数据结构线性表实验报告
线性表实验报告

安徽师范大学数学计算机科学学院实验报告专业名称物联网工程实验室 6号楼2060404实验课程数据结构实验名称顺序表姓名庞现然学号 14111206029 同组人员无实验日期 2015.4.91、实验目的1. 熟练掌握顺序表的类型定义和基本操作算法(以建立、插入、删除、遍历、排序和归并等操作为重点)的实现。
2. 通过实验加深对C语言的使用(特别是函数、数组、结构体和指针)。
3. 掌握模块化程序设计方法。
2、实验原理运用各函数的调用,来实现线性表的基本操作。
3、需求分析输:(1)程序目的:实验线性表的基本操作。
(2)输入的形式:线性表(3)输入值的范围:处理范围内(4)输出的形式:线性表(5)程序能达到的功能:实现线性表的基本操作(6)测试数据:13,5,27,9,32,123,76,98,54,874、概要设计typedef int Status;typedef int ElemType;5、详细设计各函数及其定义:开始1.构造初始化线性表!InitList(&L)2.输入10个元素给线性表L(整数):1.输出顺序表DispList(&L); 6.输出元素的位置2.输出顺序表的长度 7.插入数据ListInsert(&L,4,56)3.输入所要查询的元素为序n 8.输出此时的线性表DispList(&L)4.输出第n个数据的值 9.输出顺序表的表长5.输入一个要查询的元素的值 10.删除数据元素ListDelete(&L,n,&e) 11.销毁线性表结束1.Status InitList(Sqlist *L)//初始化线性表!{L->elem = (ElemType *)malloc(LIST_Init_Size*sizeof(ElemType));if(! L->elem) exit (OVERFLOW) ; //储存分配失败L->length = 0; //空表长度为0L->listsize = LIST_Init_Size; //初始储存量return OK;}//InitLIst_Sq2.void DestroyList(Sqlist *L)//销毁线性表!{free(L);}//DestroyList_Sq3.Status ListEmpty(Sqlist L)//判定是否为空表!{if(L.length == 0)return ERROR;//如L为空表,则返回0,否则返回1.return OK;}//ListEmpty_Sq4.Status ListLength(Sqlist *L)//求线性表的长度!{return(L->length);}//ListLength_Sq5.void DispList(Sqlist *L)//输出线性表!{int i;/*if ( ListEmpty(L) == 0 ) return;//判断是否为空? */ for ( i = 0; i<L->length;i++){printf("%d ",L->elem[i]);} printf("\n");}//DIspList_Sq6.int GetElem(Sqlist *L,int i,ElemType *e)//求某个数据元素的值!{if (i<1 || i>L->length) return 0;e = &L->elem[i-1];//该运算返回L中第 i(1≤i≤ListLength(L))个元素的值,存放在e中return OK;}//GetElem_Sq7.int LocateElem(Sqlist *L,ElemType e)//按元素查找!{int i = 0;while (i < L->length && L->elem[i] != e)i++;if (i >= L->length)return 0; //若这样的元素不存在,则返回值为0。
南邮数据结构实验一

实验报告(2014 / 2015 学年第二学期)课程名称数据结构实验名称线性表的基本运算及多项式的算术运算实验时间2015 年9 月28 日指导单位计算机科学与技术系指导教师黄海平学生姓名陈明阳班级学号Q学院(系) 贝尔英才专业信息科技强化班实验报告~SeqList() { delete[] elements; }bool IsEmpty() const;int Length() const;bool Find(int i, T& x) const;int Search(T x) const;bool Insert(int i, T x);bool Delete(int i);bool Update(int i, T x);void Output(ostream& out)const;private:int maxLength;T *elements;};template<class T>SeqList<T>::SeqList(int mSize){maxLength = mSize;elements = new T[maxLength];n = 0;}template<class T>bool SeqList<T>::IsEmpty() const{return n == 0;}template<class T>int SeqList<T>::Length()const{return n;}template<class T>bool SeqList<T>::Find(int i, T& x)const{if (i<0 || i>n - 1){cout <<"out of bounds"<< endl; return false;}x = elements[i];return true;}template<class T>int SeqList<T>::Search(T x)const{for (int j = 0; j < n; j++)if (elements[j] == x)return j;return -1;}template<class T>bool SeqList<T>::Insert(int i, T x){if (i<-1 || i>n - 1){cout <<"out of bounds"<< endl;return false;}if (n == maxLength){cout <<"over flow"<< endl;return false;}for (int j = n - 1; j > i; j--)elements[j + 1] = elements[j];elements[i + 1] = x;n++;return true;}template<class T>bool SeqList<T>::Delete(int i){if (i<0 || i>n - 1){cout <<"out of bounds"<< endl;return false;}if (!n){cout <<"over flow"<< endl;return false;}for (int j = i+1; j <n; j--)elements[j -1] = elements[j];n--;return true;}template<class T>bool SeqList<T>::Update(int i, T x){if (i<0 || i>n - 1){cout <<"out of bounds"<< endl;return false;}elements[i] = x;return true;}template<class T>void SeqList<T>::Output(ostream& out)const{for (int i = 0; i < n; i++)out << elements[i] << " ";out<< endl;}源.cpp:#include"seqlist.h"const int SIZE = 20;void main(){SeqList<int> LA(SIZE);int i = 0;for (i = 0; i<5; i++) LA.Insert(i - 1, i);LA.Insert(-1, 10);LA.Output(cout);}实现在线性表LA中插入0-4然后在一开始插入10 运行截图如下:多项式实验:定义类如下重构函数如下:源码:#include<iostream>using namespace std;class Term{public:Term(int c, int e);Term(int c, int e, Term* nxt);Term* InsertAfter(int c, int e);private:int coef;int exp;Term* link;friend ostream& operator<<(ostream &, const Term &);friend class Polynominal;};Term::Term(int c, int e) :coef(c), exp(e){link = 0;}Term::Term(int c, int e, Term *nxt) : coef(c), exp(e) {link = nxt;}Term* Term::InsertAfter(int c, int e){link = new Term(c, e, link);return link;}ostream& operator<<(ostream& out, const Term& val){if (0 == val.coef)return out;if (1!= val.coef)out<<val.coef;switch (val.exp){case 0:break;case 1:out<<"X"; break;default:out<<"X^"<<val.exp; break;}return out;}class Polynominal{public:Polynominal();~Polynominal();void AddTerms(istream& in);void Output(ostream& out)const;void PolyAdd(Polynominal& r);void PolyMul(Polynominal& r);private:Term* theList;friend ostream& operator<<(ostream &, const Polynominal &);friend istream& operator>>(istream&, Polynominal &);friend Polynominal& operator+(Polynominal &, Polynominal &);friend Polynominal& operator*(Polynominal &, Polynominal &); };Polynominal::Polynominal(){theList = new Term(0, -1); //头结点theList->link = NULL; //单链表尾结点指针域为空}Polynominal::~Polynominal(){Term* p = theList->link;while (p != NULL){theList->link = p->link;delete p;p = theList->link;}delete theList;}void Polynominal::AddTerms(istream & in){Term* q = theList;int c, e;for (;;){cout <<"Input a term(coef,exp):\n"<< endl;cin >> c >> e;q = q->InsertAfter(c, e);if (0 >= e) break;}}void Polynominal::Output(ostream& out)const{int first = 1;Term *p = theList->link;for (; p != NULL && p->exp >= 0; p = p->link){if (!first && (p->coef>0)) out<<"+";first = 0;out<< *p;}cout << endl;}void Polynominal::PolyAdd(Polynominal& r){Term *q, *q1 = theList, *p; //q1指向表头结点p = r.theList->link; //p指向第一个要处理的结点q = q1->link; //q1是q的前驱,p和q就指向两个当前进行比较的项while (p != NULL && p->exp >= 0)//对r的单循环链表遍历,知道全部结点都处理完{while (p->exp < q->exp) //跳过q->exp大的项{q1 = q;q = q->link;}if (p->exp == q->exp) //当指数相等时,系数相加{q->coef = q->coef + p->coef;if (q->coef == 0) //若相加后系数为0,则删除q{q1->link = q->link;delete(q);q = q1->link; //重置q指针}else{q1 = q; //若相加后系数不为0,则移动q1和qq = q->link;}}else//p>exp>q->exp的情况q1 = q1->InsertAfter(p->coef, p->exp); //以p的系数和指数生成新结点,插入q1后 p = p->link;}}void Polynominal::PolyMul(Polynominal& r){Polynominal result; //定义相乘后的数据Term *n = result.theList; //n指向result的头结点n = n->InsertAfter(0, 0); //在result的头结点后插入新结点,系数指数均为0 Term *p = r.theList->link; //p指向第一个要处理的结点while(p->exp >= 0) //对r的单循环链表遍历{Polynominal tmp; //存储某段相乘后的数据Term *m = tmp.theList; //m指向tmp的头结点Term *q = theList->link; //q指向表头结点的后继结点while(q->exp >= 0) //对当前对象的单循环环链表遍历{m = m->InsertAfter((p->coef)*(q->coef), (p->exp) + (q->exp)); //生成新结点插入n后 q = q->link;}result.PolyAdd(tmp); //将temp加到result上p = p->link;}Term *q = theList->link; //q指向表头结点的后继结点while(q != NULL) //删除原对象的所有数据{theList->link = q->link;delete q;q = theList->link;}q = theList;q = q->InsertAfter(0, 0);PolyAdd(result); //将result加到当前对象上}ostream &operator<<(ostream& out, const Polynominal& x){x.Output(out);return out;}istream &operator>>(istream& in, Polynominal &x){x.AddTerms(in);return in;}Polynominal & operator + (Polynominal &a, Polynominal &b){a.PolyAdd(b);return a;}Polynominal & operator * (Polynominal &a, Polynominal &b){a.PolyMul(b);return a;}int main()实验报告文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.。
数据结构上机实验报告

else insert(lc,i/2,la.list[i]); //偶数位次元素插入lc
}
printf("\n您输入的线性表元素为:\n\n");
print(la);
printf("线性表的奇数位次的元素为:\n\n");
print(lb);
printf("线性表的偶数位次的元素为:\n\n");
print(lc);
}
void initial(sqlist &v)
{printf(" ****本程序可以实现线性表奇偶位序的元素分别输出****\n\n\n");
int i,a;
printf("请输入一个偶数作为线性表的长度:\n\n");
void initlist(sqlist &);
void print(sqlist); //输出线性表
void main()
{printf(" *****************本程序可以实现线性表的复制******************\n");
sqlist la,lb; //声明线性表
initial(la);
【程序设计细想】:
建立三个线性表la,lb,lc,对线性表la进行输入,然后利用循环结构对la中奇数位序的元素对lb进行插入操作,对偶数位序的元素对lc进行插入操作,从而得到线性表lb和lc。
【程序代码】:
#include<stdio.h>
#include<malloc.h>
数据结构课程设计实验报告 完整版

第一章链表的应用线性表是数据结构中最简单、最常用的一种线性结构,也是学习数据结构全部内容的基础,其掌握的好坏直接影响着后继课程的学习。
线性表的顺序存储结构,即顺序表的概念相对比较简单,因此,本章的主要任务是使用有关单链表的操作来实现通讯录信息系统的管理。
1.1设计要求本章的设计实验要求使用有关链表的操作来实现通讯录信息系统的管理。
为了验证算法,通讯录管理包括单通讯录链表的建立、通讯者的插入、通讯者的删除、通讯者的查询及通讯录表的输出等。
主控菜单的设计要求使用数字0—5来选择菜单项,其他输入则不起作用。
程序运行后,给出6个菜单项的内容和输入提示:1.通讯录链表的建立2. 通讯者结点的插入3. 通讯者结点的查询4. 通讯者结点的删除5. 通讯录链表的输出0. 退出管理系统请选择0—5:1.2设计分析1.2.1主控菜单函数设计分析1.实现循环和功能选择首先编写一个主控菜单驱动程序,输入0—5以进入相应选择项。
假设输入选择用变量sn存储,它作为menu_select函数的返回值给switch语句。
使用for循环实现重复选择,并在主函数main()中实现。
实际使用时,只有选择大于5或小于0的值,程序才能结束运行,这就要使用循环控制。
这里使用for循环语句实现菜单的循环选择,为了结束程序的运行,使用了“return”语句,也可以使用“exit(0);”语句。
2.得到sn的合理值如前所述,应该设计一个函数用来输出提示信息和处理输入,这个函数应该返回一个数值sn,以便供给switch语句使用。
假设函数名为menu_select,对于sn的输入值,在switch 中case语句对应数字1—5,对于不符合要求的输入,提示输入错误并要求重新输入。
将该函数与主函数合在一起,编译运行程序,即可检查并验证菜单选择是否正确。
1.2.2功能函数设计分析1.建立通讯录链表的设计这里实际上是要求建立一个带头结点的单链表。
建立单链表有两种方法,一种称之为头插法,另一种称为尾插法。
数据结构实验报告-实验:1线性表的顺序存储和操作实现

}
for(inti=pos-1;i<length;i++)
if(listArray[i].equals(obj))returni+1;
return-1;
}
publicbooleanmodify(Object obj,intpos){
if(pos<1||pos>length){
List sort();
}
publicclasssequenceListimplementsList {
finalintmaxSize=10;
privateintlength;
privateObject[]listArray;
publicsequenceList(){//无参数的构造函数的定义
length=0;//线性表初始为空,即长度为0
System.out.println();
list2.preOrder();
System.out.println("线性表list2长度:"+list2.size());
}
}
publicinterfaceList {
Object value(intpos);
booபைடு நூலகம்eanadd(Object obj,intpos);
int[] a={20,16,38,42,29};
for(inti=0;i<a.length;i++) list1.add(a[i], i+1);
intn1=(Integer)list1.remove(2);
list1.add(80, 3);
intn2=(Integer)list1.value(4);
线性表的存储结构定义及基本操作(实验报告)

线性表的存储结构定义及基本操作(实验报告)线性表的存储结构定义及基本操作一掌握线性表的逻辑特征掌握线性表顺序存储结构的特点熟练掌握顺序表的基本运算熟练掌握线性表的链式存储结构定义及基本操作理解循环链表和双链表的特点和基本运算加深对顺序存储数据结构的理解和链式存储数据结构的理解逐步培养解决实际问题的编程能力二一基本实验内容顺序表建立顺序表完成顺序表的基本操作初始化插入删除逆转输出销毁置空表求表长查找元素判线性表是否为空1 问题描述利用顺序表设计一组输入数据假定为一组整数能够对顺序表进行如下操作创建一个新的顺序表实现动态空间分配的初始化根据顺序表结点的位置插入一个新结点位置插入也可以根据给定的值进行插入值插入形成有序顺序表根据顺序表结点的位置删除一个结点位置删除也可以根据给定的值删除对应的第一个结点或者删除指定值的所有结点值删除利用最少的空间实现顺序表元素的逆转实现顺序表的各个元素的输出彻底销毁顺序线性表回收所分配的空间对顺序线性表的所有元素删除置为空表返回其数据元素个数按序号查找根据顺序表的特点可以随机存取直接可以定位于第 i 个结点查找该元素的值对查找结果进行返回按值查找根据给定数据元素的值只能顺序比较查找该元素的位置对查找结果进行返回判断顺序表中是否有元素存在对判断结果进行返回编写主程序实现对各不同的算法调用2 实现要求对顺序表的各项操作一定要编写成为C C 语言函数组合成模块化的形式每个算法的实现要从时间复杂度和空间复杂度上进行评价初始化算法的操作结果构造一个空的顺序线性表对顺序表的空间进行动态管理实现动态分配回收和增加存储空间位置插入算法的初始条件顺序线性表L已存在给定的元素位置为i且1≤i ≤ListLength L 1操作结果在L中第i个位置之前插入新的数据元素eL的长度加1位置删除算法的初始条件顺序线性表L已存在1≤i≤ListLength L 操作结果删除L的第i个数据元素并用e返回其值L的长度减1逆转算法的初始条件顺序线性表L已存在操作结果依次对L的每个数据元素进行交换为了使用最少的额外空间对顺序表的元素进行交换输出算法的初始条件顺序线性表L已存在操作结果依次对L的每个数据元素进行输出销毁算法初始条件顺序线性表L已存在操作结果销毁顺序线性表 L置空表算法初始条件顺序线性表L已存在操作结果将L重置为空表求表长算法初始条件顺序线性表L已存在操作结果返回L中数据元素个数按序号查找算法初始条件顺序线性表 L 已存在元素位置为 i且 1≤i≤ListLength L 操作结果返回 L 中第 i 个数据元素的值按值查找算法初始条件顺序线性表 L 已存在元素值为 e 操作结果返回 L 中数据元素值为 e 的元素位置判表空算法初始条件顺序线性表 L 已存在操作结果若 L 为空表则返回 TRUE否则返回 FALSE分析修改输入数据预期输出并验证输出的结果加深对有关算法的理解二基本实验内容单链表建立单链表完成链表带表头结点的基本操作建立链表插入删除查找输出求前驱求后继两个有序链表的合并操作其他基本操作还有销毁链表将链表置为空表求链表的长度获取某位置结点的内容搜索结点1 问题描述利用线性表的链式存储结构设计一组输入数据假定为一组整数能够对单链表进行如下操作初始化一个带表头结点的空链表创建一个单链表是从无到有地建立起一个链表即一个一个地输入各结点数据并建立起前后相互链接的关系又分为逆位序插在表头输入 n 个元素的值和正位序插在表尾输入 n 个元素的值插入结点可以根据给定位置进行插入位置插入也可以根据结点的值插入到已知的链表中值插入且保持结点的数据按原来的递增次序排列形成有序链表删除结点可以根据给定位置进行删除位置删除也可以把链表中查找结点的值为搜索对象的结点全部删除值删除输出单链表的内容是将链表中各结点的数据依次显示直到链表尾结点编写主程序实现对各不同的算法调用其它的操作算法描述略2 实现要求对链表的各项操作一定要编写成为 C C 语言函数组合成模块化的形式还要针对每个算法的实现从时间复杂度和空间复杂度上进行评价初始化算法的操作结果构造一个空的线性表 L产生头结点并使 L 指向此头结点建立链表算法初始条件空链存在操作结果选择逆位序或正位序的方法建立一个单链表并且返回完成的结果链表位置插入算法初始条件已知单链表 L 存在操作结果在带头结点的单链线性表 L 中第 i 个位置之前插入元素 e链表位置删除算法初始条件已知单链表 L 存在操作结果在带头结点的单链线性表 L 中删除第 i 个元素并由 e 返回其值输出算法初始条件链表 L 已存在操作结果依次输出链表的各个结点的值三扩展实验内容顺序表查前驱元素查后继元素顺序表合并等1 问题描述根据给定元素的值求出前驱元素根据给定元素的值求出后继元素对已建好的两个顺序表进行合并操作若原线性表中元素非递减有序排列要求合并后的结果还是有序有序合并对于原顺序表中元素无序排列的合并只是完成 A A∪B 无序合并要求同样的数据元素只出现一次修改主程序实现对各不同的算法调用2 实现要求查前驱元素算法初始条件顺序线性表 L 已存在操作结果若数据元素存在且不是第一个则返回前驱否则操作失败查后继元素算法初始条件顺序线性表 L 已存在操作结果若数据元素存在且不是最后一个则返回后继否则操作失败无序合并算法的初始条件已知线性表 La 和 Lb操作结果将所有在线性表 Lb 中但不在 La 中的数据元素插入到 La 中有序合并算法的初始条件已知线性表 La 和 Lb 中的数据元素按值非递减排列操作结果归并 La 和 Lb 得到新的线性表 LcLc 的数据元素也按值非递减排列四扩展实验内容链表1 问题描述求前驱结点是根据给定结点的值在单链表中搜索其当前结点的后继结点值为给定的值将当前结点返回求后继结点是根据给定结点的值在单链表中搜索其当前结点的值为给定的值将后继结点返回两个有序链表的合并是分别将两个单链表的结点依次插入到第 3 个单链表中继续保持结点有序2 实现要求求前驱算法初始条件线性表 L 已存在操作结果若 cur_e 是 L 的数据元素且不是第一个则用 pre_e 返回它的前驱求后继算法初始条件线性表 L 已存在操作结果若 cur_e 是 L 的数据元素且不是最后一个则用 next_e 返回它的后继两个有序链表的合并算法初始条件线性表单链线性表 La 和 Lb 的元素按值非递减排列操作结果归并 La 和 Lb 得到新的单链表三实验环境和实验步骤实验环境利用CodeBlocks1005集成开发环境进行本实验的操作实验步骤――顺序表的定义与操作1启动CodeBlocks1052按Create a new project 通过file 按CC source选择c然后GO储存文件D\c语言\顺序表c3进行编代码4编好之后搞ctrlshiftF9进行编译然后按ctrlF105如果编译出问题然后进行调试实验步骤――链表的定义与操作1启动CodeBlocks1052按Create a new project 通过file 按CC source选择c然后GO储存文件D\c语言\单链表c3进行编代码4编好之后搞ctrlshiftF9进行编译然后按ctrlF105如果编译出问题然后进行调试四 includeinclude "stdlibh"includedefine LIST_INIT_SIZE 100define ok 1define ERROR 0define OVERFLOW -1define Num 3typedef int DataTypetypedef int Statustypedef structDataType elemint Lengthint ListsizeSeqListSeqList LStatus InitSeqList SeqList LL- elem Da。
数据结构实验报告

《数据结构》实验报告姓名:学号:班级:学院:实验一单链表实验(一)实验目的1.理解线性表的链式存储结构。
2.熟练掌握动态链表结构及有关算法的设计。
3.根据具体问题的需要,设计出合理的表示数据的链表结构,并设计相关算法。
(二)实验任务编写算法实现下列问题的求解1.求链表中第i个结点的指针(函数),若不存在,则返回NULL。
2.在第i个结点前插入值为x的结点。
3.删除链表中第i个元素结点。
4.在一个递增有序的链表L中插入一个值为x的元素,并保持其递增有序特性。
5.将单链表L中的奇数项和偶数项结点分解开,并分别连成一个带头结点的单链表,然后再将这两个新链表同时输出在屏幕上,并保留原链表的显示结果,以便对照求解结果。
6.求两个递增有序链表L1和L2中的公共元素,并以同样方式连接成链表L3。
(三)主要仪器设备PC机,Windows操作平台,Visual C++(四)实验分析顺序表操作:定义一个顺序表类,该类包括顺序表的存储空间、存储容量和长度,以及构造、插入、删除、遍历等操作的方法(五)源程序头文件文件名:linklist.h#include<iostream>using namespace std;struct node{int data;node *next;};class list{public:list();int length()const{return count; //求链表长度}~list();void create(); //链表构建,以0为结束标志void output(); //链表输出int get_element(const int i)const; //按序号取元素node *locate(const int x) const; //搜索对应元素int insert(const int i,const int x); //插入对应元素int delete_element(const int i); //删除对应元素node *get_head(){return head; //读取头指针}void insert2(const int x);friend void SplitList(list L1, list&L2, list &L3);friend void get_public(list L1, list L2, list &L3);private:int count;node *head;};list::list(){head=new node;head->next=NULL;count=0;}void list::create() //链表构建,以0为结束标志{int x;cout<<"请输入当前链表,以0为结束符。
算法与及数据结构实验报告

算法与及数据结构实验报告算法与数据结构实验报告一、实验目的本次算法与数据结构实验的主要目的是通过实际操作和编程实现,深入理解和掌握常见算法和数据结构的基本原理、特性和应用,提高我们解决实际问题的能力和编程技巧。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
同时,为了进行算法性能的分析和比较,使用了 Python 的 time 模块来计算程序的运行时间。
三、实验内容1、线性表的实现与操作顺序表的实现:使用数组来实现顺序表,并实现了插入、删除、查找等基本操作。
链表的实现:通过创建节点类来实现链表,包括单向链表和双向链表,并完成了相应的操作。
2、栈和队列的应用栈的实现与应用:用数组或链表实现栈结构,解决了表达式求值、括号匹配等问题。
队列的实现与应用:实现了顺序队列和循环队列,用于模拟排队系统等场景。
3、树结构的探索二叉树的创建与遍历:实现了二叉树的先序、中序和后序遍历算法,并对其时间复杂度进行了分析。
二叉搜索树的操作:构建二叉搜索树,实现了插入、删除、查找等操作。
4、图的表示与遍历邻接矩阵和邻接表表示图:分别用邻接矩阵和邻接表来存储图的结构,并对两种表示方法的优缺点进行了比较。
图的深度优先遍历和广度优先遍历:实现了两种遍历算法,并应用于解决路径查找等问题。
5、排序算法的比较插入排序、冒泡排序、选择排序:实现了这三种简单排序算法,并对不同规模的数据进行排序,比较它们的性能。
快速排序、归并排序:深入理解并实现了这两种高效的排序算法,通过实验分析其在不同情况下的表现。
6、查找算法的实践顺序查找、二分查找:实现了这两种基本的查找算法,并比较它们在有序和无序数据中的查找效率。
四、实验步骤及结果分析1、线性表的实现与操作顺序表:在实现顺序表的插入操作时,如果插入位置在表的末尾或中间,需要移动后续元素以腾出空间。
删除操作同理,需要移动被删除元素后面的元素。
在查找操作中,通过遍历数组即可完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序号 数 据 结 构 实 验 报 告
班级 姓名 同组者 / 成绩 日期 3.9 指导教师
实验名称 实验一 线性表及其应用 一、实验目的 1、深刻理解线性表的逻辑特性及其顺序、链式存储方式的特点。 2、熟练掌握线性表的常用操作(建立、插入、删除、遍历等)在顺序、链式存储上的实现。 3、加深对C/C++等编程语言的相关知识点的理解 (如结构体、指针、函数、引用参数等)。
二、实验内容 1、根据给定的整型数组,以尾插法建立一个单链表,并实现以下操作: ① 查找:输入一个欲查找的整数,找到则显示第一个相匹配的整数在单链表中所处的位置,若不存在,则显示提示信息。 ② 删除:输入一个欲删除的整数e ,若存在则在单链表中删除第一个值为e 的元素。 ③ 插入:输入一个欲插入位置i 和欲插入元素e,将e 插入到第i 个整数之前(注意i 的合法性)。
A、算法思想 ① 创建 head 为头结点指针,初始时head->next 为NULL ;tail 始终指向当前链表的最后一个元素,其初始时指向头结点;p 始终指向每次申请的新结点,修改p->data 为当前读入的整数;修改tail->next 为p ,修改tail 为p ;最后修改tail->next 为NULL ,。 ② 插入 找到插入点的前驱(即第i-1 个结点)的指针p ;s 指向新申请的结点;修改s->data 为参数e,修改s->next 为p->next , 修改p->next 为s 。 ③ 查找 …… 利用p进行遍历,直到节点的数据和所给的数据相同,输出节点的位置 ④ 删除 …… 利用p进行遍历,并总是将p的前一节点的指针赋给pre,一旦找到,则删除节点并退出循环,没有到话,反馈相关信息 B、算法源码
/* *线性表及其应用 */ #include using namespace std; typedef struct _LinkList { int elem; struct _LinkList* next; }LinkList;
void InitList(LinkList *&link );//构造一个含有头结点的链表 bool InsertList(LinkList *&link,int i,int e);//在第i个位置之前插入包含元素e的新节点 void GetTailPointer(LinkList *link,LinkList *&tail);//获得单链表尾结点指针 void AddList(LinkList *&link,int e);//根据将e以尾插法插入链表 void DisplayList(LinkList *link);//打印静态链表中的所有数据 void LocatedList(LinkList *link,int e);//查找e的位置 void DeleteList(LinkList *&link,int e);//删除所在节点 void MergeList(LinkList *linka,LinkList *linkb,LinkList *&linkc);//归并
void InitList(LinkList *&link )//构造一个含有头结点的链表 { LinkList *L,*head; head = (LinkList *)malloc(sizeof(LinkList));
head -> next = NULL; L = head; link = L;
}
void AddList(LinkList *&link,int e)//根据将e以尾插法插入链表 {
LinkList *p =NULL; p =(LinkList *)malloc(sizeof(LinkList)); p -> elem = e; p->next = NULL; LinkList *tail = link; while(tail->next) tail = tail -> next; tail ->next= p;
} void DeleteList(LinkList *&link,int e)//删除所在节点 { LinkList *p = link,*pre = NULL; while( p)//找到所在节点前的一节点 {
pre = p; p = p->next; if(p == NULL) { cout<<"无" } } void LocatedList(LinkList *link,int e)//查找e的位置 { LinkList *p = link; int i = 0;//位置 while(p != NULL&&p->elem != e) { p = p ->next; i++; } if(p == NULL) cout bool InsertList(LinkList *&link,int i,int e)//在第i个位置之前插入包含元素e的新节点 { LinkList * p = link,*s; int j=0; while(p&&j{ p = p->next; j++; } if(!p||j>i) return false; s = (LinkList *)malloc(sizeof(LinkList)); s->elem = e; s ->next = NULL; s -> next = p->next; p -> next = s; return true; } void DisplayList(LinkList *link)//打印静态链表中的所有数据 { int i = 0; LinkList *p = link ->next; //注意不要打印头结点的内容 while(p) { printf("%d\t",p -> elem); p = p -> next; } } int main() { int i = 0,j; int a[4] = {1,3,5,7},b[3] ={2,4,6}; j = sizeof(a)/sizeof(a[0]); LinkList *linka=NULL ,*linkb =NULL,*linkc =NULL; InitList(linka); InitList(linkb); InitList(linkc); while(i{ AddList(linka,a[i++]); } i = 0; while(i<3) { AddList(linkb,b[i++]); } //DisplayList(linka); //LocatedList(linka,1); //DeleteList(linka,4); DisplayList(linka); DisplayList(linkb); MergeList(linka,linkb,linkc); DisplayList(linkc); return 0; } C、测试数据和实际结果 ( 可截屏 ) ① 创建 序号 测试前 测试数据 实际结果 1 1,3,5,7 1,3,5,7 2 2,4,6 2,4,6 3 1 1 ② 插入 序号 测试前 测试数据(序号,插入值) 实际结果 1 1,3,5,7 0,9 9,1,3,5,7 2 同上 1,9 9,1,3,5,7 3 同上 2,9 1,9,3,5,7 4 同上 4,9 1,3,5,9,7 5 同上 5,9 1,3,5,7,9 6 同上 6,9 不合法 ③ 查找 …… 序号 测试前 测试数据(查找数据) 实际结果 1 1,3,5,7 1 第1处 2 同上 0 查找失败 3 1,3,3,7 3 第2处 ④ 删除 …… 序号 测试前 测试数据(删除数据) 实际结果 1 1,3,5,7 1 3,5,7 2 同上 2 1,3,5,7 3 1,3,3,7 3 1,3,7 2 、分别创建两个有序的顺序表(每个表的元素个数及每个元素的值在运行时由键盘输入),现将两个有序表合并,并保证新表依然为有序的顺序表。 A、算法思想 初始化链表linkc,用pa,pa,pc指向三个链表linka,linkb,和linkc。然后以linka&&linkb为条件遍历两个链表,比较两个节点中的数据大小,小的话将节点接在linkc链表的后面,将节点指针赋给pc,同时改变较小数据节点的指针指向下一节点。 当有一个链表遍历结束后,将另一个链表的指针赋给pc。 B、算法源码 void MergeList(LinkList *linka,LinkList *linkb,LinkList *&linkc)//归并 { LinkList *pa=NULL,*pb = NULL,*pc=NULL; pa=linka->next; pb = linkb -> next; pc = linkc;//linkc是一个含有头结点的空链表 while(pa&&pb) { if( pa->elem<= pb ->elem) { pc ->next= pa; pc = pa;