从三个方向看物体的形状(含答案)

合集下载

从三个方向看物体的形状

从三个方向看物体的形状
1.4 从三个方向看物 体的形状 (一)
横看成岭侧成峰,远近高低各不同
当我们从不同的方向观察同一物体 时,通常可以看到不同的图形。
三视图的介绍: 从正面看到的图是 从左面看到的图是 从上面看到的图是 主视图 左视图 俯视图
画出右图几何体的主视 图、左视图、俯视图
主视图
左视图
俯视图
画一画
主视图
俯视图
3 2 1 1 2
俯视图
3 2 1 1 2
俯视图
试一试
【例3 】:用小立方块搭一个几何体, 使得它的主视图和俯视图如图所示. 这样的几何体只有一种吗?
主视图
俯视图
小结
1、画几何体组合的三视图 2、根据俯视图及小立方块的个数 画其他两种视图。 3、已知三视图,求小立方块的总个数。 4、已知两种视图,求小立方块的最多、 最少时的个数。
(c)
(D)
看谁找得快
如左图:左视图是( B ), 主视图是( A ), 俯视图是( D )。
(A)
(B)
(C)
(D)
看谁画得好
画出图中几何体的三视图
主视图
左视图
俯视图
问题探究:
【例1】如图是由几个小立方体块所搭几何体的俯视图, 小正方形中的数字表示在该位置小立块的个数,请画出 这个几何体的主视图和左视图。
练习:如图所示是几个小立块所搭几何体的俯视图, 小正方形中的数字表示在该位置小立方块的个数, 请画出相应几何体的主视图、左视图。
2 4 1 2 3
主 视图 左 视图
俯 视图
【例2 】、根据一下面三视图建造的建筑物是 什么样子?共有几层?一共需要多少个小立方 体?
主视图
左视图
俯视图

北师大版七年级上册数学1.4 从三个方向看物体的形状(解析版)

北师大版七年级上册数学1.4 从三个方向看物体的形状(解析版)

1.4 从三个方向看物体的形状一、单选题1.如图,从左面看如图所示的几何体得到的平面图形是()A.B.C.D.【答案】B【解析】【分析】直接根据三视图进行排除选项即可.【详解】由立体图形的三视图可直接排除A、C、D,只有B符合该立体图形的左视图;故选B.【点睛】本题主要考查三视图,熟练掌握三视图的方法是解题的关键.2.有一种圆柱体茶叶简如右图所示,则它的主视图是()A.B.C.D.【答案】D【解析】【分析】根据主视图的定义判断即可.【详解】茶叶盒是圆柱体,主视图应是矩形,故选D.【点睛】本题考查主视图的定义,关键在于牢记基本概念.3.下列几何体中,其俯视图与主视图完全相同的是()A.B.C.D.【答案】C【解析】【分析】俯视图是指从上面往下看,主视图是指从前面往后面看,根据定义逐一分析即可求解.【详解】解:选项A:俯视图是圆,主视图是三角形,故选项A错误;选项B:俯视图是圆,主视图是长方形,故选项B错误;选项C:俯视图是正方形,主视图是正方形,故选项C正确;选项D:俯视图是三角形,主视图是长方形,故选项D错误.故答案为:C.【点睛】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.4.下列立体图形中,俯视图是圆的是()A.①①①B.①①①C.①①①D.①①①【答案】D【解析】【分析】俯视图是从几何体的上面看物体,所得到的图形,分析每个几何体,解答出即可.【详解】解:①圆柱的俯视图是圆,符合题意;①圆锥的俯视图是圆,符合题意;①六棱柱的俯视图是六边形,不符合题意;①球的俯视图是圆,符合题意.故选:D.【点睛】本题主要考查了简单几何体的俯视图,具有一定的空间想象能力是解决本题的关键.5.某几何体的三视图如下所示,则该几何体可以是()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据主视图、左视图、俯视图的平面图形,可以判断该几何体为A.故选:A6.如图是由几个大小相同的小正方体搭成的几何体从不同方向看到的平面图形,则搭成这个几何体的小正方体有()A.3个B.4个C.5个D.6个【答案】B【解析】【分析】根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来解答即可.【详解】由三视图可得,需要的小正方体的数目:1+2+1=4.故选:B.【点睛】本题考查了几何体的三视图及空间想象能力.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.7.如图,模块①由15个棱长为1的小正方体构成,模块①-①均由4个棱长为1的小正方体构成.现在从模块①-①中选出三个模块放到模块①上,与模块①组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块①,①,①B.模块①,①,①C.模块①,①,①D.模块①,①,①【答案】C【解析】【分析】观察模块①可知,模块①补到模块①上面的左边,模块①补到模块①上面的右上角,模块①补模块①上面的右下角,使得模块①成为一个棱长为3的大正方体.【详解】由图形可知模块①补模块①上面的左边,模块①补模块①上面的右上角,模块①补模块①上面的右下角,使得模块①成为一个棱长为3的大正方体,故能够完成任务的是模块①,①,①,故选C.【点睛】此题主要考察简单组合体的三视图.8.从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D.【答案】A【解析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.9.一个几何体的三视图如图所示,则该几何体外接球的表面积为()A .43πB .83πC .163πD .3π 【答案】C【解析】【分析】根据主视图、左视图以及俯视图,即可判定这个几何体是圆锥,求出外接球的半径,即可求出球的表面积.【详解】由三视图可知,这个几何体是圆锥,其外接球的球心恰好是正三角形的外心,因为这个圆锥外接球的半径为23=① 所以这个球的表面积为:S =4πr 2=163π. 故选C.【点睛】本题考查了利用三视图求几何体的表面积.理解外接球的球心就是正三角形的外心是解题的关键. 10.如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是( )A.3个或4个或5个B.4个或5个C.5个或6个D.6个或7个【答案】A【解析】根据主视图①左视图①画出俯视图可能情况.所以选A.二、填空题11.从正面、左面、上面看一个几何体,三个面看到的图形大小、形状完全相同的是__.(写出一个这样的几何体即可).【答案】正方体【解析】【分析】分别根据所看位置写出每个几何体的三视图形状,即可得到答案.【详解】解:正方体从正面看是正方形、从左面看是正方形、从上面看正方,符合题意,故答案为正方体.【点睛】本题考查三视图相关,从不同的方向观察几何体,即可分析得到答案.12.如图是一个由一些相同的小正方体搭成的立体图形,图(1)~(3)是它的三视图,试标出各个视图的名称________,______,_________.【答案】(1)左视图(2)俯视图(3)主视图【解析】【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.【详解】解:根据题意可知,主视图是(3),左视图是(1),俯视图是(2),故答案为:(1)左视图,(2)俯视图,(3)主视图.【点睛】本题考查了简单组合体的三视图,从上边看到的图是俯视图,从左边看到的图是左视图,从正面看到的图是主视图.13.一个几何体分别从上面看、从左面看、从正面看,得到的平面图形如图所示,则这个几何体是________.【答案】圆柱【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故答案为:圆柱.【点睛】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.14.已知一个物体由x个相同的正方体堆成,它的三视图如图,那么x ________.【答案】8【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,求出总个数即可.【详解】综合三视图,这个物体共有3层,第一层有6个,第二层2个,一共有6+2=8(个),则x=8,故答案是:8.【点睛】考查了由三视图判断几何体,考查了对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.15.若干桶方便面摆放在桌面上,如图所给出的是从不同方向看到的图形,从图形上可以看出这堆方便面共有_______桶.【答案】6【解析】【分析】从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.【详解】三摞方便面是桶数之和为:3+1+2=6.故答案是:6.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16.一个由若干个小正方体搭建而成的几何体的三视图如下,则搭建这个几何体的小正方体有_______个。

2021年北师大版小升初数学衔接专题04《从三个方向看物体的形状》精编讲义

2021年北师大版小升初数学衔接专题04《从三个方向看物体的形状》精编讲义

2021年北师大版暑假小升初数学衔接精编讲义专题04《从三个方向看物体的形状》知识互联网知识要点要点1:从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.(如下图)题型1:简单几何体得三视图、典例精讲【典型例题1】(2021•吉林)如图,粮仓可以近似地看作由圆锥和圆柱组成,其主视图是()A .B .C .D .【完整解答】粮仓主视图上部视图为等腰三角形,下部视图为矩形.故选:A.【典型例题2】(2021•商水县三模)一块三棱柱积木如图所示,则其俯视图的大致形状是()A .B .C .D .【完整解答】从上面看该几何体,看到的图形是一个长方形,且中间有一条竖线,因此选项C中的图形符合题意,故选:C.变式训练【变式训练1】(2021•北京二模)如图,该正方体的主视图是形.【变式训练2】(2008秋•北仑区月考)已知一个直棱柱的三视图如图所示:(单位:)cm .请在俯视图的虚线框内注上符合的数据.【变式训练3】填写如图直六棱柱的三个视图的名称.【典型例题1】(2021•黄石)如图是由6个小正方体拼成的几何体,该几何体的左视图是() 典例精讲 题型2:简单组合体的三视图A.B.C.D.【完整解答】从左面看该组合体,所看到的图形如下,故选:D.【典型例题2】(2020秋•锦江区校级期中)一个几何体由几个大小相同的小立方块搭成,从正面和左面观察这个几何体,看到的形状都一样(如图所示),则这个几何体最少有4个小立方块,最多有个小立方块.【完整解答】①若俯视图如图1所示,俯视图上的数字表示该位置摆放小立方体的个数,其主视图,左视图符合题意,此时,需要的小立方体的个数最多为8个;②若俯视图如图2所示,俯视图上的数字表示该位置摆放小立方体的个数,其主视图,左视图符合题意,此时,需要的小立方体的个数最多为4个,故答案为:4,8.变式训练【变式训练1】(2021•本溪)如图,该几何体的左视图是()A.B.C.D.【变式训练2】(2020•市南区一模)几个完全相同的小正方体搭成如图的几何体,从上面拿掉一个或者几个小正方体(不能直接拿掉被压在下面的小正方体)而不改变几何体的三视图的方法有种.【变式训练3】(2020秋•解放区校级期中)如图所示,在平整的地面上,有若干个完全相同的棱长为10cm的正方体堆成的一个几何体.(1)这个几何体由个正方体组成.(2)如果在这个几何体的表面(露出的部分)喷上黄色的漆,则在所有的正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)求这个几何体喷漆的面积.【变式训练4】(2020秋•汉滨区校级期中)画出如图所示的几何体的主视图、左视图、俯视图:【典型例题1】(2021•黑龙江)由若干个完全相同的小立方块搭成的几何体的左视图和俯视图如图所示,则搭成该几何体所用的小立方块的个数可能是( )A .4个B .5个C .7个D .8个【完整解答】从左视图看第一列2个正方体结合俯视图可知上面一层有1或2个正方体,左视图第二列1个正方体结合俯视图可知下面一层有4个正方体,所以此几何体共有5或6个正方体.故选:B .【典型例题2】(2020秋•吉水县期末)(1)如图是一个组合几何体的两种视图,请写出这个组合几何体是由哪两种几何体组成的;(2)根据两种视图中尺寸(单位:)cm ,计算这个组合几何体的体积.(结果保留)π【完整解答】(1)这个组合几何体是由圆柱和长方体组成的;(2)体积234852()68024()2cm ππ=⨯⨯+⨯=+. 典例精讲 题型3:由三视图判断几何体变式训练【变式训练1】(2020秋•昌图县期末)一个圆柱的三种视图如图所示.(1)求这个圆柱的表面积;(2)求这个圆柱的体积.【变式训练2】(2021•雅安)甲和乙两个几何体都是由大小相同的小立方块搭成,它们的俯视图如图,小正方形中数字表示该位置上的小立方块个数,则下列说法中正确的是()A.甲和乙左视图相同,主视图相同B.甲和乙左视图不相同,主视图不相同C.甲和乙左视图相同,主视图不相同D.甲和乙左视图不相同,主视图相同【变式训练3】(2021•房山区二模)如图是某几何体的三视图,该几何体是.基础达标一.选择题1.(2021•威海)如图所示的几何体是由5个大小相同的小正方体搭成的.其左视图是()A.B.C.D.2.(2021•福建模拟)小竹将正方体小冰块摆成了如图所示的样子.如果小竹从左侧看这堆小冰块,他会看到()A.B.C.D.3.(2021•鄂州)下列四个几何体中,主视图是三角形的是()A.B.C.D.4.(2021•齐齐哈尔)由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为()A.7个B.8个C.9个D.10个5.(2021•长春)如图是一个几何体的三视图,这个几何体是()A.圆锥B.长方体C.球D.圆柱6.(2021•蜀山区模拟)如图是由5个大小相同的小正方形组成的几何体,则它的左视图是()A.B.C.D.7.(2021•延庆区一模)如图是某几何体的三视图,该几何体是()A.正方体B.圆锥C.四棱柱D.圆柱二.填空题8.(2020秋•海勃湾区期末)已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是.9.(2020•宁波模拟)如图,是一个直棱柱的三视图,这个直棱柱的表面积是.10.(2020•顺义区一模)在如图所示的几何体中,主视图、左视图和俯视图完全相同的几何体是.(写出所有正确答案的序号)11.(2020秋•龙华区期末)一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,那么搭成该几何体至少需用小立方块个.12.(2020秋•泰山区期末)在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有个.13.(2021•靖江市模拟)如图是一个包装盒的三视图,则这个包装盒的体积是.三.解答题14.将图中的实物与它的主视图用线连起来.15.把图中的几何体与它们对应的三视图用线连接起来.16.找出图中三视图对应的物体.17.(2020秋•解放区校级期中)如图所示,在平整的地面上,有若干个完全相同的棱长为10cm的正方体堆成的一个几何体.(1)这个几何体由个正方体组成.(2)如果在这个几何体的表面(露出的部分)喷上黄色的漆,则在所有的正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)求这个几何体喷漆的面积.18.(2020秋•宁化县月考)如图是由若干个相同的小正方体(棱长为1)组成的几何体从正面、上面看到的形状图.(1)组成这个物体的小正方体的个数可能是多少?(2)求这个几何体的最大表面积.19.(2020秋•英德市期中)如图是分别从正面、左面、上面观察一个几何体得到的图形,请解答以下问题:(1)这个几何体的名称为;(2)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.20.(2021•抚顺县模拟)某工厂要加工一批上下底密封纸盒,设计者给出了密封纸盒的三视图,如图1.(1)由三视图可知,密封纸盒的形状是;(2)根据该几何体的三视图,在图2中补全它的表面展开图;(3)请你根据图1中数据,计算这个密封纸盒的表面积.(结果保留根号)能力提升一.选择题1.(2020秋•凤县期末)如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.37cm5cm D.314cm C.33cm B.32.(2020秋•肃州区期末)如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.3.(2020春•香坊区校级月考)一个立体图形的三视图如图所示,则这个立体图形是()A.B.C.D.4.(2019秋•无为县期末)若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形如图所示,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶5.(2014•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A.3B.4C.5D.66.(2014•塘沽区一模)图①是五棱柱形状的几何体,则它的三视图为()A.B.C.D.二.填空题7.(2021•沁阳市模拟)如图,是一个由若干个相同的小正方形组成的几何体的三视图,则组成这个几何体的小正方形的个数为.8.(2020秋•双流区校级期中)如图是一个组合几何体,右边是它的两种视图,根据图中的尺寸,这个几何.体的表面积是(结果保留)9.(2020秋•沈阳月考)由若干个相同的小正方体搭成的一个几何体从正面和从左面看到的形状用如图所示,则所需的小正方体的个数最多是个.10.(2016秋•简阳市期末)桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看如图所示,这个几何体最多由个这样的正方体组成.11.(2010•西湖区模拟)一个直四棱柱的三视图及有关数据如图所示,它的俯视图是菱形,则这个直四棱柱的侧面积为2cm.12.有同样大小的三个立方体骰子,每个骰子的展开图如图1所示,如果把每个骰子点数是4的一面放在桌子上,那么其它五个可以看到的面上的数字的和是17,现在把三个骰子放在桌子上(如图2),凡是能看得到的点数之和最大是,最小是.三.解答题13.(2019秋•织金县期末)一个几何体从三个方向看到的图形如图所示(单位:)cm.(1)写出这个几何体的名称:;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.14.(2017秋•辉县市期末)一个立体图形的三视图如下图,判断这个立体图形是什么?并求这个立体图形的体积.(计算结果保留)15.(2017秋•郓城县期末)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)16.(2017秋•洪雅县期末)一个几何体由几块相同的小正方体叠成,它的三视图如下图所示.请回答下列问题:(1)填空:①该物体有层高;②该物体由个小正方体搭成;(2)该物体的最高部分位于俯视图的什么地方?(注:在俯视图上标注,并有相应的文字说明)17.(2019秋•新都区期末)一个几何体是由若干个棱长为1的小正方体堆积而成的,从不同方向看到的几何体的形状图如下.(1)在从上面看得到的形状图中标出相应位置小正方体的个数;(2)这个几何体的表面积是.18.(2020秋•会宁县期中)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数,请你画出它从正面和从左面看得到的平面图形.19.(2018秋•吉州区期末)已知如图为一几何体从不同方向看到的图形.(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为8厘米,三角形的边长为3厘米,求这个几何体的侧面积.20.(2017秋•新华区校级期中)一个几何体的三视图如图所示.求该几何体的表面积.21.(2015秋•汶上县期末)已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.22.(2013•路南区二模)张师傅根据某几何体零件,按1:1的比例画出准确的三视图(都是长方形)如图,已知4=,12EF cmFG cmAD cm=.=,10(1)说出这个几何体的名称;(2)求这个几何体的表面积S;(3)求这个几何体的体积V.。

1.4从三个方向看物体的形状(1)

1.4从三个方向看物体的形状(1)
你能用六个小立方体,按上题的方法 搭出与上题不同的几何体吗?请试着画出 它的三个视图,并作自我评价。
用小立方块搭出符合下列三视图的几何体:
主视图
左视图
俯视图
由4个小立方体搭成的一个物体, 它的主视图与左视图如图所示:
主视图 左视图
你能搭出这个几何体 并画出它的俯视图吗?
如图是由几个小立方块所搭几何体的 俯视图,小正方形中的数字表示在该 位置小立方块的个数,请画出这个几
块。
1如图,这是一幅电热水壶的主视图,则它的俯视图是( D )
A
B
C
D
2一物体及其正视图如下所示,则它的左视图与俯视图分别是右侧图形中的 ( B)
A ①② B ③② C ①④ D ③④
3一个几何体的三视图如图所示,那么这个几何体是( C )。
甲、乙、丙、丁四人分别面对面从在一 个四边形桌子旁边,桌上一张纸写着数 字“9”,甲说他看到的是“6”,乙说 他看到的是“ ”,丙说他看到的是 “ ”,丁说他看到的是“9”,则下 A.甲在丁的对面列,说乙法在甲正的确左的边,是丙在丁的右边




仔 细
(1)
瞧 瞧
主视图

(2) 俯视图
上面
正面
(3) 左视图
进 步 的 阶 梯(2)
从三个方向看右图,得到
小 心
以下三个图形,请同学们
地 说出哪一个是主视图?哪
试 一个是左视图?哪一个是
一 俯视图?

左视图
正视图 俯视图

进 步 的 阶 梯(3)
上 面

如右图所示的三棱柱的
小 心 地
主视图为 (1) ; 俯视图为 (3) ;

1.4从三个方向看物体的形状练习及答案讲解

1.4从三个方向看物体的形状练习及答案讲解

轻松尝试应用 5
4.如图,是从上面看由一些小立方体搭成的几何体的形状图,小正方 形内的数字表示该位置小立方体的个数,则从正面可看到 块小立方体.
关闭
8
答案
11
快乐预习感知 1
互动课堂理解 2 3 4
轻松尝试应用 5
5.5 个棱长为 1 的正方体组成如图所示的几何体.
(1)该几何体的体积是 (立方单位),表面积是 单位); (2)画出该几何体从正面与左面所看到的图形.
解析:由正方形中的数字表示该位置上的小正方体的个数可知, 该几何体从左面看到的图形中,左边是 2 个小正方形,中间是 3 个小 正方形,右边是 1 个小正方形,所以应选 B.
答案:B
6
快乐预习感知
互动课堂理解
轻松尝试应用
7
快乐预习感知 1
互动课堂理解 2 3 4
轻松尝试应用 5
1.如左下图,该几何体是由 4 个相同的小正方体组成,其从正面看到 的形状为( ).
关闭
D
答案
8
快乐预习感知 1
互动课堂理解 2 3 4
轻松尝试应用 5
2.从正面看图中所示几何体的形状是(
).
关闭
A
答案
9
快乐预习感知 1
互动课堂理解 2 3 4
轻松尝试应用 5
3.在下列几何体中,从正面、左面与上面看到的图形都是相同的圆, 该几何体是( ).
关闭
A
答案
10
快乐预习感知 1
互动课堂理解 2 3 4
关闭
C
答案
2
快乐预习感知
互动课堂理解
轻松尝试应用
3.画出下图中各物体分别从正面、左面、上面所看到的形状图.

北师大版七年级数学上册《从三个方向看物体的形状》典型例题(含答案)

北师大版七年级数学上册《从三个方向看物体的形状》典型例题(含答案)

《从三个方向看物体的形状》典型例题例1召集几个同伴到一起,共同回忆《盲人摸象》的故事,然后,大家一起交流这个故事给予的启示,并就正在学习的《画立体图形》知识,说一说这个故事对学习数学知识有何帮助.例2 如图所示的圆锥的三视图是__________.A.正视图与侧视图是三角形,俯视图是圆B.正视图与侧视图是三角形,俯视图是圆和圆心C.正视图是圆和圆心,俯视图和侧视图是三角形D.正视图和俯视图是三角形,侧视图是圆和圆心例3一个物体的正视图是三角形,试说出该物体的形状.例4 根据给出的三视图,确定它们对应的立体图形并画出示意图(如图).例5 画出图所示物体的三视图.图中箭头表示画正视图时的观察方向.例6试分析如图所示物体的正视图、左视图和俯视图,物体是由什么基本几何体组成的?参考答案例1分析熟悉故事情节,才能悟透其中的含意,能从语文知识中找到对学数学的启示,这正是综合素质的体现,而这种综合素质正是每一个学生所应具备的.答案本题没有固定答案.《盲人摸象》传达了从不同角度感受同一个事物会得到不同结果的内涵,正如同从不同方向看同一个几何体的结果不一样是异曲同工.这也启示我们,若要解决同一个数学问题,思考角度不同,去找到不同的解决方案.例2 分析本题考查画立体图形的三视图的能力,由物体摆放的方式、位置可知:正视图和侧视图都是等腰三角形,俯视图为圆.答案:A说明:物体摆放的方式位置不同,视图也会有所区别,千万不能因为物体形状相同,就认为它的视图也一样了.例3 分析只给出一个视图的条件来判定物体的形状,根据常见的立体图形分类,正视图不可能是球或圆柱,那么可能是圆锥、棱锥或三棱柱,显然,答案不唯一,这是一个开放题.说明:由视图描述物体的形状要借助于三个视图综合分析、想象,仅仅一个方向的视图只能了解物体的部分信息.同时,合理猜想,结合生活经验估测也非常重要.例4 解:根据三视图可知,它应是一个带槽的立方体,是在一个长方体中间切下去一个三棱柱.示意图如图.说明:这是一个在日常生活中也可见到的带凹槽的立体图形,凹下去的槽是什么形状只有靠正视图及俯视图才可以判断.例5 分析按箭头所示方向观察这个物体时,只能看这个物体上用阴影表示的两个面.它们都是长方形,但长、高及大小都不相同.两个长方形之间没有空隙,所以正视图(如图)是由两个长方形组成的,二者是互相连接的,一个在上,一个在下.左视图(如图)也是一上一下两个长方形组成的,二者左侧对齐.俯视图(如图)是由上向下看到的两个长方形,较小的一个在另一个的内部,且有一条边在较大的长方形的边上.解说明初学者必须注意的一件事是:苦思苦想不如亲身实践,即观察实物.就此题而言,用两个一大一小的纸盒(太小了不利于观察,形状比较接近于图中的长方体更好),按图所示的情况摆好并进行观察,这是很容易办到的事情.实在没有纸盒、木块等,在一块砖上适当立半块砖也可以.总之,要在实践中提高观察力和空间想象力.例6分析不妨先细看俯视图.俯视图是由一个长方形和一个圆两部分组成的.其中长方形比较大,圆比较小,位于长方形的中央.再与正视图、左视图联系起来进行观察.正视图与左视图各是由两个长方形组成的.它们中下半部分的长方形比较大,恰好与俯视图中的长方形组成长方体的三视图.正视图与在视图中的上半部分(小长方形)恰好与俯视图中的圆组成圆柱的三视图.由正、左视图可以断定,如图所表示的物体是由两部分组成,一上一下,一大一小,之间没有空隙.上述文字叙述可以用下面图形表示.解这个物体是由一个长方体和一个圆柱组成的,圆柱被放置在长方体的上面,其下底面在长方体的上底面的中央.说明(1)这类问题的应用价值极大,如建筑施工,机械制造、设备安装等等.(2)形状比较复杂的物体经常可以看做是由几个形状简单的物体组合而成的.所谓“组合”包括“叠加”(把几个物体连接在一起)和从一个物体上“挖掉”几个立体图形两种情况.无论哪种情况,本题的“分析”都是很有借鉴价值的.(3)如果没有记住长方体和圆柱的三视图,本题的解出恐怕只能是“愿望”,教学中要注意寻找身边的模型.。

最新北师大版数学七年级上册《1.4 从三个方向看物体的形状》精品教学课件

最新北师大版数学七年级上册《1.4 从三个方向看物体的形状》精品教学课件

C.圆柱 D.圆锥
从正面看
从左面看
从上面看
课堂检测 基础巩固题
4.从三个方向看一个几何体的平面图形如图所示,则这个几 何体是( C )
从正面看 从左面看 从上面看
A. B.
C.
D.
课堂检测
基础巩固题
5.如图,从上面看由三个小立方体搭成的几何体,得到的平面 图形是( A )
正面
A.
B.
C.
D.
课堂检测
巩固练习
变式训练
由4个相同的小立方体搭成的几何体如图,它从正面看得 到的图形是( A )
A.
B.
C.
D.
探究新知 知识点 2 画出从三个方向看到的几何体的形状图 画出从正面、左面和上面看正方体得到什么图形?
探究新知
从正面看 从左面看
从上面看 结论:(1)从正面、左面、上面三个不同的方向看物体,看到 的都是平面图形,这样可将立体图形转化为平面图形;(2)物 体摆放的方式不同,看到的图形也不同;(3)不要忘记所看 到的面与面的交线或顶点等.
探究新知
做一做 桌面上放着一个圆柱和一个长方体请说出下面三幅 图分别是从哪一个方向看到的?
从 上 面 看 从左面看








(1)
(2)



(3)

探究新知
练一练 桌面上放着长方体、棱锥和圆柱,请说出下面三幅图分
别是从哪一个方向看到的? 从 上 面 看
(1) 从正面看
(2) 从左面看
从左面看
从上面看
圆柱
探究新知 练一练 由各形状图判断几何体的形状? 从正面看 从左面看

专题1.4从三个方向看物体的形状-2021年七年级数学上册尖子生同步培优题库(教师版含解析)【北师大

专题1.4从三个方向看物体的形状-2021年七年级数学上册尖子生同步培优题库(教师版含解析)【北师大

2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题1.4从三个方向看物体的形状姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共20题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.选择题(共12小题)1.(2019春•南岗区校级期中)下面简单几何体的从正面看到的平面图形是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形即可解答.【解析】根据主视图的概念可知,从物体的正面看得到的视图是选项C.故选:C.2.(2019秋•福田区期中)如图是用五个相同的立方块搭成的几何体,其从上面看到的图形是()A.B.C.D.【分析】根据题意找出左视图即可.【解析】从上面看到的图形有两层,第一层有3个正方形,第二层右边有一个正方形.故选:C.3.(2019秋•沙坪坝区校级期中)如图,从左面看该几何体得到的形状是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】从左面看易得有一列两层,每层都有一个正方形.故选:B.4.(2019秋•山亭区期中)如图,该几何体是由4个大小相同的正方体组成,从上面看到这个几何体的形状图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解析】从上面看易得第一层最左边有1个正方形,第二层有2个正方形.故选:B.5.(2019秋•太原期中)下面四个几何体,同一个几何体从正面看和从左面看的形状图相同,这样的几何体共有()A.1个B.2个C.3个D.4个【分析】根据几何体的三视图解答即可.【解析】正方体、球,圆锥与圆柱四种几何体从正面看和从左面看,看到的相同,故选:D.6.(2019秋•大鹏新区期中)如图,是由几个相同的小正方体组成的几何体,则它从上面看到的形状图是()A.B.C.D.【分析】俯视图是从物体上面看所得到的图形,据此判断.【解析】它从上面看到的形状图是:故选:D.7.(2020春•香坊区校级期中)下列四个几何体中,从正面看和从上面看都是圆的是()A.B.C.D.【分析】分别根据几何体写出主视图和俯视图即可求解.【解析】A、圆柱的主视图是矩形、俯视图是圆,不符合题意;B、圆台主视图是等腰梯形,俯视图是圆环,不符合题意;C、圆锥主视图是等腰三角形,俯视图是圆和圆中间一点,不符合题意;D、球的主视图、俯视图都是圆,符合题意.故选:D.8.(2019春•柘城县期中)如图是某几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正方体【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解析】根据主视图是三角形,圆柱和长方体、立方体不符合要求,B、C、D错误;根据几何体的三视图,圆锥符合要求.故选:A.9.(2020春•云梦县期中)如图,是一个长方体的三视图(单位:cm),这个长方体的体积是()A.16cm3B.18cm3C.22cm3D.24cm3【分析】根据三视图我们可以得出这个几何体应该是个长方体,它的体积应该是2×2×4=16cm3.【解析】该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个正方形形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为2×2×4=16cm3.答:这个长方体的体积是16cm3.故选:A.10.(2019秋•临淄区期中)从正面、左面、上面观察一个由小正方体构成的几何体依次得到以下的形状图,那么构成这个几何体的小正方体有()A.4个B.5个C.6个D.7个【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【解析】由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体.故选:B.11.(2019秋•兰州期中)如图所示的几何体,从上边看得到的图形是()A.B.C.D.【分析】从上面看,能看到的是圆形,但看不到的底面的轮廓线用虚线表示.【解析】从上面看到的是圆形,相当于看一个杯子的俯视图,因此选择D,故选:D.12.(2019秋•榆次区期中)如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是()A.B.C.D.【分析】根据主视图的定义即可判断.【解析】从正面看的图形是A,故选:A.二.填空题(共8小题)13.(2018秋•大邑县期中)如图所示是一些小正方体木块所搭的几何体从正面和从左面看到的图形,则搭建该几何体最少需7块正方体木块,最多需要16块正方体木块.【分析】根据主视图和左视图判断出该几何体共2层,再得出每一层最多和最少的个数,然后相加即可得出答案.【解析】易得第一层最少有5个正方体,最多有12个正方体;第二层最少有2个正方体,最多有4个,故最少有6个小正方形,至多要16块小正方体.故答案为:7,16.14.(2019秋•台儿庄区期中)由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是3个.【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体最少有多少个小立方块.【解析】左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3个或4个或5个,最少有3个.故答案为:3.15.(2019秋•茂名期中)某几何体从三个方向看到的图形分别如图,则该几何体的体积为3π.【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆及圆心可判断出此几何体为圆柱.【解析】由三视图可得,此几何体为圆柱,所以圆柱的体积为3×π⋅(22)2=3π,故答案为:3π16.(2019秋•博山区期中)如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要6块正方体木块,至多需要16块正方体木块.【分析】利用从正面和从左面看到的形状图进而得出每层的最少与最多数量,进而得出答案.【解析】易得第一层最少有4个正方体,最多有12个正方体;第二层最少有2个正方体,最多有4个,故最少有6个小正方形,至多要16块小正方体.故答案为:6,16.17.(2019秋•雁塔区校级期中)用小立方体搭一个几何体,从左面和上面看如图所示,这样的几何体它最少需要6块小立方体,最多需要8块小立方体.【分析】根据主视图可得这个几何体共有2层,再分最少和最多两种情况进行讨论,即可得出答案.【解析】最少分布个数如下所示,共需6块;最多分布个数如下所示,共需8块.故答案为:6,8.18.(2019秋•龙凤区期中)用小立方体搭成一个立体图形,从上面看到的形状是,从正面看到的形状是,搭这个立体图形需要6或7或8块小立方体.【分析】从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,进而可得答案.【解析】最下面一层有4块,上面一层最少有2块,最多有4块,故搭这个立体图形需要6或7或8块小立方体.故答案为:6或7或8.19.(2019秋•普宁市期中)一个几何体从上面、左面、正面看到的形状如图所示,则该几何体的体积为π.【分析】观察三视图可知,这个立体图形想底面为半圆的半个圆柱(如图所示),根据体积等于底面积×高计算即可.【解析】观察三视图可知,这个立体图形想底面为半圆的半个圆柱(如图所示).V=12•π•12×2=π,故答案为π.20.(2018秋•市南区校级期中)在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递堆如图所示,则这正方体快递件最多有39件.【分析】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;相加可得所求.【解析】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,最底层几何体最多正方体的个数为:4×4=16,由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;16+16+6+1=39(件).故这正方体快递件最多有39件.故答案为:39.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从三个方向看物体的形状
一.选择题
1.下面说法中错误的是( )
A. 球的主视图是圆
B. 球的俯视图是圆
C. 球的任何截面都是圆
D. 以上说法都对
2.如图,从正面看是()
3.如图,从三个方向看这个几何体,则这个几何体是()
4.如图,是一个四棱柱和圆柱的摆放组合,则从上面看是()
5.如图,从①和②的()方向看是一样的.
A.正面 B.左面 C.上面 D.左面、上面
二.填空题
1.如图,①从正面看是_____、从左面看是________、从上面看是________.
2.一个几何体从正面看和左面看都是三角形,而上面看是圆,则这个几何体是_______.
3.桌面上放两件物体,它们的三视图如下图示,则这两个物体分别是________.
主视图俯视图左视图
4.如图,从一个由若干个长、宽、高相等的小正方体摆成的几何体的正面、左面和上面看,则组成这个几何体共用了________个小正方体.
5.如图,从一个由若干个小正方体组成的几何体的正面和左面看,则这个几何体至少由______个小正方体组成,最多由______个小正方体组成.
三.解答题
1.画出下面几何体的主视图、左视图与俯视图.(8分)
2.如图所示是由几个小立方体所组成几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图、左视图。

(6分)
2 3
4 2
1
1
答案
一选择题
1.D
2.B
3.C
4.A
5.D
二填空题
1.③,④,②
2.圆锥
3.圆柱和长方体
4.6
5.4,12 三解答题
1.略
2.
主视图左视图。

相关文档
最新文档