光纤传感实验讲义

合集下载

光纤传感测量实验报告

光纤传感测量实验报告

光纤传感测量实验报告光纤传感测量实验报告引言:光纤传感测量是一种基于光纤技术的测量方法,通过光的传输和传感原理,可以实现对各种物理量的精确测量。

本实验旨在探究光纤传感测量的原理和应用,并通过实际操作验证其可行性。

一、光纤传感测量原理光纤传感测量的基本原理是利用光的特性在光纤中传输,并通过光的改变来测量物理量。

光纤传感器由光源、光纤、光电探测器和信号处理器组成。

当物理量作用于光纤时,会引起光纤中的光信号发生变化,进而被光电探测器接收并转化为电信号,最后通过信号处理器进行处理和分析。

二、光纤传感测量的应用领域光纤传感测量在许多领域都有广泛的应用。

其中,温度传感是光纤传感测量的主要应用之一。

通过光纤的热致效应,可以实现对温度的高精度测量。

此外,光纤传感测量还可以应用于压力、应变、湿度等物理量的测量,并且具有灵敏度高、抗干扰能力强等优点。

三、实验步骤及结果1. 实验仪器准备:光源、光纤、光电探测器、信号处理器等。

2. 实验一:温度传感测量。

将光纤传感器固定在温度变化的环境中,通过信号处理器获取温度变化的数据。

实验结果显示,随着温度的升高,光纤中的光信号发生了明显的变化,且与温度呈线性关系。

3. 实验二:压力传感测量。

将光纤传感器连接到压力变化的装置上,通过信号处理器获取压力变化的数据。

实验结果显示,压力的增加会导致光信号的衰减,且与压力呈正相关关系。

4. 实验三:应变传感测量。

将光纤传感器固定在受力物体上,通过信号处理器获取应变变化的数据。

实验结果显示,应变的增加会引起光信号的相位变化,且与应变呈线性关系。

5. 实验四:湿度传感测量。

将光纤传感器放置在湿度变化的环境中,通过信号处理器获取湿度变化的数据。

实验结果显示,湿度的增加会导致光信号的衰减,且与湿度呈负相关关系。

四、实验结果分析通过以上实验可以得出结论:光纤传感测量可以实现对温度、压力、应变和湿度等物理量的精确测量。

实验结果显示,不同物理量的变化会导致光信号的不同变化,这为光纤传感测量的应用提供了可靠的基础。

温度光纤传感实验报告

温度光纤传感实验报告

一、实验目的1. 理解光纤传感技术的基本原理,掌握光纤传感器在温度测量中的应用。

2. 学习光纤光栅温度传感器的制作方法,掌握其性能测试和数据分析。

3. 了解温度光纤传感器的实际应用场景,提高对光纤传感器技术的认识。

二、实验原理光纤传感器是一种基于光纤材料的光学传感器,具有抗电磁干扰、体积小、重量轻、防腐性好等优点。

光纤光栅温度传感器是光纤传感器的一种,其原理是利用光纤光栅的布拉格波长位移特性,即当光纤光栅的温度发生变化时,其反射或透射光的波长会发生偏移,从而实现对温度的测量。

三、实验仪器与材料1. 光纤光栅温度传感器2. 光纤光栅光谱分析仪3. 温度控制器4. 实验台5. 数据采集系统四、实验步骤1. 将光纤光栅温度传感器固定在实验台上,连接好光纤光谱分析仪和数据采集系统。

2. 调节温度控制器,使环境温度逐渐升高,记录光纤光栅光谱分析仪输出的光谱数据。

3. 重复步骤2,使环境温度逐渐降低,记录光谱数据。

4. 分析光谱数据,计算光纤光栅的布拉格波长位移与温度之间的关系。

五、实验数据与分析1. 实验数据:| 温度(℃) |布拉格波长(nm)||----------|--------------|| 20 | 1552.0 || 30 | 1553.5 || 40 | 1555.0 || 50 | 1556.5 || 60 | 1558.0 |2. 分析:通过实验数据可以看出,光纤光栅的布拉格波长随温度升高而增加,说明光纤光栅具有正的温度系数。

根据实验数据,可以拟合出光纤光栅的布拉格波长与温度之间的关系式:$$\lambda_B = 1552.0 + 0.0135T$$其中,$\lambda_B$为布拉格波长,$T$为温度。

六、实验结论1. 光纤光栅温度传感器具有良好的温度响应特性,可以实现对温度的精确测量。

2. 通过实验验证了光纤光栅的布拉格波长与温度之间的关系,为光纤光栅温度传感器的应用提供了理论依据。

光纤位移传感实验报告

光纤位移传感实验报告

光纤位移传感实验报告光纤位移传感实验报告一、引言光纤位移传感技术是一种利用光纤作为传感器,通过测量光纤长度的变化来获取被测物体的位移信息的方法。

它具有高精度、高灵敏度、抗干扰能力强等优点,在工业、医疗、航空等领域有着广泛的应用。

本实验旨在通过搭建光纤位移传感系统,验证其在测量位移方面的可行性和准确性。

二、实验装置与原理本实验采用的光纤位移传感系统主要由光源、光纤、光电探测器和信号处理器组成。

光源发出的光经过光纤传输到被测物体上,当被测物体发生位移时,光纤长度发生变化,进而改变了传输光的路径和相位,最后通过光电探测器将光信号转换为电信号,并经过信号处理器进行放大和滤波,得到位移信息。

三、实验步骤1. 搭建实验装置:将光源、光纤和光电探测器依次连接起来,保证光线的传输路径畅通无阻。

2. 调整光源和光电探测器的位置:通过调整光源和光电探测器的位置,使得光线能够正常传输到被测物体上,并能够被光电探测器接收到。

3. 测量基线:将被测物体固定在一定位置上,记录下此时的光信号强度作为基线。

4. 进行位移测量:在被测物体上施加不同的位移,记录下每个位移下的光信号强度,并将其与基线进行比较,得到位移值。

四、实验结果与分析通过实验测量,我们得到了不同位移下的光信号强度数据,并计算出了对应的位移值。

实验结果显示,光信号强度与位移呈线性关系,且具有较高的灵敏度和稳定性。

这说明光纤位移传感技术在测量位移方面具有较高的准确性和可靠性。

进一步分析实验结果,我们发现光纤位移传感系统对于小位移的测量具有较高的分辨率。

在实验中,当位移小于1mm时,系统能够稳定地测量出位移的变化,并且误差较小。

然而,当位移超过1mm时,系统的测量误差会逐渐增大,这可能是由于光纤的非线性特性和传输损耗等因素导致的。

因此,在实际应用中,需要根据具体需求选择适当的测量范围和精度。

五、实验总结本实验通过搭建光纤位移传感系统,并进行了位移测量实验。

实验结果表明,光纤位移传感技术具有高精度、高灵敏度和抗干扰能力强等优点,适用于测量小范围内的位移变化。

《光纤传感技术》课件第2章

《光纤传感技术》课件第2章

近年来, 国内的光纤传感研究覆盖了大型结构工程、 电 力、 石油、 化工和军事等众多领域, 基于光纤干涉仪原理、 光纤微弯原理、 法拉第效应、 Sagnac效应的各类光纤传感器 已经取得了许多研究成果, 并得到了实际应用。 很多高等院 校和研究院所也在光纤传感方面投入了大量的人力和物力, 如清华大学、 北京交通大学、 哈尔滨工程大学、 燕山大学、 武汉理工大学、 重庆大学、 上海大学等高校都在光纤传感方 面取得了许多研究成果。 目前全国从事光纤传感技术研究的 人员达近千名左右, 已形成了一支重要的研究队伍, 为我国 的光纤传感的发展贡献着重要的力量。
使有源区产生足够多的粒子数反转是使半导体激光二极管 发射激光的首要条件。 另一个条件是半导体激光二极管中必 须存在光学谐振腔, 并在谐振腔里建立起稳定的振荡。 有源 区里实现了粒子数反转后, 受激发射占据了主导地位, 但是, 激光二极管初始的光场来源于导带和价带的自发辐射, 频谱 较宽, 方向也杂乱无章。 为了得到单色性和方向性好的激光 输出, 必须构成光学谐振腔。 在半导体激光二极管中, 用晶 体的天然解理面(cleaved facets)构成法珀振腔。
图2-4 光在谐振腔中的稳定振荡
图2-5是对激光二极管起振阈值条件的简化描述, 只有当 泵浦电流达到阈值时, 高、 低能带上的电子密度差(Nc-Nv) 才达到阈值(Nc-Nv)th, 此时就产生稳定的连续输出相干光。 当泵浦超过阈值时, (Nc-Nv)仍然维持(Nc-Nv)th, 因为gth必 须保持不变, 所以多余的泵浦能量转变成受激发射, 使输出 功率增加。
半导体光源的特点有: (1) 体积小, 发光面积可以与光纤芯径相抵, 耦合效 率较高; (2) 发射波长适合在光纤中低损耗传输; (3) 可以直接进行强度调制, 即只要将信号电流注入半 导体激光器或发光二极管, 就可以得到相应的光信号输出; (4) 可靠性较高, 尤其是半导体激光器, 不仅发射功 率大、 耦合效率高、 响应速度快, 而且发射光的相干性也较好, 因此在一些高速率、 大容量的数字光纤通信系统中得到广泛 应用。

光纤传感综合实验报告

光纤传感综合实验报告

一、实验目的1. 了解光纤传感的基本原理和特点。

2. 掌握光纤传感器的实验操作方法和数据采集技巧。

3. 分析光纤传感器在实际应用中的性能和适用范围。

二、实验原理光纤传感器是一种基于光波导原理的传感器,利用光纤传输光信号,实现对被测量的物理量的检测。

光纤传感器具有体积小、重量轻、抗电磁干扰、防腐性好、灵敏度高等优点,广泛应用于压力、应变、温度、位移等物理量的测量。

本实验主要涉及以下几种光纤传感器:1. 光纤光栅传感器:利用光纤光栅对光波波长进行调制,实现对温度、应变等物理量的测量。

2. 光纤干涉传感器:利用光纤干涉原理,实现对位移、振动等物理量的测量。

3. 光纤激光传感器:利用光纤激光器发出的激光,实现对物体表面缺陷、气体浓度等物理量的测量。

三、实验仪器与材料1. 光纤传感实验仪2. 激光器及电源3. 光纤夹具4. 光纤剥线钳5. 宝石刀6. 激光功率计7. 五位调整架8. 显微镜9. 显示器四、实验步骤1. 光纤光栅传感器实验(1)搭建实验装置,连接光纤传感实验仪和激光器。

(2)调整实验参数,包括光栅长度、温度等。

(3)采集光纤光栅传感器的输出信号,分析光栅对光波波长的影响。

2. 光纤干涉传感器实验(1)搭建实验装置,连接光纤传感实验仪和光纤干涉仪。

(2)调整实验参数,包括干涉仪的间距、光程差等。

(3)采集光纤干涉传感器的输出信号,分析干涉条纹的变化规律。

3. 光纤激光传感器实验(1)搭建实验装置,连接光纤传感实验仪和光纤激光器。

(2)调整实验参数,包括激光功率、检测距离等。

(3)采集光纤激光传感器的输出信号,分析激光光束的传播特性。

五、实验结果与分析1. 光纤光栅传感器实验结果实验结果显示,随着温度的升高,光纤光栅传感器的反射光谱发生红移,反射光谱峰值波长随温度的变化率与光栅的折射率调制周期成正比。

这说明光纤光栅传感器可以实现对温度的精确测量。

2. 光纤干涉传感器实验结果实验结果显示,随着干涉仪间距的增加,干涉条纹的间距增大,条纹数减少。

物理实验技术中的光纤传感实验的操作指南

物理实验技术中的光纤传感实验的操作指南

物理实验技术中的光纤传感实验的操作指南光纤传感实验操作指南介绍:光纤传感实验是一项在物理实验技术中广泛应用的重要实验之一。

它利用光纤作为传感元件,通过光纤中的光信号来测量并监测环境中的各种物理量。

本文将为大家详细介绍光纤传感实验的操作指南,帮助大家更好地掌握这项实验技术。

材料准备:1. 光纤传感器:可选择不同类型的光纤传感器,如光纤布拉格光栅传感器、光纤拉曼散射传感器等。

2. 光源:选用适当波长的光源,如激光二极管、光纤光源等。

3. 光纤连接器:根据实验需要选择不同类型的光纤连接器。

4. 仪器设备:光纤测量设备、光功率计等。

实验步骤:1. 准备工作a. 清洁光纤:用洗净的酒精棉球轻轻擦拭光纤端面,确保光纤表面无灰尘和杂质。

b. 连接光纤:根据需要,使用光纤连接器将光纤连接到光纤测量设备和光源上。

c. 打开设备:打开光源和光纤测量设备,确保设备正常工作。

2. 测试光纤传感器a. 设置光纤测量设备:根据光纤传感器的特性,设置光纤测量设备的参数,如波长、测量范围等。

b. 测试信号:通过光源发出信号,并通过光纤传送到光纤传感器上。

c. 测量数据:使用光功率计等设备,测量传感器输出的光信号强度,并记录相关数据。

d. 分析结果:根据测量结果,分析传感器对不同物理量的响应特性。

3. 环境监测实验a. 确定监测目标:选择需要监测的环境物理量,如温度、压力、湿度等。

b. 选择传感器:根据监测目标,选择适合的光纤传感器。

c. 搭建实验装置:根据传感器的特性和环境条件,设计合适的实验装置。

d. 进行测量:根据实验装置,将传感器与被测量对象连接起来,并记录测量数据。

e. 数据分析:根据测量数据,分析环境物理量的变化趋势和相关性。

4. 实验安全注意事项a. 使用光源时,避免直接观察光源,以防眼睛受到光的伤害。

b. 注意光纤的特性,避免折弯和拉扯光纤,以免影响实验结果。

c. 在实验过程中,避免将光纤暴露在高温、高压或腐蚀性环境中,以免损坏传感器。

光纤干涉传感实验报告

光纤干涉传感实验报告

1. 了解光纤干涉传感的基本原理和实验方法。

2. 掌握光纤干涉传感器的构造及其在测量中的应用。

3. 通过实验验证光纤干涉传感器的测量精度和可靠性。

二、实验原理光纤干涉传感器是基于光干涉原理的一种新型传感器。

当两束光波在空间相遇时,如果它们的相位差为零或整数倍的2π,则两束光波相互加强,形成亮条纹;如果相位差为奇数倍的π,则两束光波相互抵消,形成暗条纹。

通过测量干涉条纹的变化,可以实现对被测物理量的精确测量。

光纤干涉传感器通常采用迈克尔逊干涉仪或法布里-珀罗干涉仪等光学原理。

本实验采用迈克尔逊干涉仪,其基本原理如下:1. 激光器产生一束连续激光,经扩束镜后变为平行光束。

2. 平行光束经分束器分为两束,一束作为参考光,另一束作为测量光。

3. 测量光经光纤传输到达被测物体,反射后返回光纤。

4. 参考光和测量光在光纤端面发生干涉,形成干涉条纹。

5. 干涉条纹通过光纤传输,经光电探测器接收并转换为电信号。

6. 电信号经处理后,可得到被测物理量的信息。

三、实验仪器与设备1. 激光器2. 扩束镜3. 分束器4. 光纤传感器5. 光电探测器6. 数据采集系统7. 计算机1. 将激光器、扩束镜、分束器、光纤传感器、光电探测器和数据采集系统连接成实验电路。

2. 打开数据采集系统,设置采集参数。

3. 启动激光器,调节扩束镜和分束器,使激光束通过光纤传感器。

4. 测量参考光和测量光的强度,记录数据。

5. 改变被测物理量,观察干涉条纹的变化,记录数据。

6. 对采集到的数据进行处理,得到被测物理量的信息。

五、实验结果与分析1. 当被测物理量改变时,干涉条纹发生相应的变化。

根据干涉条纹的变化规律,可以计算出被测物理量的变化量。

2. 通过实验验证,光纤干涉传感器的测量精度较高,可满足实际应用需求。

3. 分析实验数据,探讨影响光纤干涉传感器测量精度的因素,并提出改进措施。

六、实验总结1. 本实验成功实现了光纤干涉传感器的测量,验证了其测量精度和可靠性。

光纤传感实验报告

光纤传感实验报告

光纤传感实验报告光纤传感实验报告引言:光纤传感技术是一种基于光纤的传感器技术,利用光纤的特殊性质来实现对物理量的测量和监测。

光纤传感技术具有高精度、高灵敏度、抗干扰性强等优点,广泛应用于工业、医疗、环境监测等领域。

本实验旨在通过设计和搭建光纤传感系统,探究光纤传感技术的原理和应用。

实验一:光纤传感系统搭建在本实验中,我们搭建了一个简单的光纤传感系统,包括光源、光纤、光纤传感器和光电探测器。

首先,我们将光源与光纤连接,通过光纤传输光信号到传感器。

传感器可以根据不同的物理量,如温度、压力等,改变光信号的特性。

然后,光信号再通过光纤传输回来,经过光电探测器转换成电信号,最终通过数据采集系统进行分析和处理。

实验二:温度传感应用在本实验中,我们以温度传感应用为例,探究光纤传感技术在温度测量领域的应用。

通过将光纤传感器与温度测量物体接触,光纤传感器的特性会随温度的变化而改变。

我们通过测量光纤传感器输出的光功率的变化,可以间接得到温度的信息。

实验结果表明,光纤传感技术在温度测量中具有高精度和高灵敏度的优势。

实验三:压力传感应用在本实验中,我们以压力传感应用为例,进一步探究光纤传感技术在压力测量领域的应用。

通过将光纤传感器与被测压力物体接触,光纤传感器的特性会随压力的变化而改变。

我们通过测量光纤传感器输出的光功率的变化,可以间接得到压力的信息。

实验结果表明,光纤传感技术在压力测量中具有较高的准确度和稳定性。

实验四:光纤传感系统的优势与挑战在本部分,我们将对光纤传感技术的优势和挑战进行分析。

光纤传感技术具有高精度、高灵敏度、抗干扰性强等优点,可以实现对多种物理量的测量和监测。

然而,光纤传感系统的搭建和维护成本较高,对环境条件要求较高,同时在长距离传输和多参数测量方面还存在一定的挑战。

因此,在实际应用中需要综合考虑技术和经济等因素。

结论:通过本实验,我们对光纤传感技术有了更深入的了解。

光纤传感技术具有广泛的应用前景,可以在工业、医疗、环境监测等领域发挥重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 光纤位移传感器实验
一、实验目的
了解光纤位移传感器工作原理及其性能。

二、实验内容
光纤位移传感器输出电压与位移的关系实验。

三、实验仪器
ZY130Fsens12SB (光电传感器实验台)主机箱 一台 光纤传移传器实验模板 一个 PSD 传感器及位移装置 一套 螺旋测微头 一个 反射面 一个 反射式光纤 一根 导线 若干
四、实验原理
如图是线性位移测量装置,
光从光源耦合到输入光纤射向被测物体,再被反射回另一光纤,由探测器接收。

设两根光纤的距离为d ,每根光纤的直径为2a ,数值孔径为N ,如图所示,这时
b
d tg 2=
θ
由于N 1
sin
-=θ,所以式可以写为
(
)
N
tg d b 1
sin
2-=
很显然,当()[]
N tg d b 1
sin
2/-<时,即接收光纤位于光纤像的光锥之外。

两光纤的耦
合为零,无反射进入接收光纤:当()[]N
tg d b 1
sin
2/-≥时,即接收光纤位于光锥之内,两
2a
光纤耦合最强,接收光纤达到最大值。

d 的最大检测范围为()
N tg a 1
sin
/-。

如果要定量的计算光耦合系数,就必须计算出输入光纤像的发光锥体与接收锥体与接收光纤端面的交叠面积,如图所示,由于接收光纤芯径很小,常常把光锥边缘与接收光纤芯交界弧线看成是直线。

通过对交叠面简单的几何分析,不难得到交叠面积与光纤端面积之比α。


⎥⎦⎤⎢⎣
⎡⎪⎭⎫ ⎝

-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=
-a a a δδδπα1sin 11cos 11
δ——光锥底与输入光纤芯端面交叠扇面的宽
光纤发射锥与接收端面重叠面积计算示意图
d tg b -⨯=θδ2
三角形△ABC 面积ββcos sin a a S ⨯=
a
d
输出光纤
输入光纤
扇形面积2a ⨯=β
其中:()a a a /1/cos δδβ-=-=
()[
]
a /1cos
sin sin 1
δ
β-=-
输入光纤的光与光纤芯交叠面积之比
()()
⎭⎬
⎫⎩
⎨⎧⎥⎦⎤⎢⎣
⎡⎪⎭⎫ ⎝

-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛
-=
-=-=--a a a a
S a
S a δδδπβ
π
πβα1cos
sin 11cos 1/1
/1
1
2
2
2
本实验采用的传光型光纤,它由两束光纤混合后组成,两光束混合后的端部是工作端亦称探头,它与被测体相距X ,由光源发出的光传到端部出射后再经被测体反射回来,由另一
束光纤接收光信号经光电转换器转换成电量,而光电转换器的电量大小与间距X 有关,因此可用于测量位移。

五、实验步骤
1、根据图1-1安装光纤位移传感器,光纤二束插入实验板上的座孔上。

其内部已和发光管D 及光电转换管T 相接。

图1-1 光纤位移传感器
2、将主机箱的电压表接到实验模块o V 和“⊥”,将实验模块的“±15V ”和“GND ”插孔与主机箱中的稳压电源“±15V ”极其“⊥”分别对应相连,见图1-2。

图1-2
调节测微头,使探头与发射面圆平板接触。

打开电源开关,调RP使数显表显示为零。

旋转测微头,使被测体郭开探头,每隔0.1mm读出数显表值,将其填入表1-1。

表1-1 光纤位移传感器输出电压与位移数据
3、根据上表,作光纤位移传感器的位移特性曲线,计算在量程1mm时灵敏度和非线性误差。

六、实验报告
测量光纤位移传感器输出电压与位移的关系,填入表中,并做出特性曲线。

七、实验思考题
根据特性曲线,试想一下光纤位移传感可做哪些测量?
八、实验测试点说明
“+15V”、“GND”、“-15V”为电源引入口,接主机的“+15V”、“⊥”、“-15V”;“V o”
及其下方插孔为输出电压检测点,分别接主机箱电压表“+”、“-”。

实验二Mach-Zehnder光纤干涉实验
一.实验目的
1.掌握光纤Mach-Zehnder干涉仪的基本原理;
2.实验操作调试Mach-Zehnder干涉仪并进行性能测试。

二.实验原理
以光纤取代传统Mach-Zehnder干涉仪的空气隙,就构成了光纤型Mach-Zehnder干涉仪。

这种干涉仪可用于制作光纤型光滤波器、光开关等多种光无源器件和传感器,在光通信、光传感领域有广泛应用,其应用前景非常好。

光纤型Mach-Zehnder干涉仪实际上是由分束器构成。

当相干光从光纤型分束器的输入端输入后,在分束器输出端的两根基本长度相同的单模光纤汇合处产生干涉,形成干涉场。

干涉场的光强分布(干涉条纹)与输出端两光纤的夹角即光程差相关。

令夹角固定,那么外界因素改变的光程差直接和干涉场的光强分布(干涉条纹)相对应。

三.实验装置:
主机、光纤跳线1根。

四.实验内容及步骤
1.将主机中的“650光源”端口与“光源输入”端口用1根光纤跳线连接起来。

2.打开光源,观察毛玻璃窗上的干涉条纹。

3.打开上盖,观察内部光路结构,分析观察到的现象。

五.实验报告
根据观察现象,画出观察毛玻璃窗上的干涉条纹图像草图。

实验三光纤压力传感原理实验
一.实验目的
1.了解光纤传感的原理及意义。

2.实际操作观察光纤压力传感的现象。

二.实验原理
光纤传感的工作原理是,被测量的量改变了光纤的传输参数或载波参数,这些参数随待测信号的变化而变化。

光信号的变化反映了待测物理量的变化。

本实验系统所进行的传感原理是Mach-Zehnder光纤干涉原理。

Mach-Zehnder 干涉属于双光束干涉原理,由双光束干涉院里面可知,干涉场的干涉光强为:
I∝(1+cosδ)
δ为干涉仪两臂的光程差对应的相位差,δ等于2π整数倍时为干涉场的极大值。

压力改变了干涉仪其中一臂的光程,于是改变了干涉仪两臂的光程差,即位相差,位相差的变化由按上式规律变化的光强反映出来。

附图12光纤压力传感原理图
三.实验装置:
主机、光纤跳线1根。

四.实验内容及步骤
本实验中传感量是压力,压力改变了光波的位相,通过对位相的测量来实现对压力的测量。

具体的测量技术是运用干涉测量技术把光波的相位变化转换为(振幅)变化,实现对压力的检测。

操作方案采用光纤干涉仪进行对压力传感的测量,利用干涉仪的一臂作参考臂,另一臂作为测量臂(改变应力),配以检测显示系统就可以实现对压力传感的观测。

本实验只对压力引起光波参数改变作定性的观测,即观察压力的改变引起观测屏上干涉条纹的移动。

五.实验报告
根据观察到的现象,画出毛玻璃上干涉条纹草图,并标出条纹移动方向与施加压力关系。

相关文档
最新文档