2018 徐州市撷秀中学 中考数学押题卷
(完整版)2018年江苏徐州市中考数学试题(卷)(含答案及解析版)

12.(3分)(2018•徐州)若 在实数范围内有意义,则x的取值范围为.
13.(3分)(2018•徐州)若2m+n=4,则代数式6﹣2m﹣n的值为.
14.(3分)(2018•徐州)若菱形两条对角线的长分别是6cm和8cm,则其面积为cm2.
15.(3分)(2018•徐州)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD=°.
20
B
26≤m≤100
a
CБайду номын сангаас
101≤m≤200
50
D
m≥201
66
根据以上信息,解答下列问题:
(1)该调查的样本容量为,a=;
(2)在扇形统计图中,“A”对应扇形的圆心角为°;
(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.
23.(8分)(2018•徐州)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
16.(3分)(2018•徐州)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.
17.(3分)(2018•徐州)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多个.(用含n的代数式表示)
18.(3分)(2018•徐州)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为 上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.
(1)求证:FH=ED;
(2)当AE为何值时,△AEF的面积最大?
2018年江苏省徐州市中考数学试卷与答案

----<< 本文为word格式,下载后方便编辑修改,也可以直接使用>>------<< 本文为word格式,下载后方便编辑修改,也可以直接使用>>----2018年江苏省徐州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)4的相反数是( )A. B.﹣ C.4 D.﹣42.(3分)下列计算正确的是( )A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6 3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.4.(3分)如图是由5个相同的正方体搭成的几何体,其左视图是( )A. B.C. D.5.(3分)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率( ) A.小于 B.等于 C.大于 D.无法确定 6.(3分)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数 0 1 2 3人数 13 35 29 23关于这组数据,下列说法正确的是( )A.众数是2册 B.中位数是2册C.极差是2册 D.平均数是2册7.(3分)如图,在平面直角坐标系中,函数y=kx与y=﹣的图象交于A,B两点,过A 作y轴的垂线,交函数y=的图象于点C,连接BC,则△ABC的面积为( )A.2 B.4 C.6 D.88.(3分)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为( )A.x<3 B.x>3 C.x<6 D.x>6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)五边形的内角和是 °.10.(3分)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为 m.11.(3分)化简:||= .12.(3分)若在实数范围内有意义,则x的取值范围为 .13.(3分)若2m+n=4,则代数式6﹣2m﹣n的值为 .14.(3分)若菱形两条对角线的长分别是6cm和8cm,则其面积为 cm2. 15.(3分)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD = °.16.(3分)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 .17.(3分)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多 个.(用含n的代数式表示)18.(3分)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为 .三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤) 19.(10分)计算:(1)﹣12+20180﹣()﹣1+;(2)+.20.(10分)(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:21.(7分)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于 ;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)22.(7分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:类别 家庭藏书m本 学生人数A 0≤m≤25 20B 26≤m≤100 aC 101≤m≤200 50D m≥201 66根据以上信息,解答下列问题:(1)该调查的样本容量为 ,a= ;(2)在扇形统计图中,“A”对应扇形的圆心角为 °;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.23.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(8分)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.26.(8分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)27.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B 两点,与y轴交于点C,其顶点为P,连接P A、AC、CP,过点C作y轴的垂线l. (1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△P AC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.28.(10分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM 交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.2018年江苏省徐州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【解答】解:4的相反数是﹣4,故选:D.2.【解答】解:A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确.故选:D.3.【解答】解:A、既是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:A.4.【解答】解:根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选:A.5.【解答】解:连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,他第4次抛掷这枚硬币,正面朝上的概率为:,故选:B.6.【解答】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3﹣0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D不符合题意.故选:B.7.【解答】解:∵正比例函数y=kx与反比例函数y=﹣的图象交点关于原点对称,∴设A点坐标为(x,﹣),则B点坐标为(﹣x,),C(﹣2x,﹣),∴S△ABC=×(﹣2x﹣x)•(﹣﹣)=×(﹣3x)•(﹣)=6.故选:C.8.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=﹣3k,∴不等式为kx﹣6k<0,解得:x>6,故选:D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程) 9.【解答】解:(5﹣2)•180°=540°,故答案为:540°.10.【解答】解:10nm用科学记数法可表示为1×10﹣8m,故答案为:1×10﹣8.11.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.12.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.13.【解答】解:∵2m+n=4,∴6﹣2m﹣n=6﹣(2m+n)=6﹣4=2,故答案为2.14.【解答】解:∵菱形的两条对角线分别是6cm和8cm,∴这个菱形的面积是:×6×8=24(cm2).故答案为:24.15.【解答】解:在Rt△ABC中,∠ABC=90°,D为AC的中点, ∴BD是中线,∴AD=BD=CD,∴∠BDC=∠C=55°,∴∠ABD=90°﹣55°=35°.故答案是:35.16.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.17.【解答】解:方法一:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3﹣1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5﹣2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7﹣3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)﹣n 个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个,方法二第1个图形白色正方形共8个,黑色1个,白色比黑色多7个,第2个图形比第1个图形白色比黑色又多了4个,即白色比黑色多(7+4)个,第3个图形比第2个图形白色比黑色又多了4个,即白色比黑色多(7+4×2)个, 类推,第n个图案中白色正方形比黑色正方形多[7+4(n﹣1)]个,即(4n+3)个, 故第n个图案中白色正方形比黑色正方形多4n+3个.18.【解答】解:如图所示:连接AQ.∵BP•BQ=AB2,∴=.又∵∠ABP=∠QBA,∴△ABP∽△QBA,∴∠APB=∠QAB=90°,∴QA始终与AB垂直.当点P在A点时,Q与A重合,当点P在C点时,AQ=2OC=4,此时,Q运动到最远处,∴点Q运动路径长为4.故答案为:4.三、解答题(本大题共有10小题,共86分解答时应写出文字说明、证明过程或演算步骤) 19.【解答】解:(1)﹣12+20180﹣()﹣1+;=﹣1+1﹣2+2,=0;(2)+.=+,=.20.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.21.【解答】解:(1)从中摸出1个球,恰为红球的概率等于,故答案为:;(2)画树状图:所以共有6种情况,含红球的有4种情况,所以p==,答:从中同时摸出2个球,摸到红球的概率是.22.【解答】解:(1)因为“C”有50人,占样本的25%, 所以样本=50÷25%=200(人)因为“B”占样本的32%,所以a=200×32%=64(人)故答案为:200,64;(2)“A”对应的扇形的圆心角=×360°=36°,故答案为:36°;(3)全校学生中家庭藏书200本以上的人数为:2000×=660(人)答:全校学生中家庭藏书200本以上的人数为660人.23.【解答】解:(1)证明:∵四边形CEFG是正方形,∴CE=EF,∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°, ∴∠FEH=∠DCE,在△FEH和△ECD中,∴△FEH≌△ECD,∴FH=ED;(2)设AE=a,则ED=FH=4﹣a,∴S△AEF=AE•FH=a(4﹣a),=﹣(a﹣2)2+2,∴当AE=2时,△AEF的面积最大.24.【解答】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时, 根据题意得:﹣=80,解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,∴1.4t=3.5.答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时.25.【解答】解:(1)相切.理由如下:连接OD,∵BD是∠ABC的平分线,∴∠CBD=∠ABD,又∵OD=OB,∴∠ODB=∠ABD,∴∠ODB=∠CBD,∴OD∥CB,∴∠ODC=∠C=90°,∴CD与⊙O相切;(2)若∠CDB=60°,可得∠ODB=30°,∴∠AOD=60°,又∵AB=6,∴AO=3,∴==π.26.【解答】解:(1)过点C 作CE ⊥PB ,垂足为E ,过点D 作DF ⊥PB ,垂足为F , 则∠CEP =∠PFD =90°,由题意可知:设AB =x ,在Rt △PCE 中, tan32.3°=,∴PE =x •tan32.3°, 同理可得:在Rt △PDF 中, tan55.7°=,∴PF =x •tan55.7°, 由PF ﹣PE =EF =CD =42, 可得x •tan55.7°﹣x •tan32.3°=42, 解得:x =50 ∴楼间距AB =50m ,(2)由(1)可得:PE =50•tan32.3°=31.5m , ∴CA =EB =90﹣31.5=58.5m由于2号楼每层3米,可知点C 位于20层.27.【解答】解:(1)∵y =﹣x 2+6x ﹣5=﹣(x ﹣3)2+4, ∴顶点P (3,4), 令x =0得到y =﹣5, ∴C (0.﹣5).(2)令y =0,x 2﹣6x +5=0,解得x =1或5, ∴A (1,0),B (5,0),设直线PC的解析式为y=kx+b,则有,解得,∴直线PC的解析式为y=3x﹣5,设直线交x轴于D,则D(,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△P AC的面积的2倍, ∵AD=,∴BE=,∴E(,0)或E′(,0),则直线PE的解析式为y=﹣6x+22,∴Q(,﹣5),直线PE′的解析式为y=﹣x+,∴Q′(,﹣5),综上所述,满足条件的点Q(,﹣5),Q′(,﹣5).28.【解答】解:(1)∵M为AC的中点,∴CM=AC=BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=4﹣x,在Rt△CFM中,FM2=CF2+CM2,即(4﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,∠PMF=∠B=45°,∵CD是中垂线,∴∠ACD=∠DCF=45°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC, ∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=45°,∴△MPC∽△OFC,∴=,∴=,∴=,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=45°,∴△PFM是等腰直角三角形.②∵△PFM是等腰直角三角形,设FM=y,由勾股定理可知:PF=PM=y,∴△PFM的周长=(1+)y,∵2<y<4,∴△PFM的周长满足:2+2<(1+)y<4+4.----<< 本文为word格式,下载后方便编辑修改,也可以直接使用>>---------<< 本文为word格式,下载后方便编辑修改,也可以直接使用>>---------<< 本文为word格式,下载后方便编辑修改,也可以直接使用>>---------<< 本文为word格式,下载后方便编辑修改,也可以直接使用>>-----责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删除.度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度 度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度库百度文免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删除.百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度 度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度 百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度 度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度。
江苏省徐州市撷秀中学2018年小升初择校考数学试卷

2018年江苏省徐州市撷秀自主招生数学试卷总分:100分姓名:___________得分:____________一、填一填(每题4分,共24分)1.(4分)一个小数由8个百、5个十、8个十分之一和6个百分之一组成,这个小数写作,四舍五入到十分位约是.2.(4分)一件衣服成本价为120元,如果以180元出售,那么它的盈利率是.3.(4分)一个长方形的花园,长52米,宽21米,如图中间修2条小路,路的每一处宽1米.其他地方种草,则草地的面积为2m.4.(4分)每一个多边形都可以按下图的方法分割成若干个三角形,那么用样的方法,n边形又能分割成个三角形.5.(4分)有红、黄、蓝三面旗,把这些旗挂在一个旗杆上做成各种信号,那么利用这三面旗能表示种不同信号(不算不挂情况).6.(4分)a、b、c、d四个整数,取其中三个求和,结果分别得143、154、140、157,则这四个数的平均数是.二、选一选(每题4分,共20分)7.(4分)将3克药放入100克水中,药与药水的比是()A .3:97B .3:100C .100:103D .3:1038.(4分)周长都相等的圆、正方形和长方形,它们的面积()A .圆最大B .正方形最大C .长方形最大D .一样大9.(4分)从A 城到B 城,甲车要10小时,乙车要8小时,甲车速度比乙车()A .慢25%B .快25%C .慢20%D .慢8%10.(4分)有一批同学去划船,他们算了一下,如果增加一条船,正好每船坐6人,如果减少一条船,正好每条船坐9人,则该班有()名同学.A .32B .36C .40D .4811.(4分)如图,这四幅图是一个正方体不同的侧面,六个面上分别写着A 、B 、C 、D 、E 、F ,则C 、A 、E 的对面字母分别是.三、计算(每题7分,共14分)12.(14分)计算.)512416(4110--3618712594⨯++)(四、解决问题(共42分)13.(8分)如图,如果平行四边形的面积是8平方米,求圆的面积.14.(8分)王大伯参加我县农村合作医疗保险.条款规定:农民住院医疗费设起付线,县级医疗机构为400元,在起付线以上的部分按45%补偿.今年4月份王大伯患了急性肠炎,在定点医院住院治疗了20天,医疗费用共计8260元.按条款规定,王大伯只要自付多少元?15.(8分)一项工程,甲队独做15天完成,乙队独做12天完成,若两队合作,甲队每天提高效率的25%,乙队每天提高效率的20%,现在两队合作,途中甲队休息了若干天,这样前后共用9天完成任务.甲队休息了多少天?15.(8分)某次演讲比赛,原定一等奖10人,二等奖20人,现将一等奖中的最后4人调整为二等奖,这样得二等奖的学生的平均分提高了一分,得一等奖的学生的平均分提高了3分,那么原来一等奖平均分比二等奖平均分多分.17.(10分)小明在家做了一个实验,将圆柱形茶杯里的水倒掉仅花1~2秒,将酒瓶里的水倒掉花上半分钟还不止,这就是有名的瓶颈问题.(1)如图1,从A到C信息量为10a,从C到B信息量为5a,从A到B信息量为;(2)如图2,从A到C信息量为10a,从C到D信息量为5a,D到B信息量为3a:从C到E信息量为6a,E到B信息量为4a.则从A到B信息量为;(3)在(2)中,若从D到B、E到B的信息量分别都是可变的信息量,从D到B的信息量变化范围6a到12a,从E到B的信息量变化范围为3a到8a,其余条件不变,则从A到B的最大信息量为,最小信息量为.。
2018年江苏省中考数学押题试卷含详解

江苏中考数学模拟题题号一二三四总分得分一、选择题(本大题共6小题,共12.0分)1.下列计算正确的是( )A. 30=0B. −|−3|=−3C. 3−1=−3D. √9=±32.下列图形中,是轴对称图形但不是中心对称图形的是( )A. 等边三角形B. 平行四边形C. 矩形D. 圆3.分式22−x可变形为( )A. 22+x B. −22+xC. 2x−2D. −2x−24.估计√6+1的值在( )A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间5.抛物线y=−3x2−x+4与坐标轴的交点个数是( )A. 3B. 2C. 1D. 06.如图,矩形ABCD,由四块小矩形拼成(四块小矩形放置是既不重叠,也没有空隙),其中②③两块矩形全等,如果要求出①④两块矩形的周长之和,则只要知道( )A. 矩形ABCD的周长B. 矩形②的周长C. AB的长D. BC的长二、填空题(本大题共10小题,共20.0分)7.若∠A为锐角,当tanA=√33时,cosA=______.8.去年,中央财政安排资金 8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为______元.9.命题“同位角相等”的逆命题是______.10.分解因式:x3−2x2+x=______.11.计算:2aa+1+2a+1=______.12.已知一元二次方程x2−3x−6=0有两个实数根x1、x2,直线l经过点A(x1+x2,0)、B(0,x1⋅x2),则直线l不经过第______象限.13.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是______∘.14.如图,四边形ABCD是⊙O的内接四边形,点E在AB的延长线上,BF是∠CBE的平分线,∠ADC=100∘,则∠FBE=______∘.115.如图,⊙O的直径AB与弦CD相交于点E,AB=5,AC=3,则tan∠ADC=______.16.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为______.(用含n的代数式表示,n为正整数)三、计算题(本大题共11小题,共88分)17.(7分)请你先化简(a2a+2−a+2)÷4aa2−4,再从−2,2,√2中选择一个合适的数代入求值.18.(7分)重庆市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=−16x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=−18x+194(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:z(元/m2)5052545658…x(年)12345…(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.(参考数据:√315≈17.7,√319≈17.8,√321≈17.9)19.(7分)计算:√8+(12)−1−4cos45∘−(√3−π)0.20.(8分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:平均数中位数众数方差甲班8.58.5______ ______乙班8.5______ 10 1.621.(8分)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=______∘和∠AEB=______∘时,四边形ACED是正方形?请说明理由.322.(8分)有两个构造完全相同(除所标数字外)的转盘A、B.(1)单独转动A盘,指向奇数的概率是______;(2)小红和小明做了一个游戏,游戏规定,转动两个转盘各一次,两次转动后指针指向的数字之和为奇数则小红获胜,数字之和为偶数则小明获胜,请用树状图或列表说明谁获胜的可能性大.23.(8分)如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30∘方向以每小时15海里的速度航行,甲沿南偏西75∘方向以每小时15√2海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60∘方向追赶乙船,正好在B处追上.甲船追赶乙船的速度为多少海里/小时?5 24. (8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该种品牌玩具的销售单价为x 元(x >40),请你分别用x 的代数式来表示销售量y 件和销售该品w 销售单价(元) x 销售量y(件)______销售玩具获得利润w(元) ______x 应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?25. (8分)如图,OA =2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC (1)线段BC 的长等于______;(2)请在图中按下列要求逐一操作,并回答问题:①以点______为圆心,以线段______的长为半径画弧,与射线BA 交于点D ,使线段OD 的长等于√6②连OD ,在OD 上画出点P ,使OP 的长等于2√63,请写出画法,并说明理由.26. (8分)如图,抛物线y =14x 2+bx +c 与x 轴交于A 、B 两点,其中点B(2,0),交y 轴于点C(0,−52).直线y =mx +32过点B 与y 轴交于点N ,与抛物线的另一个交点是D ,点P 是直线BD 下方的抛物线上一动点(不与点B 、D 重合),过点P 作y 轴的平行线,交直线BD 于点E ,过点D 作DM ⊥y 轴于点M . (1)求抛物线y =14x 2+bx +c 的表达式及点D 的坐标;(2)若四边形PEMN 是平行四边形?请求出点P 的坐标;(3)过点P 作PF ⊥BD 于点F ,设△PEF 的周长为C ,点P 的横坐标为a ,求C 与a 的函数关系式,并求出C 的最大值.27.(11分)问题提出(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于______时,线段AC的长取得最大值,且最大值为______(用含a,b的式子表示).问题探究(2)点A为线段BC外一动点,且BC=6,AB=3,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.问题解决:(3)①如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90∘,求线段AM长的最大值及此时点P的坐标.②如图4,在四边形ABCD中,AB=AD,∠BAD=60∘,BC=4√2,若对角线BD⊥CD于点D,请直接写出对角线AC的最大值.答案和解析【答案】1. B2. A3. D4. B5. A6. D7. √328. 8.2×1099. 相等的角是同位角10. x(x−1)211. 212. 二13. 12014. 5015. 3416. 24n−517. 解:(a2a+2−a+2)÷4aa2−4=[a2a+2−(a−2)(a+2)a+2]×(a+2)(a−2)4a=4a+2×(a+2)(a−2)4a=a−2a;为使分式有意义,a不能取±2;当a=√2时,原式=√2−22=1−√2.18. 解:(1)由题意,z与x是一次函数关系,设z=kx+b(k≠0)把(1,50),(2,52)代入,得∴{k+b=502k+b=52⇒{k=2b=48,∴z=2x+48.(2)当1≤x≤6时,设收取的租金为W1百万元,则W1=(−16x+5)⋅(2x+48)=−13x2+2x+240∵对称轴x=−b2a=3,而1≤x≤6∴当x=3时,W1最大=243(百万元)当7≤x≤10时,设收取的租金为W2百万元,则W2=(−18x+194)⋅(2x+48)=−14x2+72x+228∵对称轴x=−b2a=7,而7≤x≤10∴当x=7时,W2最大=9614(百万元)∵243>961∴第3年收取的租金最多,最多为243百万元.7(3)当x =6时,y =−16×6+5=4百万平方米=400万平方米 当x =10时,y =−18×10+194=3.5百万平方米=350万平方米∵第6年可解决20万人住房问题, ∴人均住房为:400÷20=20平方米.由题意:20×(1−1.35a%)×20×(1+a%)=350, 设a%=m ,化简为:54m 2+14m −5=0, △=142−4×54×(−5)=1276,∴m =−14±√12762×54=−7±√31954∵√319≈17.8,∴m 1=0.2,m 2=−62135(不符题意,舍去), ∴a%=0.2,∴a =20答:a 的值为20.19. 解:原式=2√2+2−4×√22−1, =2√2+2−2√2−1,=1.故答案为:1. 20. 8.5;,0.7;8 21. 45;4522. 2323. 解:过O 作OC ⊥AB 于C .则∠OAC =180∘−60∘−75∘=45∘, 可知AO =15√2(海里), ∴OC =AC =15√2×√22=15(海里),∵∠B =90∘−30∘−30∘=30∘, ∴OC BC =tan30∘,∴15BC =√33, ∴BC =15√3(海里),OB =15×2=30(海里),乙船从O 点到B 点所需时间为2小时,甲船追赶乙船速度为(15+15√3)海里/小时. 24. 1000−10x ;−10x 2+1300x −30000 25. √2;A ;BC26. 解:(1)将B ,C 点坐标代入函数解析式,得{14×4+2b +c =0c =−52, 解得{b =34c =−52,9 抛物线的解析式为y =14x 2+34x −52. ∵直线y =mx +32过点B(2,0), ∴2m +32=0,解得m =−34,直线的解析式为y =−34x +32.联立直线与抛物线,得{y =14x 2+34x −52y =−34x +32 ∴14x 2+34x −52=−34x +32, 解得x 1=−8,x 2=2(舍), ∴D(−8,712);(2)∵DM ⊥y 轴,∴M(0,712),N(0,32)∴MN =712−32=6.设P 的坐标为(x ,14x 2+34x −52),E 的坐标则是(x ,−34x +32) PE =−34x +32−(14x 2+34x −52)=−14x 2−32x +4,∵PE//y 轴,要使四边形PEMN 是平行四边形,必有PE =MN , 即−14x 2−32x +4=6,解得x 1=−2,x 2=−4, 当x =−2时,y =−3,即P(−2,−3), 当x =−4时,y =−32,即P(−4,−32),综上所述:点P 的坐标是(−2,−3)和)(−4,−32);(3)在Rt △DMN 中,DM =8,MN =6, 由勾股定理,得DN =√DM 2+MN 2=10, ∴△DMN 的周长是24. ∵PE//y 轴,∴∠PEN =∠DNM ,又∵∠PFE =∠DMN =90∘, ∴△PEF∽△DMN , ∴C △DMN C △PEF=DN PE,由(2)知PE =−14a 2−32a +4,∴24C =10−14a2−32a+4,∴C=−35a2−185a+485,C=−35(a+3)2+15,C与a的函数关系式为C=−35a2−185a+485,当x=−3时,C的最大值是15.27. CB的延长线上;a+b【解析】1. 解:A、30=1,故A错误;B、−|−3|=−3,故B正确;C、3−1=13,故C错误;D、√9=3,故D错误.故选:B.根据平方根,负指数幂的意义,绝对值的意义,分别计算出各个式子的值即可判断.解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.2. 解:A、只是轴对称图形,不是中心对称图形,符合题意;B、只是中心对称图形,不合题意;C、D既是轴对称图形又是中心对称图形,不合题意.故选:A.根据轴对称图形和中心对称图形的概念以及等边三角形、平行四边形、矩形、圆的性质解答.掌握好中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,两边图象折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后重合.3. 解:分式22−x的分子分母都乘以−1,得−2x−2,故选:D.根据分式的性质,分子分母都乘以−1,分式的值不变,可得答案.本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.4. 解:∵2=√4<√6<√9=3,∴3<√6+1<4,故选:B.利用”夹逼法“得出√6的范围,继而也可得出√6+1的范围.此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.5. 解:抛物线解析式y=−3x2−x+4,令x=0,解得:y=4,∴抛物线与y轴的交点为(0,4),令y=0,得到−3x2−x+4=0,即3x2+x−4=0,分解因式得:(3x+4)(x−1)=0,解得:x1=−43,x2=1,∴抛物线与x轴的交点分别为(−43,0),(1,0),综上,抛物线与坐标轴的交点个数为3.11 故选:A .令抛物线解析式中x =0,求出对应的y 的值,即为抛物线与y 轴交点的纵坐标,确定出抛物线与y 轴的交点坐标,令抛物线解析式中y =0,得到关于x 的一元二次方程,求出方程的解有两个,可得出抛物线与x 轴有两个交点,综上,得到抛物线与坐标轴的交点个数.此题考查了抛物线与x 轴的交点,以及一元二次方程的解法,其中令抛物线解析式中x =0,求出的y 值即为抛物线与y 轴交点的纵坐标;令y =0,求出对应的x 的值,即为抛物线与x 轴交点的横坐标. 6. 解:设BC 的长为x ,AB 的长为y ,矩形②的长为a ,宽为b ,由题意可得,①④两块矩形的周长之和是:(x −b)×2+2a +2b +2(x −a)=2x −2b +2a +2b +2x −2a =4x ; 故选:D .根据题意可以分别设出矩形的长和宽,从而可以表示出①④两块矩形的周长之和,从而可以解答本题. 本题考查二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.7. 解:∵∠A 为锐角,tanA =√33, ∴∠A =30∘,则cosA =cos30∘=√32.故答案为:√32.根据特殊角的三角函数值,即可求得∠A 的度数,继而可得出cosA .本题考查了特殊角的三角函数值,属于基础题,解答本题的关键是熟练掌握几个特殊角的三角函数值. 8. 解:将8 200 000 000 用科学记数法表示为8.2×109. 故答案为:8.2×109.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9. 解:命题“同位角相等”的逆命题是相等的角是同位角,故答案为:相等的角是同位角. 根据逆命题的概念解答.本题考查的是逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.10. 解:x 3−2x 2+x =x(x 2−2x +1)=x(x −1)2.故答案为:x(x −1)2.首先提取公因式x ,进而利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.11. 解:原式=2a+2a+1=2故答案为:2根据分式加减的运算法则即可求出答案.本题考查分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 12. 解:∵x 1+x 2=3,x 1⋅x 2=−6,∴A 点坐标为(3,0),B 点坐标为(0,−6), 设直线l 的解析式为y =kx +b ,把A(3,0),B(0,−6)代入得{3k +b =0b =−6,解得{k =2b =−6,∴直线l 的解析式为y =2x −6,∵k =2>6,∴直线l过第一、三象限,∵b=−6<0,∴直线l与y轴的交点在x轴下方,∴直线l不经过第二象限.故答案为二.根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=3,x1⋅x2=−6,则可得到A点坐标为(3,0),B点坐标为(0,−6),然后利用待定系数法求出直线l的解析式为y=2x−6,根据一次函数的性质可得到图象经过第一、三、四象限.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程有两个实数根x1、x2,则x1+x2=−ba ,x1⋅x2=ca.也考查了待定系数法求一次函数的解析式以及一次函数的性质.13. 解:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则nπ×6180=4π,解得:n=120.故答案为120.根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.本题主要考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14. 解:∵四边形ABCD是⊙O的内接四边形,∠ADC=100∘,∴∠CBE=∠ADC=100∘,∵BF是∠CBE的平分线,∴∠FBE=12∠CBE=50∘,故答案为:50.根据圆内接四边形的性质求出∠CBE=∠ADC=100∘,根据角平分线定义求出即可.本题考查了圆内接四边形性质的应用,能求出∠CBE=∠ADC是解此题的关键.15. 解:∵AB是直径,AB=5,AC=3,∴BC=√AB2−AC2=4,∴tan∠ADC=tan∠B=ACBC =34,故答案为:34根据在同圆或等圆中,同弧或等弧所对的圆周角相等,再利用三角函数解答即可..此题考查了圆周角定理.此题难度不大,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.16. 解:∵函数y=x与x轴的夹角为45∘,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n−1,由图可知,S1=12×1×1+12×(1+2)×2−12×(1+2)×2=12,S2=12×4×4+12×(4+8)×8−12×(4+8)×8=8,…,S n为第2n与第2n−1个正方形中的阴影部分,第2n个正方形的边长为22n−1,第2n−1个正方形的边长为22n−2,S n=12⋅22n−2⋅22n−2=24n−5.故答案为:24n−5.根据直线解析式判断出直线与x轴的夹角为45∘,从而得到直线与正方形的边围成的三角形是等腰直角三角形,再根据点A的坐标求出正方形的边长并得到变化规律表示出第n个正方形的边长,然后根据阴影部分的面积等于一个等腰直角三角形的面积加上梯形的面积再减去一个直角三角形的面积列式求解并根据结果的规律解答即可.本题考查了正方形的性质,三角形的面积,一次函数图象上点的坐标特征,依次求出各正方形的边长是解题的关键,难点在于求出阴影S n所在的正方形和正方形的边长.17. 此题只需先进行分式运算得到最简结果,再挑选出一个使分式有意义的值代入求得结果即可.本题考查了分式的化简求值.注意:取喜爱的数代入求值时,要特注意原式及化简过程中的每一步都有意义.18. (1)根据表格中的数据可得z与x是一次函数关系,然后设z=kx+b,运用待定系数法解答即可.(2)根据题意将x的值分段表示,①1≤x≤6,②7≤x≤10,然后将每段的二次函数的最值求出来即可得出答案.(3)先求出第六年及第十年的公租房面积,然后可求出人均住房面积,继而根据人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%可得出方程,利用判别式的知识可求出满足题意的a值.本题考查了二次函数的性质在实际生活中的应用,我们首先要吃透题意,确定变量,建立函数模型,然后要注意掌握判别式的应用,因为对于实际问题的判断往往要用到它进行限制.19. 先根据二次根式的化简、负整数指数幂、特殊角的三角函数值及0指数幂把原式化简,再根据实数混合运算的法则进行计算即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂及二次根式等考点的运算.20. 解:(1)甲的众数为:8.5,方差为:15[(8.5−8.5)2+(7.5−8.5)2+(8−8.5)2+(8.5−8.5)2+(10−8.5)2]=0.7,乙的中位数是:8;故答案为:8.5,0.7,8;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.(1)利用条形统计图,结合众数、方差、中位数的定义分别求出答案;(2)利用平均数、众数、方差、中位数的定义分析得出答案.此题主要考查了平均数、众数、方差、中位数的定义,正确把握相关定义是解题关键21. (1)证明:∵O是CD的中点,∴DO=CO,∵四边形ABCD是平行四边形,∴AD//BC,∴∠D=∠OCE,在△ADO和△ECO中{∠D=∠OCEDO=CO∠AOD=∠COE,∴△AOD≌△EOC(ASA);13(2)解:当∠B=45∘和∠AEB=45∘时,四边形ACED是正方形,∵∠B=45∘和∠AEB=45∘,∴∠BAE=90∘,∵△AOD≌△EOC,∴AO=EO,∵DO=CO,∴四边形ACED是平行四边形,∴AD=CE,∵四边形ABCD是平行四边形,∴AD=BC,∴BC=CE,∵∠BAE=90∘,∴AC=CE,∴平行四边形ACED是菱形,∵∠B=∠AEB,BC=CE,∴AC⊥BE,∴四边形ACED是正方形.故答案为:45,45.(1)首先根据O是CD的中点,可得DO=CO,再证明∠D=∠OCE,然后可利用ASA定理证明△AOD≌△EOC;(2)当∠B=45∘和∠AEB=45∘时,四边形ACED是正方形;首先证明∠BAE=90∘,然后证明AC是BE边上的中线,根据直角三角形的性质可得AC=CE,然后利用等腰三角形的性质证明AC⊥BE,可得结论.此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握邻边相等的矩形是正方形.22. 解:(1)∵单独转动A盘,共有3种情况,指向奇数的有2种情况,∴单独转动A盘,指向奇数的概率是:23;故答案为:23;(2)画树状图得:∵共有9种等可能的结果,两次转动后指针指向的数字之和为奇数的有5种情况,数字之和为偶数的有4种情况,∴P(小红获胜)=59,P(小明获胜)=49.(1)由单独转动A盘,共有3种情况,指向奇数的有2种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次转动后指针指向的数字之和为奇数与数字之和为偶数的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23. 过O作OC⊥AB于C.先判断出△AOC是等腰直角三角形,判断出∠A和∠B的度数,利用三角函数求出BC的长,求出乙船从O点到B点所需时间为2小时,甲船追赶乙船速度为(15+15√3)海里/小时.本题考查了解直角三角形的应用--方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.24. 解:(1)销售单价(元)x销售量y(件)1000−10x销售玩具获得利润w(元)−10x2+1300x−30000=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润,(3)根据题意得{1000−10x≥540x≥44解之得:44≤x≤46,w=−10x2+1300x−30000=−10(x−65)2+12250,∵a=−10<0,对称轴是直线x=65,∴当44≤x≤46时,w随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.(1)由销售单价每涨1元,就会少售出10件玩具得y=600−(x−40)×10=1000−10x,利润=(1000−10x)(x−30)=−10x2+1300x−30000;(2)令−10x2+1300x−30000=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=−10x2+1300x−30000转化成y=−10(x−65)2+12250,结合x的取值范围,求出最大利润.本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.25. 解:(1)在Rt△BAC中,AB=AC=1,∠BAC=90∘,∴BC=√AB2+AC2=√2.故答案为:√2.(2)①在Rt△OAD中,OA=2,OD=√6,∠OAD=90∘,∴AD=√OD2−OA2=√2=BC.∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于√6.依此画出图形,如图1所示.故答案为:A;BC.②∵OD=√6,OP=2√63,OC=OA+AC=3,OA=2,∴OAOC =OPOD=23,∴AP//CD.故作法如下:连接CD,过点A作AP//CD交OD于点P,P点即是所要找的点.依此画出图形,如图2所示.15(1)由圆的半径为1,可得出AB =AC =1,结合勾股定理即可得出结论;(2)①结合勾股定理求出AD 的长度,从而找出点D 的位置,根据画图的步骤,完成图形即可;②由OD 、OP 的长度结合OA =2AC ,可得出OA OC =OP OD =23,进而可得出AP//CD ,连接CD ,过点A 作AP//CD 交OD 于点P ,此题得解.本题考查了作图中的寻找线段的三等分点以及勾股定理,解题的关键是:(1)利用勾股定理求出BC 的长;(2)①利用勾股定理求出AD 的长;②根据线段间的关系找出AP//CD .26. (1)根据待定系数法,可得抛物线的解析式,直线的解析式,根据解方程组,可得D 点坐标;(2)根据y 轴上两点间的距离是较大的纵坐标减较小的纵坐标,可得MN ,PE 的长,根据平行四边形的判定,可得关于x 的方程,根据解方程,可得P 的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据勾股定理,可得DN 的长,根据相似三角形的判定与性质,可得24C =10−14a 2−32a+4,根据比例的基本性质,可得答案.本题考查了二次函数综合题,解(1)的关键是待定系数法得出函数解析式,又利用了解方程组;解(2)的关键是利用平行四边形的判定得出−14x 2−32x +4=6,解(3)的关键是利用相似三角形的判定与性质得出24C =10−14a 2−32a+4.27. 解:(1)∵点A 为线段BC 外一动点,且BC =a ,AB =b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC +AB =a +b , 故答案为:CB 的延长线上,a +b ;(2)①CD =BE ,理由:∵△ABD 与△ACE 是等边三角形, ∴AD =AB ,AC =AE ,∠BAD =∠CAE =60∘, ∴∠BAD +∠BAC =∠CAE +∠BAC , 即∠CAD =∠EAB , 在△CAD 与△EAB 中, {AD =AB∠CAD =∠EAB AC =AE, ∴△CAD≌△EAB(SAS), ∴CD =BE ;②∵线段BE 长的最大值=线段CD 的最大值,∴由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上, ∴最大值为BD +BC =AB +BC =3+6=9;(3)如图1,连接BM ,∵将△APM 绕着点P 顺时针旋转90∘得到△PBN ,连接AN ,则△APN 是等腰直角三角形, ∴PN =PA =2,BN =AM ,∵A 的坐标为(2,0),点B 的坐标为(5,0), ∴OA =2,OB =5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=√2AP=2√2,∴最大值为2√2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=√2,∴OE=BO−AB−AE=5−3−√2=2−√2,∴P(2−√2,√2).(4)如图4中,以BC为边作等边三角形△BCM,∵∠ABD=∠CBM=60∘,∴∠ABC=∠DBM,∵AB=DB,BC=BM,∴△ABC≌△DBM,∴AC=MD,∴欲求AC的最大值,只要求出DM的最大值即可,∵BC=4√2=定值,∠BDC=90∘,∴点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2√2+2√6,∴AC的最大值为2√2+2√6.(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60∘,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90∘得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2√2+3;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论;(4)如图4中,以BC为边作等边三角形△BCM,由△ABC≌△DBM,推出AC=MD,推出欲求AC的最大值,只要求出DM的最大值即可,由BC=4√2=定值,∠BDC=90∘,推出点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大;本题考查四边形综合题、等边三角形的性质、等腰直角三角形的性质、全等三角形的判定和性质、圆等知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题,掌握旋转法添加辅助线,属于中考压轴题.17。
2018年中考数学押题试卷及答案(十)

2018年中考数学押题试卷及答案(十)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)﹣的倒数是()A.B.﹣ C.3 D.﹣32.(3分)在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.43.(3分)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°4.(3分)下列计算正确的是()A.a2•a3=a6 B.(a2)3=a6C.a2+a2=a3 D.a6÷a2=a35.(3分)下列调查中,比较适合用普查方式的是()A.徐州市某灯具厂节能灯的使用寿命B.徐州市居民年人均收入C.徐州市今年初中生体育中考的成绩D.某一天离开徐州的人口流量6.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.7.(3分)有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个 B.4个 C.3个 D.2个8.(3分)抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位9.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线m]②∠ADC=60°③△ABD是等腰三角形④点D到直线AB的距离等于CD的长度.A.1 B.2 C.3 D.410.(3分)我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图),如果大正方形的边长为c,直角三角形的两条直角边分别是c﹣2和4,那么小正方形的边长为()A.4 B.3 C.2 D.1二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)月球与地球的平均距离约为384400千米,将数384400用科学记数法表示为.12.(3分)当k的值为(填出一个值即可)时,方程只有一个实数根.13.(3分)[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.其中正确的结论有(写出所有正确结论的序号).14.(3分)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车;而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的舒适程度比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请解决下面的问题:(1)三辆车按出现的先后顺序共有种不同的可能.(2)你认为甲、乙两人所采用的方案中,不巧坐到下等车的可能性大小比较为:(填“甲大”、“乙大”、“相同”).理由是:.(要求通过计算概率比较)15.(3分)在半径为1的⊙O中,弦AB长,弦AC的长为,则∠BAC的度数为.16.(3分)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为.三、解答题(本大题共9个小题,共72分)17.(6分)已知:ax=by=cz=1,求的值.18.(6分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了两幅尚不完整的统计图,如图所示,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.19.(6分)如图,在△ABC中,AC=50m,BC=40m,∠C=90°,点P从点A开始沿AC边向点C以2m每秒的速度匀速移动,同时另一点Q由C点开始以3m每秒的速度沿着CB匀速移动,几秒后,△PCQ的面积等于450m2?20.(7分)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.21.(6分)如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P 的横坐标的取值范围,(不必写过程)22.(8分)如图,OA,OD是⊙O半径.过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B.(1)求证:直线CD是⊙O的切线;(2)如果D点是BC的中点,⊙O的半径为3cm,求的长度.(结果保留π)23.(10分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.24.(10分)(1)探究发现:下面是一道例题及其解答过程,请补充完整:如图①在等边△ABC内部,有一点P,若∠APB=150°.求证:AP2+BP2=CP2证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形∴∠APP′=60° PA=PP′PC=∵∠APB=150°∴∠BPP′=90°∴P′P2+BP2=即PA2+PB2=PC2(2)类比延伸:如图②在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA、PB、PC之间的数量关系,并证明.(3)联想拓展:如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2,请直接写出k的值.25.(13分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y 轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)﹣的倒数是( )A .B .﹣C .3D .﹣3【解答】解:﹣的倒数是﹣3,故选:D .2.(3分)在实数﹣,0.21,,,,0.20202中,无理数的个数为( )A .1B .2C .3D .4【解答】解:在实数﹣,0.21,,,,0.20202中,根据无理数的定义可得其中无理数有﹣,,三个. 故选C .3.(3分)如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°【解答】解:如图,分别过K 、H 作AB 的平行线MN 和RS ,∵AB ∥CD ,∴AB ∥CD ∥RS ∥MN ,∴∠RHB=∠ABE=∠ABK ,∠SHC=∠DCF=∠DCK ,∠NKB +∠ABK=∠MKC +∠DCK=180°,∴∠BHC=180°﹣∠RHB ﹣∠SHC=180°﹣(∠ABK +∠DCK ),∠BKC=180°﹣∠NKB ﹣∠MKC=180°﹣(180°﹣∠ABK )﹣(180°﹣∠DCK )=∠ABK +∠DCK ﹣180°,∴∠BKC=360°﹣2∠BHC ﹣180°=180°﹣2∠BHC ,又∠BKC ﹣∠BHC=27°,∴∠BHC=∠BKC ﹣27°,∴∠BKC=180°﹣2(∠BKC ﹣27°),∴∠BKC=78°,故选:B .4.(3分)下列计算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 6C .a 2+a 2=a 3D .a 6÷a 2=a 3【解答】解:A 、a 2•a 3=a 5,故错误;B 、(a 2)3=a 6,正确;C 、a 2+a 2=2a 2,故错误;D 、a 6÷a 2=a 4,故错误;故选:B .5.(3分)下列调查中,比较适合用普查方式的是() A .徐州市某灯具厂节能灯的使用寿命B .徐州市居民年人均收入C .徐州市今年初中生体育中考的成绩D.某一天离开徐州的人口流量【解答】解:A、调查具有破坏性,适合抽样调查;B、考查的对象很多,短期无法完成,且收入不断变化,应用抽查方式;C、精确度要求高,适合用普查方式;D、普查难度大且普查的意义不大,应抽查.故选C.6.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.【解答】解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选A.7.(3分)有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个 B.4个 C.3个 D.2个【解答】解:矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选C.8.(3分)抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位【解答】解:原抛物线的顶点为(0,1),新抛物线的顶点为(﹣2,1),∴是抛物线y=x2+1向左平移2个单位得到,故选B.9.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③△ABD是等腰三角形④点D到直线AB的距离等于CD的长度.A.1 B.2 C.3 D.4【解答】解:根据基本作图,所以①正确,因为∠C=90°,∠B=30°,则∠BAC=60°,而AD平分∠BAC,则∠DAB=30°,所以∠ADC=∠DAB+∠B=60°,所以②正确;因为∠DAB=∠B=30°,所以△ABD是等腰三角形,所有③正确;因为AD平分∠BAC,所以点D到AB与AC的距离相等,而DC⊥AC,则点D到直线AB的距离等于CD的长度,所以④正确.故选D.10.(3分)我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图),如果大正方形的边长为c,直角三角形的两条直角边分别是c﹣2和4,那么小正方形的边长为()A.4 B.3 C.2 D.1【解答】解:由于大正方形的边长为c,直角三角形的两条直角边分别是c﹣2和4,则可得:c2=(c﹣2)2+16,解得:c=5,因为小正方形的面积等于大正方形的面积减去四个直角三角形的面积和,,即小正方形的边长为c﹣4=5﹣4=1,故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)月球与地球的平均距离约为384400千米,将数384400用科学记数法表示为 3.844×105.【解答】解:384400=3.844×105,故答案为:3.844×105.12.(3分)当k的值为﹣1(填出一个值即可)时,方程只有一个实数根.【解答】解:方程两边都乘x(x﹣1),得x2=k﹣2x,整理得x2+2x﹣k=0.当等号左边的式子为完全平方式时,方程只有一个实数解.则﹣k=1,k=﹣1.当其中一个解为增根时,方程也只有一个解.增根为0时,k=0;增根为1时,k=3.故答案为﹣1.13.(3分)[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.其中正确的结论有②③(写出所有正确结论的序号).【解答】解:①当x=﹣3.5时,[﹣3.5]=﹣4,﹣[x]=﹣3,不相等,故原来的说法错误;②若[x]=n,则x的取值范围是n≤x<n+1是正确的;③当﹣1<x<0时,[1+x]+[1﹣x]=0+1=1;当x=0时,[1+x]+[1﹣x]=1+1=2;当0<x<1时,[1+x]+[1﹣x]=1+0=1;故当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2是正确的;④x﹣[x]的范围为0~1,4x﹣2[x]+5=0,﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,x=﹣2.75或x=﹣3.25都是方程4x﹣2[x]+5=0,故原来的说法错误.故答案为:②③.14.(3分)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车;而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的舒适程度比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请解决下面的问题:(1)三辆车按出现的先后顺序共有6种不同的可能.(2)你认为甲、乙两人所采用的方案中,不巧坐到下等车的可能性大小比较为:甲大(填“甲大”、“乙大”、“相同”).理由是:>.(要求通过计算概率比较)【解答】解:(1)三辆车按开来的先后顺序为:上、中、下;上、下、中;中、上、下;中、下、上;下、中、上;下、上、中.共有6种可能.(2)不巧坐到下等车的可能性大小比较为甲大.因为三辆车按开来的先后顺序共有6种,且每种顺序出现的可能性相同,所以甲、乙乘车所有可能的情况如下表:由表格可知:甲乘坐下等车的概率是,乙乘坐下等车的概率是.>,所以甲乘坐下等车的可能性大.故答案为6;甲大,>.15.(3分)在半径为1的⊙O中,弦AB长,弦AC的长为,则∠BAC的度数为75°或15°.【解答】解:有两种情况:①如图所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE==,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE==,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°,故答案为:75°或15°.16.(3分)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为.【解答】解:由折叠可得,∠DCE=∠DFE=90°,∴D,C,E,F四点共圆,∴∠CDE=∠CFE=∠B,又∵CE=FE,∴∠CFE=∠FCE,∴∠B=∠FCE,∴CF=BF,同理可得,CF=AF,∴AF=BF,即F是AB的中点,∴Rt△ABC中,CF=AB=5,由D,C,E,F四点共圆,可得∠DFC=∠DEC,由∠CDE=∠B,可得∠DEC=∠A,∴∠DFC=∠A,又∵∠DCF=∠FCA,∴△CDF∽△CFA,∴CF2=CD×CA,即52=CD×8,∴CD=,故答案为:.三、解答题(本大题共9个小题,共72分)17.(6分)已知:ax=by=cz=1,求的值.【解答】解:根据题意可得x=,y=,z=,∴+=+=+=1,同理可得: +=1; +=1,∴=3.18.(6分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了两幅尚不完整的统计图,如图所示,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;(2)请补全条形统计图;(3)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人).∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°.故答案为:60,90°.(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为:=.19.(6分)如图,在△ABC中,AC=50m,BC=40m,∠C=90°,点P从点A开始沿AC边向点C以2m每秒的速度匀速移动,同时另一点Q由C点开始以3m每秒的速度沿着CB匀速移动,几秒后,△PCQ的面积等于450m2?【解答】解:设x秒后,△PCQ的面积等于450m2,有(50﹣2x)×3x=450,∴x2﹣25x+150=0,∴x1=15,x2=10.当x=15s时,CQ=3x=3×15=45>BC=40,即x=15s不合题意,舍去.所以10秒后,△PCQ的面积等于450m2.20.(7分)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.【解答】(1)证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=30°,∴cos∠ADB==,∴AD==2.21.(6分)如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P 的横坐标的取值范围,(不必写过程)【解答】解:(1)∵B(4,1),C(4,3),∴BC∥y轴,BC=2,又∵四边形ABCD是平行四边形,∴AD=BC=2,AD∥y轴,而A(1,0),∴D(1,2),∴由反比例函数y=的图象经过点D,可得k=1×2=2,∴反比例函数的解析式为y=;(2)∵在一次函数y=mx+3﹣4m中,当x=4时,y=4m+3﹣4m=3,∴一次函数y=mx+3﹣4m的图象一定过点C(4,3);(3)点P的横坐标的取值范围:<x<4.如图所示,过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,当y=3时,3=,即x=,∴点E的横坐标为;由点C的横坐标为4,可得F的横坐标为4;∵一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,∴直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,∴点P的横坐标的取值范围是<x<4.22.(8分)如图,OA,OD是⊙O半径.过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B.(1)求证:直线CD是⊙O的切线;(2)如果D点是BC的中点,⊙O的半径为3cm,求的长度.(结果保留π)【解答】(1)证明:∵AC是⊙O切线,∴OA⊥AC,∴∠OAC=90°,∵CO平分∠AOD,∴∠AOC=∠COD,在△AOC和△DOC中,,∴△AOC≌△DOC,∴∠ODC=∠OAC=90°,∴OD⊥CD,∴直线CD是⊙O的切线.(2)∵OD⊥BC,DC=DB,∴OC=OB,∴∠OCD=∠B=∠ACO,∵∠B+∠ACB=90°,∴∠B=30°,∠DOE=60°,∴的长==π.23.(10分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.【解答】解:(1)若商店经营该商品不降价,则一天可获利润100×(100﹣80)=2000(元);(3分)(2)①依题意得:(100﹣80﹣x)(100+10x)=2160(5分)即x2﹣10x+16=0解得:x1=2,x2=8(6分)经检验:x1=2,x2=8都是方程的解,且符合题意,(7分)答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(8分)②依题意得:y=(100﹣80﹣x)(100+10x)(9分)∴y=﹣10x2+100x+2000=﹣10(x﹣5)2+2250 (10分)画草图:观察图象可得:当2≤x≤8时,y≥2160,∴当2≤x≤8时,商店所获利润不少于2160元.(13分)24.(10分)(1)探究发现:下面是一道例题及其解答过程,请补充完整:如图①在等边△ABC内部,有一点P,若∠APB=150°.求证:AP2+BP2=CP2证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形∴∠APP′=60° PA=PP′PC=P′B∵∠APB=150°∴∠BPP′=90°∴P′P2+BP2=P′B2即PA2+PB2=PC2(2)类比延伸:如图②在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA、PB、PC之间的数量关系,并证明.(3)联想拓展:如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2,请直接写出k的值.【解答】解:(1)PC=P′BP′P2+BP2=P′B2.(2)关系式为:2PA2+PB2=PC2证明如图②:将△APC绕A点逆时针旋转90°,得到△AP′B,连接PP′,则△APP′为等腰直角三角形∴∠APP′=45°PP′=PA,PC=P′B,∵∠APB=135°∴∠BPP′=90°∴P′P2+BP2=P′B2,∴2PA2+PB2=PC2(3)k=.证明:如图③将△APC 绕A点顺时针旋转120°得到△AP′B,连接PP′,过点A作AH⊥PP′,可得∠APP′=30°PP′=PA,PC=P′B,∵∠APB=60°,∴∠BPP′=90°,∴P′P2+BP2=P′B2,∴(PA)2+PB2=PC2∵(kPA)2+PB2=PC2,∴k=±.25.(13分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y 轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.【解答】解:(1)y=mx2﹣2mx﹣3m,=m(x﹣3)(x+1),∵m≠0,∴当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)设C1:y=ax2+bx+c,将A,B,C三点坐标代入得:,解得:,故C1:y=x2﹣x﹣;如图,过点P作PQ∥y轴,交BC于Q,由B、C的坐标可得直线BC的解析式为y=x﹣,设p(x,x2﹣x﹣),则Q(x,x﹣),PQ=x﹣﹣(x2﹣x﹣)=﹣x2+x,S△PBC=S△PCQ+S△PBQ=PQ•OB=×3×(﹣x2+x)=﹣+x=﹣(x﹣)2+,当x=时,S max=,∴P()(3)y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,顶点M坐标(1,﹣4m),当x=0时,y=﹣3m,∴D(0,﹣3m),B(3,0),∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,MB2=(3﹣1)2+(0+4m)2=16m2+4,BD2=(3﹣0)2+(0+3m)2=9m2+9,当△BDM为直角三角形时,分两种情况:①当∠BDM=90°时,有DM2+BD2=MB2,解得m1=﹣1,m2=1(∵m<0,∴m=1舍去);②当∠BMD=90°时,有DM2+MB2=BD2,解得m1=﹣,m2=(舍去),综上,m=﹣1或﹣时,△BDM为直角三角形.。
2018年江苏省徐州市中考数学试卷和答案(纯WORD)

2018年徐州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.4的相反数是()A.B.﹣ C.4 D.﹣42.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5 D.(a2)3=a63.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.5.抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于B.等于C.大于D.无法确定6.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:结果如下:关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册7.如图,在平面直角坐标系中,函数y=kx与y=﹣的图象交于A,B两点,过A作y轴的垂线,交函数y=的图象于点C,连接BC,则△ABC的面积为()A.2 B.4 C.6 D.88.若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3 B.x>3 C.x<6 D.x>6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.五边形的内角和是°.10.我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为m.11.化简:||= .12.若在实数范围内有意义,则x的取值范围为.13.若2m+n=4,则代数式6﹣2m﹣n的值为.14.若菱形两条对角线的长分别是6cm和8cm,则其面积为cm2.15.如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD= °.16.如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.17.如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多个.(用含n的代数式表示)18.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.三、解答题(本大题共有10小题,共86分)19.(10分)计算:(1)﹣12+20180﹣()﹣1+;(2)÷.20.(10分)(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:21.(7分)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)22.(7分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:根据以上信息,解答下列问题:(1)该调查的样本容量为,a= ;(2)在扇形统计图中,“A”对应扇形的圆心角为°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.23.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(8分)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.26.(8分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)27.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y 轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.28.(10分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.2018年江苏省徐州市中考数学试卷试题解析一、选择题(共8小题,每小题3分,满分24分)1.4的相反数是()A.B.﹣ C.4 D.﹣4解:4的相反数是﹣4,故选:D.2.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5 D.(a2)3=a6解:A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确.故选:D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解:A、既是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:A.4.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.解:根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选:A.5.抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于B.等于C.大于D.无法确定解:连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,他第4次抛掷这枚硬币,正面朝上的概率为:,故选:B.6.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:结果如下:关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3﹣0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D不符合题意.故选:B.7.如图,在平面直角坐标系中,函数y=kx与y=﹣的图象交于A,B两点,过A作y轴的垂线,交函数y=的图象于点C,连接BC,则△ABC的面积为()A.2 B.4 C.6 D.8解:∵正比例函数y=kx与反比例函数y=﹣的图象关于原点对称,∴设A点坐标为(x,﹣),则B点坐标为(﹣x,),C(﹣2x,﹣),=×(﹣2x﹣x)•(﹣﹣)=×(﹣3x)•(﹣)=6.∴S△ABC故选:C.8.若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3 B.x>3 C.x<6 D.x>6解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=﹣3k,∴不等式为kx﹣6k<0,解得:x>6,故选:D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.五边形的内角和是540°.解:(5﹣2)•180°=540°,故答案为:540°.10.我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为1×10﹣8m.解:10nm用科学记数法可表示为1×10﹣8m,故答案为:1×10﹣8.11.化简:||=.解:∵<0∴||=2﹣.故答案为:2﹣.12.若在实数范围内有意义,则x的取值范围为x≥2.解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.13.若2m+n=4,则代数式6﹣2m﹣n的值为2.解:∵2m+n=4,∴6﹣2m﹣n=6﹣(2m+n)=6﹣4=2,故答案为2.14.若菱形两条对角线的长分别是6cm和8cm,则其面积为24cm2.解:∵菱形的两条对角线分别是6cm和8cm,∴这个菱形的面积是:×6×8=24(cm2).故答案为:24.15.如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD=35°.解:在Rt△ABC中,∠ABC=90°,D为AC的中点,∴BD是中线,∴AD=BD=CD,∴∠BDC=∠C=55°,∴∠ABD=90°﹣55°=35°.故答案是:35.16.如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为2.解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.17.如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多4n+3个.(用含n的代数式表示)解:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3﹣1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5﹣2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7﹣3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)﹣n个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个.18.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为4.解:如图所示:连接AQ.∵BP•BQ=AB2,∴=.又∵∠ABP=∠QBA,∴△ABP∽△QBA,∴∠APB=∠QAB=90°,∴QA始终与AB垂直.当点P在A点时,Q与A重合,当点P在C点时,AQ=2OC=4,此时,Q运动到最远处,∴点Q运动路径长为4.故答案为:4.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)﹣12+20180﹣()﹣1+;(2)÷.解:(1)﹣12+20180﹣()﹣1+;=﹣1+1﹣2+2,=0;(2)÷.=÷,=2a﹣2b.20.(10分)(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.21.(7分)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)解:(1)从中摸出1个球,恰为红球的概率等于,故答案为:;(2)画树状图:所以共有6种情况,含红球的有4种情况,所以p==,答:从中同时摸出2个球,摸到红球的概率是.22.(7分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:根据以上信息,解答下列问题:(1)该调查的样本容量为200,a=64;(2)在扇形统计图中,“A”对应扇形的圆心角为36°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.解:(1)因为“C”有50人,占样本的25%,所以样本=50÷25%=200(人)因为“B”占样本的32%,所以a=200×32%=64(人)故答案为:200,64;(2)“A”对应的扇形的圆心角=×360°=36°,故答案为:36°;(3)全校学生中家庭藏书200本以上的人数为:2000×=660(人)答:全校学生中家庭藏书200本以上的人数为660人.23.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?解:(1)证明:∵四边形CEFG是正方形,∴CE=EF,∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE,在△FEH和△ECD中,∴△FEH≌△ECD,∴FH=ED;(2)设AE=a,则ED=FH=4﹣a,∴S=AE•FH=a(4﹣a),△AEF=﹣(a﹣2)2+2,∴当AE=2时,△AEF的面积最大.24.(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:﹣=80,解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,∴1.4t=2.5.答:A车行驶的时间为2.5小时,B车行驶的时间为2.5小时.25.(8分)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.解:(1)相切.理由如下:连接OD,∵BD是∠ABC的平分线,∴∠CBD=∠ABD,又∵OD=OB,∴∠ODB=∠ABD,∴∠ODB=∠CBD,∴OD∥CB,∴∠ODC=∠C=90°,∴CD与⊙O相切;(2)若∠CDB=60°,可得∠ODB=30°,∴∠AOD=60°,又∵AB=6,∴AO=3,∴==π.26.(8分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)解:(1)过点C作CE⊥PB,垂足为E,过点D作DF⊥PB,垂足为F,则∠CEP=∠PFD=90°,由题意可知:设AB=x,在Rt△PCE中,tan32.3°=,∴PE=x•tan32.3°,同理可得:在Rt△PDF中,tan55.7°=,∴PF=x•tan55.7°,由PF﹣PE=EF=CD=42,可得x•tan55.7°﹣x•tan32.3°=42,解得:x=50∴楼间距AB=50m,(2)由(1)可得:PE=50•tan32.3°=31.5m,∴CA=EB=90﹣31.5=58.5m由于2号楼每层3米,可知点C位于20层27.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y 轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0.﹣5).(2)令y=0,x2﹣6x+5=0,解得x=1或5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有,解得,∴直线PC的解析式为y=3x﹣5,设直线交x轴于D,则D(,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=,∴BE=,∴E(,0)或E′(,0),则直线PE的解析式为y=﹣6x+22,∴Q(,﹣5),直线PE′的解析式为y=﹣x+,∴Q′(,﹣5),综上所述,满足条件的点Q(,﹣5),Q′(,﹣5).28.(10分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.解:(1)∵M为AC的中点,∴CM=AC=BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=4﹣x,在Rt△CFM中,FM2=CF2+CM2,即(4﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,∠PMF=∠B=45°,∵CD是中垂线,∴∠ACD=∠DCF=45°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=45°,∴△MPC∽△OFC,∴=,∴=,∴=,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=45°,∴△PFM是等腰直角三角形.②∵△PFM是等腰直角三角形,设FM=y,由勾股定理可知:PF=PM=y,∴△PFM的周长=(1+)y,∵2<y<4,∴△PFM的周长满足:2+2<(1+)y<4+4.。
2018年江苏徐州中考数学试题及答案

【导语】⽆忧考将在本次江苏徐州中考过后,考后发布2018年江苏徐州中考数学试卷及答案解析,⽅便考⽣对照估分,⼤家可收藏并随时关注、栏⽬,中考信息持续更新!中考科⽬:语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。
)考试必读:中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
避免违规:中考是中国重要的考试之⼀,直接决定着考⽣升⼊⾼中后的学习质量,对⾼考成绩有着⾮常重⼤的影响。
因此,中国教育部门对于中考违规、作弊的处罚⼒度是相当⼤的。
视违规情节的不同,轻则对试卷进⾏扣分处理,重则取消违规科⽬或全科的成绩并将其记⼊考⽣档案伴随终⽣,对于涉嫌犯罪的⼈员要追究刑事责任。
中考对于复读⽣也有⼀定的惩罚措施,例如禁⽌报考热点⾼中、对试卷进⾏扣分处理、取消额外加分等等。
因此,在中考的过程中要绝对避免出现违规、作弊的情况,不能铤⽽⾛险,酿成终⾝的遗憾。
参加2018中考的考⽣可直接查阅2018年江苏徐州中考试题及答案信息!—→以下是江苏徐州2018年各科中考试题答案发布⼊⼝:相关推荐:为⽅便⼤家及时获取徐州2018年中考成绩、2018年中考录取分数线信息,⽆忧考为⼴⼤考⽣整理了《全国2018年中考成绩查询、2018年中考录取分数线专题》考⽣可直接点击进⼊以下专题进⾏中考成绩及分数线信息查询。
2018年江苏省徐州中考数学模拟试题含答案

徐州巿2018年初中毕业、升学考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的)1.4的平方根是A.2±B.2C.-2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A.11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数11yx=+中自变量x的取值范围是A. x≥-1B. x≤-1C.x≠-1D.x=-14.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x÷x2=x-15.如果点(3,-4)在反比例函数kyx=的图象上,那么下列各点中,在此图象上的是A.(3,4)B.(-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是ABC D7.⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切 8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形 9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ.........卷相应的位置上.......) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2018年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___. 14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷三、解答题(每小题5分,共20分)17.计算:20080131(1)()83π--+-+.(第10题图)(第15题图)(第16题图)18.已知231,23.x x x =+--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m ) 参考数据:2B 1.414,3B 1.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分)21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C.(B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目 月功能费基本话费长途话费短信费 金额/元5(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度?50403020100项目金额/元月功能费4%短信费长途话费 36%基本话费 40%DC BAADB14m6m30︒45︒(第20题图)(第21题图)(3) 请将表格补充完整; (4) 请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0) ①画出△ABC 关于x 轴对称的△A 1B 1C 1,②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴; ④△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分) 25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)行驶路程 收费标准调价前 调价后 不超过3km 的部分 起步价6元起步价a 元 超过3km 不超出6km 的部分每公里2.1元每公里b 元超出6km 的部分每公里c 元1y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题:①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,yxC BAFEDCB A 13.311.276763O xy若不存在请说明理由.26.已知四边形ABCD 的对角线AC 与BD 交于点O,给出下列四个论断① OA =OC ② AB =CD ③ ∠BAD =∠DCB ④ AD ∥BC请你从中选择两个论断作为条件,以“四边形ABCD 为平行四边形”作为结论,完成下列各题:①构造一个真命题...,画图并给出证明; ②构造一个假命题...,举反例加以说明. 七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′, 求△O A ′B ′的面积.28.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30° 【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当CE2EA=时EP 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.FC(E)A(D)Q PEFCBAQP DEFCBA(图1)(图2)(图3)徐州巿2018年初中毕业、升学考试数 学 试 题 参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-1 14. 234a 15.126° 16.m17.解:原式=1+1-3+2=118.解:223(3)(1)x x x x --=-+,将31x =+代入到上式,则可得223(313)(311)(32)(32)1x x --=+-++=-+=-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩ 222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩20.解:如图所示,过点A 、D 分别作BC 的垂线AE 、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =3B 12.1 所以BC =7+6+12.1=25.1m. 21.证明:(A )连结AC ,因为AB =AC ,所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C(B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)项目 月功能费基本话费 长途话费 短信费 金额/元5504525ADCB14m6m30︒45︒E FDCBA(4) 解:如下图所示,24. (4)对称中心是(0,0) 25.解:(1)a=7,b=1.4, c=2.1(2)1 2.10.3y x =-交点为31(,9)7(3)有为当317x <时其意义是方案调价前合算,当317x >时方案调价后合算. 26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)223y x x =--+ (2) (0,3),(-3,0),(1,0) (3)略短信费长途话费基本话费月功能费50403020100项目金额/元C 2B 2A 2C 1B 1A 1yxCB A。