信息论基础》试卷(期末A卷
信息论基础试卷及详细答案

W log(1 +
P ) N 0W
(169 面)
8 在 BSC(二元对称信道)中,错误率为 p,则其信道容量 C= 1-H(p) 9 差熵为 h(X)的连续随机变量集合 X 的熵功率为 σ = 10.一个最小距离为 d 的二元分组码能纠错能力为 [
⎛1 ⎜ 8.一信道的转移概率矩阵为 ⎜ 3 ⎜1 ⎜ ⎝6 1 3 1 3 1 6 1 6 1⎞ ⎟ 6⎟, 求信道容量和达到容量时的输出概率(112 面) 1⎟ ⎟ 3⎠
解:设输出概率分别为 q1 , q2 , q3 , q4 。该信道为准对称信道,当输入等概率时达到信道容量 可计算输出概率为
1 1 1 1 1 1 1 1 1 1 1 1 q1 = ( + ) = , q2 = ( + ) = , q3 = ( + ) , q4 = 2 6 3 4 2 3 3 3 2 6 6 4
PE =1/2,信道疑义度上界为:H(1/2)+(1/2) × log2=1.5bit
3
(2)对于规则 B,由于 1 − PE =
∑ P(ai )P(bi | ai ) =
i =1
1 1 1 1 1 3 P(bi | ai ) = × ( + + ) =1/3, ∑ 3 2 6 3 3 i =1
所以 PE =2/3,信道疑义度上界为:H(2/3)+2/3 × log2= log 2 3 (bit) 5.设 X 和 Y 时分别具有均值 mx , m y ,方差 σ x , σ y 的两个独立的高斯随机变量集合,且 U= ( X + Y ) / 2 ,V= ( X − Y ) / 2 ,试求 h(UV)。 (70 面) 解:依据题意有
《信息论》期末考试试题(A 卷) 标准答案

(2) 通过错误概率为 p, 0 ≤ p ≤ 1/ 2 的二元删除信道,求最佳译码准则的判决
函数和平均译码错误率;
(2+2=4 分)
(3) 通过(1)与(2)的串联信道,求最佳译码准则的判决函数和平均译码错误
率,并与(1)和(2)的平均译码错误率进行比较,得到怎样的结论?
(2+2+3=7 分)
(4) 根据(3)的结果,求信源经过串联信道后信息量损失的上界? (3 分)
①确定
σ12
,
σ
2 2
和
P
的关系;
②写出信道容量表达式;
(3+3+3=9 分)
③写出达到容量时信道的输入概率密度 p(x1, x2 ) ; 解:
(1) E[x12 ] = 0 ,则
(3+3=6 分)
①
σ
2 1
≥
σ
2 2
+
P
,
②
C
=
1 2
log(1 +
P σ 22
)
,
(2) E[x22 ] > 0 ,则
从零均值的高斯分布,且相互独立,方差分别为 σ12
和σ22
,且 σ12
>
σ
2 2
,信道输
入均值为零, E x12 + x22 ≤ P ;
(1) 当达到信道容量时, E[x12 ] = 0 ;
(3+3=6 分)
①确定σ12 ,σ 22 和 P 的关系;
②写出信道容量表达式;
(2) 当达到信道容量时, E[x22 ] > 0 ;
(2 分)
(3) 写出香农第三定理中存在平均失真不大于 D 的信源编码充要条件;
信息理论与编码-期末试卷A及答案

题号 一 二 三 四 总分 统分人 题分 35 10 23 32 100得分 一、填空题(每空1分,共35分) 得分| |阅卷人|1、1948年,美国数学家 发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
信息论的基础理论是 ,它属于狭义信息论。
2、信号是 的载体,消息是 的载体。
3、某信源有五种符号}{,,,,a b c d e ,先验概率分别为5.0=a P ,25.0=b P ,125.0=c P ,0625.0==e d P P ,则符号“a ”的自信息量为 bit ,此信源的熵为 bit/符号。
4、某离散无记忆信源X ,其概率空间和重量空间分别为1234 0.50.250.1250.125X x x x x P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦和1234 0.5122X x x x x w ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,则其信源熵和加权熵分别为 和 。
5、信源的剩余度主要来自两个方面,一是 ,二是 。
6、平均互信息量与信息熵、联合熵的关系是 。
7、信道的输出仅与信道当前输入有关,而与过去输入无关的信道称为 信道。
8、马尔可夫信源需要满足两个条件:一、 ; 二、 。
9、若某信道矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0100010000001100,则该信道的信道容量C=__________。
10、根据是否允许失真,信源编码可分为 和 。
11、信源编码的概率匹配原则是:概率大的信源符号用 ,概率小的信源符号用 。
(填短码或长码)12、在现代通信系统中,信源编码主要用于解决信息传输中的 性,信道编码主要用于解决信息传输中的 性,保密密编码主要用于解决信息传输中的安全性。
13、差错控制的基本方式大致可以分为 、 和混合纠错。
14、某线性分组码的最小汉明距dmin=4,则该码最多能检测出 个随机错,最多能纠正 个随机错。
15、码字101111101、011111101、100111001之间的最小汉明距离为 。
信息理论与编码-期末试卷A及答案

一、填空题(每空1分,共35分) 1、1948年,美国数学家 发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
信息论的基础理论是 ,它属于狭义信息论。
2、信号是 的载体,消息是 的载体。
3、某信源有五种符号}{,,,,a b c d e ,先验概率分别为5.0=a P ,25.0=b P ,125.0=c P ,0625.0==e d P P ,则符号“a ”的自信息量为 bit ,此信源的熵为 bit/符号。
4、某离散无记忆信源X ,其概率空间和重量空间分别为1234 0.50.250.1250.125X x x x x P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦和12340.5122X x x x x w ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,则其信源熵和加权熵分别为 和 。
5、信源的剩余度主要来自两个方面,一是,二是 。
6、平均互信息量与信息熵、联合熵的关系是 。
7、信道的输出仅与信道当前输入有关,而与过去输入无关的信道称为 信道。
8、马尔可夫信源需要满足两个条件:一、 ; 二、。
9、若某信道矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡010001000001100,则该信道的信道容量C=__________。
10、根据是否允许失真,信源编码可分为 和 。
12、在现代通信系统中,信源编码主要用于解决信息传输中的 性,信道编码主要用于解决信息传输中的 性,保密密编码主要用于解决信息传输中的安全性。
13、差错控制的基本方式大致可以分为 、 和混合纠错。
14、某线性分组码的最小汉明距dmin=4,则该码最多能检测出 个随机错,最多能纠正 个随机错。
15、码字101111101、011111101、100111001之间的最小汉明距离为 。
16、对于密码系统安全性的评价,通常分为 和 两种标准。
17、单密钥体制是指 。
18、现代数据加密体制主要分为 和 两种体制。
19、评价密码体制安全性有不同的途径,包括无条件安全性、 和 。
09(2)计算机基础期末考试试卷(A1卷)

华南农业大学期末考试试卷(A1卷)2009学年第2学期 考试科目: 大学计算机基础考试类型:(闭卷) 考试时间: 120 分钟学号 姓名 年级专业考生注意:1、 答案必须分别写在“机读卡”和“答题卷”上,写在试卷上不得分。
2、 必须在机读卡和答题卷上正确填写班级、学号、姓名等内容,否则没有考试成绩。
3、 在机读卡的学生代号区只填写学号后10位。
4、 考试不能使用计算器等电子设备。
一、 判断题(本大题共40小题,每小题0.5分,共20分) (在机读卡上答题,正确选A ,错误选B )1.嵌入式计算机就是我们平常用的笔记本电脑。
2.用C 语言编写的CAI 课件属于应用软件。
3.通常用后缀字母来标识某数的进制,字母H 代表十六进制。
4.在计算机中,处理含有小数部分的数值时,解决小数点的表示问题主要通过定点数和浮点数来表示。
5.在计算机中,BCD 码是用4位二进制码表示一位十进制数,可以参加运算。
6.在计算机中,数的正负可用0和1来表示,即数字符号数字化,这样的数叫机器数的真数。
7.在计算机内部用于存储、加工处理的汉字编码称为国标码。
8.寄存器只是运算器中特有的一个部件。
9.逻辑运算是指对因果关系进行分析的一种运算,运算是按位进行的。
10.24×24汉字点阵字库中,表示一个汉字字模需要72字节。
11.数据总线的宽度决定了内存一次能够读出的相邻地址单元数。
12.不同CPU 的计算机有不同的机器语言和汇编语言。
13.主板软升级就是对微机上的ROM BIOS 芯片的内容进行更新。
14.键盘和显示器都是计算机的I/O 设备,键盘是输入设备,显示器是输出设备。
15.SDRAM 指的是用于做高速缓存的静态内存。
16.存储地址是存储器存储单元的编号,CPU 要存取某个存储单元的信息,一定要知道这个存储单元的地址,并通过地址线中的地址信号去找到这个地址单元。
17.多次进行低级格式化将损害硬盘。
信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题及答案信息论基础理论与应用考试题一﹑填空题(每题2分,共20分)1.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的(可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。
(考点:信息论的研究目的)2.电视屏上约有500×600=3×510个格点,按每点有10个不同的灰度等级考虑,则可组成531010⨯个不同的画面。
按等概计算,平均每个画面可提供的信息量约为(610bit /画面)。
(考点:信息量的概念及计算)3.按噪声对信号的作用功能来分类信道可分为 (加性信道)和 (乘性信道)。
(考点:信道按噪声统计特性的分类)4.英文电报有32个符号(26个英文字母加上6个字符),即q=32。
若r=2,N=1,即对信源S 的逐个符号进行二元编码,则每个英文电报符号至少要用 (5)位二元符号编码才行。
(考点:等长码编码位数的计算)5.如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验概率准则)或(最小错误概率准则)。
(考点:错误概率和译码准则的概念)6.按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷积码)。
(考点:纠错码的分类)7.码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4,2))线性分组码。
(考点:线性分组码的基本概念)8.定义自信息的数学期望为信源的平均自信息量,即(11()log ()log ()()q i i i i H X E P a P a P a =⎡⎤==-⎢⎥⎣⎦∑)。
(考点:平均信息量的定义)9.对于一个(n,k)分组码,其最小距离为d,那么,若能纠正t个随机错误,同时能检测e(e≥t)个随机错误,则要求(d≥t+e+1)。
(考点:线性分组码的纠检错能力概念)10.和离散信道一样,对于固定的连续信道和波形信道都有一个最大的信息传输速率,称之为(信道容量)。
信息论基础试卷及详细答案

为 P,信道的带宽为 W,那么信道每单位时间的容量为 C=
W log(1+
P )
(169 面)
N0W
8 在 BSC(二元对称信道)中,错误率为 p,则其信道容量 C= 1-H(p) (121 面)
9 差熵为 h(X)的连续随机变量集合 X 的熵功率为σ 2 = 1 e2h( X ) (72 面) 2πe
⎜ ⎝
3
2
1⎟⎠
则
Dmin = 1, Dmax = 5 / 3 。 (√) (186 面)
3.若(X,Y,Z)为马氏链,则(Z,Y,X)也是马氏链。 (√)(60 面) 4.分组码的最小距离就是其最小重量的非零码字的重量。(×)(135 面,应该是线性分组码) 5.为有效抵抗加性高斯噪声干扰,信道输入应该是高斯分布。(√)(164 面) 6.信道疑义度始终为正。(×)(138 面,应该是非负,可以为 0) 7.信道输入和输出之间的平均互信息是下凸函数。(×)(29 面,应该是上凸函数) 8.信息处理过程中熵是不会增加的。(√)(26 面) 9.典型序列信源符号出现的概率近似等于其频率。(√)(86 面) 10.若 信 道 的 输 入 与 输 出 分 别 为 X,Y , 输 入 符 号 的 数 目 为 r , 那 么 信 道 疑 义 度 满 足
r −li ≤ 1
i =1
(课本 88 面,Kraft 定理)
5.加性高斯白噪声(AWGN)信道实现可靠通信的信噪比的下界为 -1.59 db(课本 173 面)
6.一维高斯随机变量集的熵为 1 log(2πeσ 2 ) (注意σ 是平均方差,而σ 2 是方差,69 面) 2
7.一个加性高斯白噪声(AWGN)信道的噪声的功率谱密度为 N0 ,输入信号平均功率限制 2
(整理)信息论期末考试试题1.doc

安徽大学2011—2012学年第1学期 《信息论》考试试卷(AB 合卷)院/系 年级 专业 姓名 学号一、填空题1、接收端收到y 后,获得关于发送的符号是x 的信息量是 。
2、香农信息的定义 。
3、在已知事件z Z ∈的条件下,接收到y 后获得关于事件x 的条件互信息(;|)I x y z 的表达式为 。
4、通信系统模型主要分成五个部分分别为: 。
5、研究信息传输系统的目的就是要找到信息传输过程的共同规律,以提高信息传输的可靠性、有效性、 和 ,使信息传输系统达到最优化。
6、某信源S 共有32个信源符号,其实际熵H ∞=1.4比特/符号,则该信源剩余度为 。
7、信道固定的情况下,平均互信息(;)I X Y 是输入信源概率分布()Px 的 型凸函数。
信源固定的情况下,平均互信息(;)I X Y 是信道传递概率(|)P y x 的 型凸函数。
8、当信源与信道连接时,若信息传输率达到了信道容量,则称此信源与信道达到匹配。
信道剩余度定义为 。
9、已知信源X 的熵H (X )=0.92比特/符号,则该信源的五次无记忆扩展信源X 5的信息熵5()H X = 。
10、将∞H ,6H ,0H ,4H ,1H 从大到小排列为 。
11、根据香农第一定理,对于离散无记忆信源S ,用含r 个字母的码符号集对N 长信源符号序列进行变长编码,总能找到一种无失真的唯一可译码,使每个信源符号所需平均码长满足: 。
12、多项式剩余类环[]())q F x f x 是域的充要条件为 。
13、多项式剩余类环[](1)n q F x x -的任一理想的生成元()g x 与1n x -关系为 。
14、有限域122F 的全部子域为 。
15、国际标准书号(ISBN )由十位数字12345678910a a a a a a a a a a 组成(诸i a ∈11F ,满足:1010(mod11)ii ia=≡∑),其中前九位均为0-9,末位0-10,当末位为10时用X 表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信息论基础》答案
一、填空题(本大题共10小空,每小空1分,共20分)
1.按信源发出符号所对应的随机变量之间的无统计依赖关系,可将离散信源分为有记忆信源和无记忆信源两大类。
2.一个八进制信源的最大熵为3bit/符号
3.有一信源X ,其概率分布为1
23x x x X 1
11P 244⎛⎫
⎡⎤ ⎪
=⎢⎥
⎪⎣⎦⎝⎭
,其信源剩余度为94.64%;若对该信源进行十次扩展,则每十个符号的平均信息量是 15bit 。
4.若一连续消息通过放大器,该放大器输出的最大瞬间电压为b ,最小瞬时电压为a 。
若消息从放大器中输出,则该信源的绝对熵是∞;其能在每个自由度熵的最大熵是log (b-a )bit/自由度;若放大器的最高频率为F ,则单位时间内输出的最大信息量是 2Flog (b-a )bit/s.
5. 若某一 信源X ,其平均功率受限为16w ,其概率密度函数是高斯分布时,差熵的最大值为
1
log32e 2
π;与其熵相等的非高斯分布信源的功率为16w ≥ 6、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
7、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。
8、当R=C 或(信道剩余度为0)时,信源与信道达到匹配。
9、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。
10、在下面空格中选择填入数学符号“,,,=≥≤〉”或“〈” (1)当X 和Y 相互独立时,H (XY )=H(X)+H(X/Y)。
(2)假设信道输入用X 表示,信道输出用Y 表示。
在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)<H(X)。
二、掷两粒骰子,各面出现的概率都是1/6,计算信息量:
1.当点数和为3时,该消息包含的信息量是多少?
2.当点数和为7是,该消息包含的信息量是多少?
3.两个点数中没有一个是1的自信息是多少?
解:1.P (“点数和为3”)=P (1,2)+ P (1,2)=1/36+1/36=1/18
则该消息包含的信息量是:I=-logP (“点数和为3”)=log18=4.17bit
2.P (“点数和为7”)=P (1,6)+ P (6,1)+ P (5,2)+ P (2,5)+ P (3,4)+ P (4,3)=1/36
⨯6=1/6
则该消息包含的信息量是:I=-logP (“点数和为7”)=log6=2.585bit 3.P (“两个点数没有一个是1”)=1-P (“两个点数中至少有一个是1”) =1-P(1,1or1,jori,1)=1-(1/36+5/36+5/36)=25/36
则该消息包含的信息量是:I=-logP (“两个点数中没有一个是1”)=log25/36=0.53bit 三、设X 、Y 是两个相互统计独立的二元随机变量,其取-1或1的概率相等。
定义另一个二元随机变量Z ,取Z=YX (一般乘积)。
试计算:
1.H (Y )、H (Z );
2.H (XY )、H (YZ );
3.I (X;Y )、I (Y;Z );
解:1.
2
i 1
1
111H Y P y logP y log log 2222i i =⎡⎤=-+⎢⎥⎣⎦∑()=-()()=1bit/符号
Q Z=YX 而且X 和Y 相互独立
∴ 1(1)(1)(1)P
P X P Y P X ⋅=+=-⋅=-(Z =1)=P(Y=1)= 111
22222⨯+⨯= 2(1)(1)(1)P P X P Y P X ⋅=-+=-⋅=(Z =-1)=P(Y=1)= 111
22222
⨯+⨯=
故H(Z)=
i 2
i 1(z )log (z )i P P =-∑=1bit/符号
2.从上式可以看出:Y 与X 的联合概率分布为:
H(YZ)=H(X)+H(Y)=1+1=2bit/符号
3.Q X 与Y 相互独立,故H(X|Y)=H(X)=1bit/符号
∴I (X;Y )=H(X)-H(X|Y)=1-1=0bit/符号 ;I(Y;Z)=H(Y)-H(Y|Z)=H(Y)-[H(YZ)-H(Z)]=0 bit/符号
四、如图所示为一个三状态马尔科夫信源的转移概率矩阵
P=11022110221114
2
4⎛⎫ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪⎝⎭
1.绘制状态转移图;
2.求该马尔科夫信源的稳态分布;
3.求极限熵; 解:1.状态转移图如右图
2.由公式
3
1
()()(|)
j i j i i p E P E P E E ==∑,可得其三个状态的稳态概率为:
1123223313123111()()()()22411()()()2211
()()()24()()()1P E P E P E P E P E P E P E P E P E P E P E P E P E ⎧
=++⎪⎪⎪=+⎪⎨
⎪=+⎪⎪⎪++=⎩
1233()7
2()72()7P E P E P E ⎧=⎪⎪⎪
⇒=⎨⎪⎪
=⎪⎩ 3.其极限熵:
3
i i 1
3112112111
H = -|E =0+0+72272274243228
=1+1+ 1.5=bit/7777
i P H H H H ∞=⨯⨯⨯⨯⨯⨯∑(E )(X )(,,)(,,)(,,)
符号
五、在干扰离散对称信道上传输符号1和0,已知P (0)=1/4,P(1)=3/4,试求:
1. 该信道的转移概率矩阵P;
2.信道疑义度H (X|Y );
3.该信道的信道容量以及其输入概率分布
解:1.该转移概率矩阵为
P=0.90.10.10.9⎡⎤
⎢
⎥
⎣⎦
2.根据P (XY )=P (Y|X )⋅P (X ),可得联合概率
由P (X|Y )=P(X|Y)/P(Y)可得
H(X|Y)=-
i j
i
j
i j
(x y )log x |y =0.09+0.12+0.15+0.035=0.4bit/P P
∑,()符号 3.该信道是对称信道,其容量为:
C=logs-H=log2-H (0.9,0.1)=1-0.469=0.531bit/符号
这时,输入符号服从等概率分布,即0111()22X P X ⎡⎤
⎡⎤⎢
⎥=⎢⎥⎢⎥⎣⎦⎣⎦
六、某信道的转移矩阵⎥
⎦
⎤
⎢
⎣⎡=1.006.03.001.03.06.0P 试求:该信道的信道容量及其最佳输入概率分布。
解:该信道是准对称信道,分解为两个互不相交的子信道矩阵
0.60.30.30.6⎡⎤
⎢
⎥
⎣⎦ 0.1000.1⎡⎤⎢⎥⎣⎦
这里110.90.9N M == 22 0.10.1N M == ∴C=logr-H(P 的行矢量)
-
2
k 1
log 1(0.6.3.1)0.9log 0.9-0.1log 0.1K
K N
M H ==--⨯⨯∑,0,0 =0.174bit/符号
这时,输入端符号服从等概率分布,即()X P X ⎡⎤⎢⎥⎣⎦=011122⎡⎤
⎢
⎥⎢
⎥⎣⎦
七、信源符号X 有六种字母,概率为0.32,0.22,0.18,0.16,0.08,0.04。
用赫夫曼编码法编成二进制变长码,写出编码过程并计算其平均码长、编码后的信息传输率和编码效率 解:
该信源在编码之前的信源熵为:
6
i i 1
()(x )log x i H S P P ==-∑()=0.526+0.481+0.445+0.423+0.292+0.186
=2.353bit/符号
编码后的平均码长:
(0.320.220.18)20.163(0.080.04)4L =++⨯+⨯++⨯=2.4码元/信源符号
编码后的信息传输率为:
() 2.353
0.982.4H S R L
=
==bit/码元
编码效率为:max ()
0.98log R H S R L r
η
=
== 八、设在平均功率受限的高斯可加波形信道中,信道带宽为3KHz ,又设信噪比为10
1.试计算该信道传达的最大信息率(单位时间);
2.若功率信噪比降为5dB ,要达到相同的最大信息传输率,信道带宽是多少? 解:1. 10d SNR B =Q 10SNR ∴=
故:该信道传送的最大信息速率为:
3t 4
=log +log =bit/s
C W ⨯⨯⨯(1SNR )=310(11)1.0410
2.若SNR=5dB ,则
,在相同t C 情况下
1.044
10⨯=Wlog (1+SNR )=Wlog4.162 ⇒W=5.04⨯3
10Hz。