颗。
如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出()颗。
8.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有()对。
9.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有()人的头发根数一样多。
10.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有()个。
11.一付扑克牌共有54张(包括大王、小王),至少从中取()张牌,才能保证其中必有3种花色。
12.五个学生在一起练习投蓝,共投进了41个球,那么有一个人至少投进了()个球。
13.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有()名学生订的报刊种类完全相同。
二.应用题。
1.某班37名学生,至少有几个学生在同一个月过生日?(5分)2.42只鸽子飞进5个笼子里,可以保证在鸽子最多的笼子中至少有几只鸽子?(5分)3.口袋中有红、黑、白、黄球各10个,它们的外型与重量都一样,至少要摸出几个球,才能保证有4个颜色相同的球?(5分)4.饲养员给10只猴子分苹果,其中至少要有一只猴子得到7个苹果,饲养员至少要拿来多少个苹果?(5分)5. 停车场上有40辆客车,各种座位数不同,最少的有26个座,最多的有44个座位,那么在这些客车中,至少有几辆的座位数相同?(5分)6.某班有个小书架,40个学生可以任意借阅,小书架上至少要有多少本书,才能保证至少有一个学生能借到两本或两本以上的书?(5分)7.一副扑克牌(大王、小王除外)有四种花色,每种花色有13张,从中任意抽牌,最少要抽几张,才能保证有四张牌是同一张花色的?(5分)8.在明年(即2016年)出生的1000个孩子中,请你预测:(1)同在某月某日生的孩子至少有几个?(4分)(2)至少有几个孩子将来不单独过生日?(5分)附:参考答案一.填空题(每空4分,共56分)1.一只袋子里有许多规格相同但颜色不同的玻璃球,颜色有红黄绿三种,至少取出(4 )个球才能保证有2个球的颜色相同。
人教版数学六年级下册《数学广角-鸽巢问题》达标测试卷及答案

人教版数学六年级下册《数学广角-鸽巢问题》达标测试卷一.选择题(共8小题)1.某地一年新生婴儿367人,他(她)们中至少有()人是同一天出生的。
A.2B.3C.4D.10人以上2.盒子里有同样大小的红球和黄球各4个,要想摸出的球一定有2个同色的,至少要摸出()个球。
A.5B.4C.3D.23.把26枝花插到4个花瓶中,总有一个花瓶至少插()枝花。
A.5B.6C.7D.84.把红、黄、蓝、白、绿五种颜色的球各10个放到一个袋子里,要保证取到两个颜色相同的球,至少要取出几个球?()A.6B.5C.4D.35.下列说法错误的是()A.π是直径与周长的比值B.给教室铺地的方砖的面积和块数成反比例C.在367个学生中至少有2个学生是同月同日生的D.在0.2的后面添上“%”它就缩小100倍6.某班39名同学,其中至少有()名同学出生日期的月份相同.A.3B.4C.5D.67.盒子里有6个黄球,4个红球,每次摸一个,至少摸()次一定会摸到红球。
A.7B.6C.58.在一个袋子里有相同大小的红、黄、蓝三种颜色的珠子各4颗,至少要摸出()颗珠子才能保证有两颗珠子是同色的.A.5B.6C.4二.填空题(共10小题)9.将红、黄、蓝三种颜色的球各5个放入一个盒子里,要保证取出的球有两种颜色,至少应取出个球;要保证取出的球至少有两个是同色的,至少应取出个球。
10.同学们把28个篮球放回5个篮球框中,总有一个篮球框中至少要放个篮球。
11.把15个学生分到6个组,总有一个组至少有人.12.7只鸽子飞进6个鸽舍,总有一个鸽舍至少飞进了只鸽子.13.袋子中有红、黄、蓝三色球各15个,从中依次取出球,如果保证取到两种颜色的球,至少需要取个。
14.9个同学分11颗糖,总有一个同学至少分得颗糖.15.把29只兔子放进7个笼子里,总有一个笼子至少要放进只。
16.把红黄绿三种颜色的筷子各两双混在一起,如果闭上眼睛,最少拿出根才能保证一定有一双同色筷子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版六年级数学下册《数学广角──鸽巢原理》同步试题
部分预览 4.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。
考查目的:排列与组合的知识;抽屉原理。
答案:7;11。
解析:在已知的四种水果中任意选择两种,共有6种不同的选择方法,那么至少要有7个小朋友才能保证有两个人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么共有10种不同的选择方法,至少要有11个小朋友才能保证有两人拿的水果相同。
5.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出()顶帽子;要保证三种颜色都有,则至少应取出()顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出()顶。
考查目的:综合运用抽屉原理的知识解决问题。
答案:6;11;4。
解析:解答此题的关键是从极端的情况进行分析。
假设取出的前5顶都是同一种颜色的帽子(把一种颜色取完),再取一顶就一定有两种颜色;(2)假设前10次取出的是前两种颜色的帽子(把两种颜色的帽子取完),再取出一顶,就能保证三种颜色都有;(3)把三种颜色看作三个抽屉,保证取出的帽子中至少有两个是同色的,至少应取4顶。
二、选择
1.把25枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入()枚。
部分预览 4.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。
考查目的:排列与组合的知识;抽屉原理。
答案:7;11。
解析:在已知的四种水果中任意选择两种,共有6种不同的选择方法,那么至少要有7个小朋友才能保证有两个人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么共有10种不同的选择方法,至少要有11个小朋友才能保证有两人拿的水果相同。
5.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出()顶帽子;要保证三种颜色都有,则至少应取出()顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出()顶。
考查目的:综合运用抽屉原理的知识解决问题。
答案:6;11;4。
解析:解答此题的关键是从极端的情况进行分析。
假设取出的前5顶都是同一种颜色的帽子(把一种颜色取完),再取一顶就一定有两种颜色;(2)假设前10次取出的是前两种颜色的帽子(把两种颜色的帽子取完),再取出一顶,就能保证三种颜色都有;(3)把三种颜色看作三个抽屉,保证取出的帽子中至少有两个是同色的,至少应取4顶。
二、选择
1.把25枚棋子放入下图的三角形内,那么一
定有一个小三角形中至少放入()枚。
部分预览 4.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。
考查目的:排列与组合的知识;抽屉原理。
答案:7;11。
解析:在已知的四种水果中任意选择两种,共有6种不同的选择方法,那么至少要有7个小朋友才能保证有两个人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么共有10种不同的选择方法,至少要有11个小朋友才能保证有两人拿的水果相同。
5.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出()顶帽子;要保证三种颜色都有,则至少应取出()顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出()顶。
考查目的:综合运用抽屉原理的知识解决问题。
答案:6;11;4。
解析:解答此题的关键是从极端的情况进行分析。
假设取出的前5顶都是同一种颜色的帽子(把一种颜色取完),再取一顶就一定有两种颜色;(2)假设前10次取出的是前两种颜色的帽子(把两种颜色的帽子取完),再取出一顶,就能保证三种颜色都有;(3)把三种颜色看作三个抽屉,保证取出的帽子中至少有两个是同色的,至少应取4顶。
二、选择
1.把25枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入()枚。