2017年镇海中学高考模拟数学试卷(理科)含答案
浙江省2017年高考理科数学试题及答案范文

浙江省2017年高考理科数学试题及答案范文高考要想考的好,多做模拟试卷是必要的,以下是为你整理的浙江省2017年高考理科数学试题,希望能帮到你。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合P=,Q=,则P=A.[2,3]B.(-2,3]C.[1,2)D.2.已知互相垂直的平面交于直线l,若直线m,n满足,则A.B.C.D.3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A.B.4C.D.64.命题“使得”的否定形式是A.使得B.使得C.使得D.使得5.设函数,则的最小正周期A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.如图,点列分别在某锐角的两边上,且,,,.(表示点P与Q不重合)若,为的面积,则A.是等差数列B.是等差数列C.是等差数列D.是等差数列7.已知椭圆与双曲线的焦点重合,分别为的离心率,则A.且B.且C.且D.且8.已知实数.A.若则B.若则C.若则D.若则二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9.若抛物线上的点M到焦点的距离为10,则M到y轴的距离是.10.已知,则A=,b=.11.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.12.已知,若,则a=,b=.13.设数列的前n项和为,若,则=,=.14.如图,在中,AB=BC=2,.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.15.已知向量a,b,|a|=1,|b|=2,若对任意单位向量e,均有|a?e|+|b?e|,则a?b的最大值是.三、解答题:本大题共5小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
最新届浙江省宁波市镇海中学高三第2次模拟考试理科数学试题及答案优秀名师资料

2017届浙江省宁波市镇海中学高三第2次模拟考试理科数学试题及答案镇海中学2014年高考模拟考试数学(理科)试卷第?卷(选择题部分共50分) 一.选择题:本大题共10小题,每小题5分,共50分(在每小题给出的四个选项中,只有一项是符合题目要求的( axa,,,,34121.若非空集合A={x|},B={x|-2,x,12},则能使ABA,,,成立的实数的集合是 a( )AA.{a|3,a,6} B({a|1,a,6} C({a|a,6}D(,zzzz,,13i2(设复数,的共轭复数是,则= z( )41010A( B( C( D(1 55,xxtan1,xxsin1,0,,x3.若,则是的 2( )A(充分不必要条件B(必要不充分条件C(充要条件D(既不充分也不必要条件y,5,,,z,x,2y4. 若实数x,y满足不等式组则的最大值2x,y,3,0,,,x,y,1,0,,是( )A. 15B. 14C. 11D. 105. 设,是空间中的一个平面,是三条不同的直线,则 lmn,,( )?若mnlmlnl,,,,,,,,,,,,则;lmmnln//,//,,;,,,,则?若?若lmmn//,,,,,,,则ln//;mnlnlm,,,,,,,,//则?若; 则上述命题中正确的是 A(?? B(?? C(?? D(??x,2136. 已知函数,则下列不等式fxxxRfxfx,,,,,()(),()()012x,21中正确的是( )A( B( C(xx,xx,xx,,0121212D( xx,,0127. 将3个不相同的黑球和3个相同白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)开始向右数,数到最末一个球,黑球的个数大于或等于白球的个数,就称这种排列为“有效排列”,则出现有效排列的概率为 ( ) 1111A. B. C. D. 24510228. 二次函数 (x>0)的图像在点处的切线与x轴交(,)aaykx,nn1点的横坐标为,n为正整数,,则a,aS,1n,15 3( ) 311121,,,,,,5551(),1(),1(), B. C.A. ,,,,,,233332,,,,,,31,,51(),D.,, 22,,9. 如图,在平面直角坐标系中,椭圆xoy2x2AB,,,y1的左、右焦点分别为,(设是椭FF122圆上位于轴上方的两点,且直线与直线xAF122平行,与交于点P,且,AFBF,,BFAFBF122213则直线的斜率是 ( ) AF1232A. B. C. D. 1 2,10. 已知集合AM={1,2,3,…,11},把满足以下条件:若2k,A,则的集合A称为好集,则含有至少3个偶数的好21,()kAkZ,,,集合的个数为 ( )A(33B(25 C(18 D(322 第?卷(非选择题部分共100分) 6 二、填空题:本大题共7小题, 每小题4分, 共28分( 4侧视正视图图451611.展开式中的常数项是 __?_ ; (x,)2x12. 某几何体的三视图如右图(其中侧视图中的圆弧是半圆),则该几何体的体积为________ 13. 一算法的程序框图如右图所示,运算结果能输出一个函数,那输入的函数可以是____________(写出任意一个满足的就行) 14. 已知对于正项数列满足a,a?a(m,am+nmn,,n开始 n?N*),若a,9,则loga+loga+…+loga23132312,_________________. 输入函数 fx(),,,c15. 设为单位向量,若向量满足ab,,,,,,,否,则的最大值是 ||c|()|||cabab,,,,,fxfx()(),,,21,2,,,,,xx4()1,01,,是 16. 已知函数 fx,()2,x否 ,,x,log,1. fxfx()(),,,2014,3若互不相等,则fafbfc()()(),,,abc,,是abc,,的取值范围是 . 输出函数 fx()17. 定义在R上的函数满足条件:存在常fx()结束 M,0数,使对一切实数恒成立,x|()|||fxMx,VV则称函数为“型函数”。
镇海中学高考数学模拟试题

镇海中学高考数学模拟试题第一部分选择题1.在坐标系中,点A(3,2)关于原点O对称点的坐标是()。
A. (-2,-3)B. (2,3)C. (2,3)D. (-3,-2)2.某班学生中,男生人数是女生人数的3倍,如果男生人数占全班人数的四分之一,那么全班一共有男生()人。
A. 6B. 9C. 12D. 153.若\(\cos\theta = \frac{5}{13}\) ,\(\theta \in (\frac{\pi}{2},\pi)\) ,则\(\sin\theta\) 的值为()。
A. \(\frac{2}{13}\)B. \(\frac{12}{13}\)C. \(\frac{5}{13}\)D. \(\frac{1}{13}\)…第二部分计算题1.用配方法解方程:\[x^2+2x-3=0\]。
2.已知扇形的半径为10cm,圆心角的度数为60°,求扇形的周长和面积。
…第三部分证明题1.已知抛物线的焦点在y轴上,且对称轴方程为x=y,证明该抛物线方程为\[y^2=4ax\]。
2.证明:若a+b=2π,且sin a = sin b,那么a=b或a+b=π…第四部分解答题1.一个圆柱形的水桶,底的圆的半径为3m,高为5m,现在要举起这个水桶,若要使得水桶倾斜的角度不超过30°,最短的杆应有多长?…第五部分分析题1.李明和王红参加了一次马拉松比赛,李明最终完成比赛用时为3小时30分钟,王红用时为4小时。
如果比赛规则是先到先赢,问谁最终胜出?…以上为镇海中学高考数学模拟试题的部分内容,希望同学们认真完成每道题目,并按照要求进行作答,祝大家考试顺利!。
镇海中学2017学年第一学期期末考试

13. 已知向量 a=(cosθ,sinθ),向量 b=( 3,−1),则|2a−b|最大值是______________________,最小值是___________________
14. 在△ABC 中,角 A,B,C 所对的边分别是 a,b,c,若 b2+c2=a2−bc,且AC∙AB=−4,则角 A=_______________,△ 15. 已知半径为 4 的圆 O 上的两点 A,B 满足|AB|= 6,则AB∙AO=________________________ ABC 的面积等于___________________
π π π 19. 已知函数 f(x)=2 3sin(x+ )∙cos(x− )+sin(2x− ) 4 4 2
(1) 求函数 f(x)的单调递增区间 (2) 若函数φ(x)=f(x)−m 在[0,
学 数 9 考 661 高 31 江 010 浙 3
墙
5π ]上仅有一个零点,求实数 m 的取值范围 12
16. 在△ABC 中,∠BAC=120°,已知∠BAC 的平分线交 BC 于点 D,且 AD=2,求 AB+AC 的最小值_______________ S S S 17. 在 Rt△ABC 中,AB=3,AC=4,BC=5,P 是△ABC 内部一点,且满足 △PAB= △PBC= △PCA,则 PA∙PB PB∙PC PC∙PA |PA|+|PB|+|PC|=___________________________ 三、解答题(本大题共 5 小题,共 74 分) 18. 已知平面上两个向量 a,b,其中 a=(1,2),|b|=2 (1) 若(a+2b)⊥(2a−b),求 a 与 b 的夹角的余弦值 (2) 若 a 在 b 的方向上的投影为−1,求 b 的坐标
浙江省镇海中学2017-2018学年高三10月模拟考试自选模块试卷 Word版含答案

2017-2018学年第二学期镇海中学模拟考高三自选模块本卷共18题,满分60分,考试时间90分钟注意事项:1.将选定的题号按规定要求填涂在答题卡的题号内;2.考生可任选6题作答,所答试题应与题号一致;多答视作无效。
语文题号:01“《论语》选读”模块(10分)阅读下面的文字,回答问题。
材料一:子路问成人①,子曰:“若臧武仲之知,公绰之不欲,卞庄子之勇,冉求之艺,文之以礼乐,亦可以为成人矣。
”曰:“今之成人者何必然?见利思义,见危授命,久要不忘平生之言,亦可以为成人矣。
”《论语·宪问》材料二:子曰:“质胜文则野,文胜质则史②。
文质彬彬,然后君子。
”《论语·雍也》材料三:棘子成曰:“君子质而已矣,何以文为?”子贡曰:“惜乎,夫子之说君子也!驷不及舌。
文犹质也,质犹文也。
虎豹之鞟犹犬羊之鞟。
”《论语·颜渊》子曰:“君子义以为质,礼以行之,孙以出之,信以成之。
君子哉!”《论语.卫灵公》【注】①成人:完人,即人格完善的人,德才兼备的人。
②史:虚浮。
1.材料一中孔子理想的“完人”具有哪些特质?(4分)2.说说上述材料所隐含的“文质观”是什么?请恰当运用材料分析说明其内涵。
(字数不超过150字)题号:02“外国小说欣赏”模块(10分)给爸爸买苹果[德]施悌恩慕尼黑,星期五晚19点左右,警官舒斯特登上了开往科隆的火车。
他走进软席车厢,里面已经坐着两个人了,于是就在他们对面坐了下来。
年长的这位靠窗而坐,在这么炎热的夏季里带着那足有两百磅的身躯旅行肯定够呛,因此他显得疲惫不堪。
而他身旁的年轻人却精神十足,看起来他好像在全神贯注地看着窗外的景色,但却没有忘记时不时地关照一下身边的年长者——这个大胖子看来已经睡着了,深沉的呼吸声告诉我们他睡得很瓷实。
“嗨,打扰您了,”年轻人小声和舒斯特攀谈起来,“我真替爸爸担心,他又在车上睡着了!这太危险了,睡着了要出事的!”“您爸爸会出什么事呢?”舒斯特笑着问他。
2017年镇海中学高中数学竞赛模拟试卷(4)

2017年镇海中学数学竞赛模拟试卷(4) 姓名_______一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上)1.若函数()3cos()sin()63f x x x ππωω=+--(0ω>)的最小正周期为π,则()f x 在区间02π⎡⎤⎢⎥⎣⎦,上的最大值为 。
2.已知集合{}2320A x x x =-+≤,13B x a x ⎧⎫=<⎨⎬-⎩⎭,若A B ⊆,则实数a 的取值范围为 。
3.函数22()ln 2f x x x x =+-零点的个数为 。
4.如图,在正方体1111ABCD A BC D -中,二面角1B AC D --的大小为 。
5.在空间四边形ABCD 中,已知2AB =,3BC =,4CD =,5DA =,则AC BD ⋅=uu u r uu u r。
6.已知直线l 过椭圆C :2212x y +=的左焦点F 且交椭圆C 于A 、B 两点。
O 为坐标原点,若OA OB ⊥,则点O 到直线AB 的距离为 。
7.已知z C ∈,若关于x 的方程23204x zx i -++=(i 为虚数单位)有实数根,则复数z 的模z的最小值为 。
C 1B 1D 1C A BD A 1BD C A8.将16本相同的书全部分给4个班级,每个班级至少有一本书,且各班所得书的数量互不相同,则不同的分配方法种数为 。
(用数字作答)9.()f x 是定义在R 的函数,若(0)1008f =,且对任意x R ∈,满足(4)()2(1)f x f x x +-≤+,(12)()6(5)f x f x x +-≥+,则(2016)2016f = 。
10.当x ,y ,z 为正数时,2224xz yzx y z+++的最大值为 。
二、解答题(共5小题,每小题20分,满分100分。
要求写出解题过程) 11.已知数列{}n a 的前n 项和22n n S a =-(*n N ∈)。
2017届高三第二次模拟考试 数学理科试题(含答案)word版

绝密★启用并使用完毕前 2017年威海市高考模拟考试理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合1{1,10,}10A =,{|lg ,}B y y x x A ==∈,则A B = A.1{}10 B. {10} C. {1} D. ∅ 2.复数11i -的共轭复数为A.11+22iB. 1122i -C. 11+22i -D. 1122i -- 3.如图,三棱锥V ABC -底面为正三角形,侧面VAC 与底面垂直且VA VC =,已知其主视图的面积为23,则其左视图的面积为4.若函数()sin()f x x ϕ=+是偶函数,则tan2ϕ=A.0B.1C.1-D. 1或1- 5.等差数列{}n a 中,10590,8S a ==,则4a =A.16B.12C.8D.66.已知命题p :函数12x y a +=-恒过(1,2)点;命题q :若函数(1)f x -为偶函数,则()f x 的图像关于VAB C第3题图直线1x =对称,则下列命题为真命题的是A.p q ∧B.p q ⌝∧⌝C.p q ⌝∧D.p q ∧⌝7.R 上的奇函数()f x 满足(3)()f x f x +=,当01x <≤时,()2x f x =,则(2012)f = A. 2- B. 2 C. 12-D. 128.函数2lg ()=xf x x的大致图像为9.椭圆2222+1(0)x y a b a b =>>的离心率为3,若直线kx y =与其一个交点的横坐标为b ,则k 的值为A.1±B.3±D. 10.设6(x 的展开式中3x 的系数为A ,二项式系数为B ,则:A B = A.4 B. 4- C.62 D.62-11.如图,菱形ABCD 的边长为2,60A ∠=,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM AN ⋅ 的最大值为 A.3 B. 6 D.912.函数()f x 的定义域为A ,若存在非零实数t ,使得对于任意()x C C A ∈⊆有,x t A +∈ 且()()f x t f x +≤,则称()f x 为C 上的t 度低调函数.已知定义域为[)0+∞,的函数()=3f x mx --,且()f x 为[)0+∞,上的6度低调函数,那么实数m 的取值范围是 A.[]0,1 B. [)+∞1, C.(],0-∞ D.(][),01,-∞+∞第Ⅱ卷( 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.某商场调查旅游鞋的销售情况,随机抽取了部分顾客C 第11题图A的购鞋尺寸,整理得如下频率分布直方图,其中直方图从左至右的前3个小矩形的面积之比为1:2:3,则购鞋尺寸在[)39.5,43.5内的顾客所占百分比为______. 14.阅读右侧程序框图,则输出的数据S 为______.15.将,,a b c 三个字母填写到3×3方格中,要求每行每列都不能出现重复字母,不同的填写方法有________种.(用数值作答)16.若集合12,n A A A 满足12n A A A A = ,则称12,n A A A 为集合A 的一种拆分.已知: ①当12123{,,}A A a a a = 时,有33种拆分; ②当1231234{,,,}A A A a a a a = 时,有47种拆分; ③当123412345{,,,}A A A A a a a a a = ,时,有515种拆分;……由以上结论,推测出一般结论:当112123{,,,}n n A A A a a a a += 有_________种拆分.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数2()sin cos 2f x x x x ωωω=⋅-(0>ω),直线1x x =,2x x =是)(x f y =图象的任意两条对称轴,且||21x x -的最小值为4π. (I )求()f x 的表达式; (Ⅱ)将函数()f x 的图象向右平移8π个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()y g x =的图象,若关于x 的方程()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,求实数k 的取值范围. 18.(本小题满分12分)某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)第14题图三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是34,23,14且各轮次通过与否相互独立. (I )设该选手参赛的轮次为ξ,求ξ的分布列和数学期望; (Ⅱ)对于(I )中的ξ,设“函数()3sin()2x f x x R ξπ+=∈是偶函数”为事件D ,求事件D 发生的概率.19.(本小题满分12分)在等比数列}{n a 中,412=a ,512163=⋅a a .设22122log 2log 2n n n a a b +=⋅,n T 为数列{}n b 的前n 项和.(Ⅰ)求n a 和n T ;(Ⅱ)若对任意的*∈N n ,不等式n n n T )1(2--<λ恒成立,求实数λ的取值范围.20.(本小题满分12分)如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段BP 上一点,∠CDP =120 ,AD =3,AP =5,PC=(Ⅰ)若F 为BP 的中点,求证:EF ∥平面PDC ; (Ⅱ)若13BF BP =,求直线AF 与平面PBC 所成角的正弦值.21.(本小题满分12分)已知函数21()ln 12a f x a x x +=++. (Ⅰ)当21-=a 时,求)(x f 在区间],1[e e上的最值;(Ⅱ)讨论函数)(x f 的单调性; (Ⅲ)当10a -<<时,有()1ln()2af x a >+-恒成立,求a 的取值范围. 22.(本小题满分14分)如图,在平面直角坐标系xoy 中,设点()0,F p (0p >), 直线l :y p =-,点P 在直线l 上移动,R 是线段PF 与x 过R 、P 分别作直线1l 、2l ,使1l PF ⊥,2l l ⊥ 12l l Q = . (Ⅰ)求动点Q 的轨迹C 的方程;F DCB APE(Ⅱ)在直线l 上任取一点M 做曲线C 的两条切线,设切点为A 、B ,求证:直线AB 恒过一定点; (Ⅲ)对(Ⅱ)求证:当直线,,MA MF MB 的斜率存在时,直线,,MA MF MB 的斜率的倒数成等差数列.理科数学参考答案一、选择题C B BD D, B A D C A, D D二、填空题13. 55% 14. 0 15. 12 16. 1(21)n n +- 三、解答题17.(本小题满分12分)解:(Ⅰ)11()sin 2sin 22sin(2)223f x x x x x πωωωω=+==+,-------------------------------------------3分由题意知,最小正周期242T ππ=⨯=,222T πππωω===,所以2ω=, ∴()sin(4)3f x x π=+-----------------------------------------6分(Ⅱ)将()f x 的图象向右平移个8π个单位后,得到sin(4)6y x π=-的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin(2)6y x π=-的图象.()sin(2).6g x x π=-所以 -------------------------9分令26x t π-=,∵02x π≤≤,∴566t ππ-≤≤()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,即函数()y g x =与y k =-在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个交点,由正弦函数的图像可知1122k -≤-<或1k -= ∴1122k -<≤或1k =-. -------------------12分18.(本小题满分12分)解:(I )ξ可能取值为1,2,3. -------------------------------2分 记“该选手通过初赛”为事件A ,“该选手通过复赛”为事件B ,31(1)()1,44321(2)()()()(1),434P P A P P AB P A P B ξξ===-=====⨯-=321(3)()()().432P P AB P A P B ξ====⨯= --------------------------5分ξ的分布列为:ξ的数学期望123.4424E ξ=⨯+⨯+⨯= -------------------------- 7分(Ⅱ)当1ξ=时,1()3sin =3sin()222x f x x πππ+=+()f x 为偶函数; 当2ξ=时,2()3sin 3sin()22x f x x πππ+==+()f x 为奇函数; 当3ξ=时,33()3sin 3sin()222x f x x πππ+==+()f x 为偶函数; ∴事件D 发生的概率是34. -----------------------------------12分19.(本小题满分12分)解:(Ⅰ)设}{n a 的公比为q ,由5121161552263==⋅=q q a a a 得21=q , ∴n n n qa a )21(22=⋅=-. ---------------------------------- 2分 22211211()2122()2log 2log 2=log 2log 21111()(21)(21)22121n n nn n a a b n n n n -++=⋅⋅==--+-+∴)1211215131311(21+--++-+-=n n T n 111)22n 121n n =-=++(. -------------------------------------5分(Ⅱ)①当n 为偶数时,由2-<n T n λ恒成立得,322)12)(2(--=+-<nn n n n λ恒成立,即min )322(--<n n λ, ----------------------------------6分 而322--n n 随n 的增大而增大,∴2=n 时0)322(min =--nn ,∴0<λ; ----------------------------------8分 ②当n 为奇数时,由2+<n T n λ恒成立得,522)12)(2(++=++<nn n n n λ恒成立,即min )522(++<nn λ, -----------------------------------9分 而95222522=+⋅≥++nn n n ,当且仅当122=⇒=n n n 等号成立,∴9<λ. ---------------------------------------11分综上,实数λ的取值范围0∞(-,). ----------------------------------------12分 20.(本小题满分12分)解(Ⅰ)取PC 的中点为O ,连FO ,DO , ∵F ,O 分别为BP ,PC 的中点, ∴FO ∥BC ,且12FO BC =, 又ABCD 为平行四边形,ED ∥BC ,且12ED BC =, ∴FO ∥ED ,且FO ED =∴四边形EFOD 是平行四边形 ---------------------------------------------2分即EF ∥DO 又EF ⊄平面PDC∴EF ∥平面PDC . --------------------------------------------- 4分 (Ⅱ)以DC 为x 轴,过D 点做DC 的垂线为y 轴,DA 为z 轴建立空间直角坐标系, 则有D (0 ,0 , 0),C (2,0,0),B (2,0,3),P(-,A (0,0,3) ------------------------------6分设(,,)F x y z,14(2,,3)(1)33BF x y z BP =--==--∴2(2),3F则2(1)3AF =- -----------------------------8分 设平面PBC 的法向量为1(,,)n x y z =P则1100n CB n PC ⎧⋅=⎪⎨⋅=⎪⎩即3040z x =⎧⎪⎨-=⎪⎩ 取1y =得1(2n = -----------------10分2cos ,AF n AF n AF n+⋅<>====⋅ ∴AF 与平面PBC. -------------------------12分21. (本小题满分12分)解:(Ⅰ)当21-=a 时,14ln 21)(2++-=x x x f , ∴xx x x x f 21221)(2-=+-='. ∵)(x f 的定义域为),0(+∞,∴由0)(='x f 得1=x . ---------------------------2分 ∴)(x f 在区间],1[e e 上的最值只可能在)(),1(),1(e f ef f 取到,而421)(,4123)1(,45)1(22e e f e e f f +=+==,∴45)1()(,421)()(min 2max==+==f x f e e f x f . ---------------------------4分(Ⅱ)2(1)()(0,)a x af x x x++'=∈+∞,. ①当01≤+a ,即1-≤a 时,)(,0)(x f x f ∴<'在),0(+∞单调递减;-------------5分 ②当0≥a 时,)(,0)(x f x f ∴>'在),0(+∞单调递增; ----------------6分③当01<<-a 时,由0)(>'x f 得1,12+->∴+->a a x a ax 或1+--<a ax (舍去) ∴)(x f 在),1(+∞+-a a 单调递增,在)1,0(+-a a上单调递减; --------------------8分 综上,当0≥a 时,)(x f 在),0(+∞单调递增;当01<<-a 时,)(x f 在),1(+∞+-a a 单调递增,在)1,0(+-a a上单调递减. 当1-≤a 时,)(x f 在),0(+∞单调递减; -----------------------9分(Ⅲ)由(Ⅱ)知,当01<<-a 时,min ()f x f =即原不等式等价于1ln()2af a >+- ---------------------------10分即111ln()212a a aa a a +-⋅+>+-+ 整理得ln(1)1a +>- ∴11a e>-, ----------------------------11分 又∵01<<-a ,所以a 的取值范围为11,0e ⎛⎫- ⎪⎝⎭. ---------------------------12分 22. (本小题满分14分)解:(Ⅰ)依题意知,点R 是线段FP 的中点,且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ---------------------------------------2分 ∴PQ QF =.故动点Q 的轨迹C 是以F 为焦点,l 为准线的抛物线,其方程为:24(0)x py p =>. -----------------------------------4分 (Ⅱ)设(,)M m p -,两切点为11(,)A x y ,22(,)B x y 由24x py =得214y x p =,求导得12y x p'=. ∴两条切线方程为1111()2y y x x x p-=- ① 2221()2y y x x x p-=-② -------------------6分对于方程①,代入点(,)M m p -得,1111()2p y x m x p --=-,又21114y x p= ∴211111()42p x x m x p p--=-整理得:2211240x mx p --= 同理对方程②有2222240x mx p --=即12,x x 为方程22240x mx p --=的两根.∴212122,4x x m x x p +==- ③ -----------------------8分设直线AB 的斜率为k ,2221211221211()4()4y y x x k x x x x p x x p--===+--所以直线AB 的方程为211211()()44x y x x x x p p-=+-,展开得:12121()44x x y x x x p p =+-,代入③得:2my x p p=+ ∴直线恒过定点(0,)p . -------------------------------------10分 (Ⅲ) 证明:由(Ⅱ)的结论,设(,)M m p -, 11(,)A x y ,22(,)B x y且有212122,4x x m x x p +==-, ∴1212,MA MB y p y pk k x m x m++==-- ----------------------------11分 ∴11MA MBk k +=1212122222221212124()4()4444x m x m x m x m p x m p x m x x y p y p x p x p p p p p------=+=+=+++++++ =1212212221122121212124()4()4()4()44()4p x m p x m p x m x p x m x pm pm mx x x x x x x x x x x x p p-----+====-------------------------------13分 又∵12MFm mk p p p==---,所以112MA MB MF k k k +=即直线,,NA NM NB 的斜率倒数成等差数列. ----------------------------14分。
浙江省镇海中学2017-2018学年高三10月模拟考试理数试题 Word版含解析

浙江省镇海中学2017-2018学年高三 模拟考试理数试题一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{|12}M x x =-≤<,2{|log 0}N x x =>,则MN =( )A .[1,)-+∞B .(1,)+∞C .(1,2)-D .(0,2) 【答案】A考点:对数不等式的解法及集合的运算. 2.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .{}n a 为等比数列,则“123a a a <<”是“45a a <”的既不充分也不必要条件C .0(,0)x ∃∈-∞,使0034x x<成立D .“若tan α≠3πα≠”是真命题【答案】D 【解析】试题分析:对于答案A ,“若1a >,则21a >”的否命题是“若1≤a ,则21a ≤”;对于答案B ,若“123a a a <<”则“45a a <”成立;对于答案C ,0(,0)x ∃∈-∞,使0034x x<不成立;对于答案D ,“若tan α≠3πα≠”是真命题成立,故应选D.考点:命题的真假及充分必要条件的等知识的综合运用.3.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题为真的是( )A .若,m n αβ⊥⊥,且αβ⊥,则m n ⊥B .若//,//m n αβ,且//αβ,则//m nC .若,m n αβ⊥⊂,且m n ⊥,则αβ⊥D .若,m n αα⊂⊂,且//,//m n ββ,则//αβ 【答案】A 【解析】试题分析:由线面垂直的判定定理及面面垂直的性质定理可得答案A 是正确的,其余答案都是错误的.故应选A.考点:空间的线面位置关系的判定与性质的运用. 4.已知sin (1,)sin(2)A ααβ+,sin (2,1)sin(2)B ααβ--,且0OA OB ∙=,sin 0β≠,sin cos 0k αβ-=,则k =( )A. C.以上都不对 【答案】C考点:三角变换的有关公式及综合运用.5.过平面区域202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩内一点P 作圆22:1O x y +=的两条切线,切点分别为,A B ,记APB α∠=,则当α最小时cos α的值为( )A .10B .1920C .910D .12【答案】C 【解析】试题分析:因为009020<<α,而OP OP r 12sin==α,所以OP 最大时, 2sin α最小, 2α最小.结合图象可知点)2,4(--M ,故OP 的最大值为52416=+=PM ,则10910112sin 21cos 2=-=-=αα,应选C. 考点:线性规划、二倍角的余弦等有关知识的综合运用.6.在数列{}n a 中,若存在非零整数T ,使得m T m a a +=对于任意的正整数m 均成立,那么称数列{}n a为周期数列,其中T 叫做数列{}n a 的周期,若数列{}n x 满足11||(2,)n n n x x x n n N +-=-≥∈,如121,x x a ==(,0a R a ∈≠),当数列{}n x 的周期最小时,该数列的前2016项的和是( ) A .672 B .673 C .1342 D .1344 【答案】D考点:周期数列的性质与求和.【易错点晴】本题以数列的有关知识为背景,考查的是归纳猜想的合情推理等知识的综合运用所学知识的综合问题.求解时充分借助题设条件中的有效信息,利用题设观察出⋅⋅⋅-=====-===,1,,1,1,,136514321a x x a x x x a x a x x 这些数的特征和规律,然后再计算出2321=++x x x ,而67232016=÷,进而利用数列的周期性求出数列{}n x 的前2016项和的值为13442672=⨯.7.在椭圆22221(0)x y a b a b+=>>上有一点P ,椭圆内一点Q 在2PF 的延长线上,满足1QF QP ⊥,若15sin 13F PQ ∠=,则该椭圆离心率取值范围是( )A .1(5B .C .1(5D . 【答案】D考点:椭圆的定义余弦定理与基本不等式等知识的综合运用.【易错点晴】本题考查的是椭圆的几何性质与函数方程的数学思想的范围问题,解答时先运用余弦定理建立131224222⨯-+=mn n m c ,再借助椭圆的定义将其等价转化为)13121(24422+-=mn a c ,然后再运用基本不等式22)2(a n m mn =+≤将其转化为不等式2222)(2552a c a <-,最后通过解该不等式将该椭圆的离心率求出2,从而获得答案.8.已知函数22,0()3||,0x x f x x a a x ⎧->=⎨-++<⎩的图象上恰有三对点关于原点成中心对称,则a 的取值范围是( )A .17(,2)8--B .17(,2]8--C .17[1,)16 D .17(1,)16【答案】D 【解析】试题分析:当2-=a 时,函数⎩⎨⎧<--->-=0,2|2|30,2)(2x x x x x f ,结合图象可知不存在三对点关于原点成中心对称,所以答案B 不正确. 当1=a 时,函数⎩⎨⎧<++->-=0,1|1|30,2)(2x x x x x f ,结合图象可知不存在三对点关于原点成中心对称,所以答案C 也不正确. 当1612-=a 时,函数⎪⎩⎪⎨⎧<--->-=0,1612|1612|30,2)(2x x x x x f ,结合图象可知不存在三对点关于原点成中心对称,所以答案A 也不正确.故应选D.考点:分段函数的图象和性质及综合运用.【易错点晴】本题考查的是分段函数的图象和性质与数形结合的数学思想的范围问题,解答时运用排除法逐一分情况代入检验特殊值1,2,1612--=a ,求出分段函数的解析式分别为⎪⎩⎪⎨⎧<--->-=0,1612|1612|30,2)(2x x x x x f ,⎩⎨⎧<--->-=0,2|2|30,2)(2x x x x x f ,⎩⎨⎧<++->-=0,1|1|30,2)(2x x x x x f ,分别作出这些函数的图象,并对每个函数的图象进行分析,逐一检验图象是否满足题设中的条件,排除不满足的函数的图象的情况和不满足题设条件的答案和选择支最后选答案.第Ⅱ卷(非选择题共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,满分36分.) 9.函数()sin()(0,0,)f x A x A R ωϕωϕ=+>>∈的部分图象如图所示,则将()y f x =的图象向右平移6π个单位后得到()g x ,得到的函数图象对称轴为 ,函数()g x 解析式为.【答案】()32k x k Z ππ=+∈ sin(2)6y x π=- 【解析】试题分析:由题设可知6121143,1ππ-==T A ,即π==T A ,1,所以22==ππω,所以)2sin()(ϕ+=x x f ,又因为1)3sin()6(=+=ϕππf ,解之得223πππϕ+=+k ,故62ππϕ+=k ,所以)62sin()(π+=x x f ,将其向右平移6π可得)62sin(]6)6(2sin[)(πππ-=+-=x x x g ,故其对称轴方程满足262πππ+=-k x ,即)(32Z k k x ∈+=ππ,对应的表达式为)62sin()(π-=x x g .应填()32k x k Z ππ=+∈,sin(2)6y x π=-.考点:三角函数的图象和性质的运用.10.已知点(,)P a b 关于直线l 的对称点为'(1,1)P b a +-,则圆22:620C x y x y +--=关于直线l对称的圆'C 的方程为 ;圆C 与圆'C 的公共弦的长度为 .【答案】22(2)(2)10x y -+-=考点:直线与圆的方程及运用.11.已知某几何体的三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,则该几何体的表面积是 ;体积是 .【答案】64+1603【解析】试题分析:由题设三视图中所提供的信息可知该几何体是一个四棱锥和一个三棱锥的组合体,如图其全面积232644242124)84(214)84(21442184+=⨯⨯+⨯++⨯++⨯⨯+⨯=S ,其体积为31604)8421(314]4)84(21[31=⨯⨯⨯+⨯⨯+=V ,故应填64+1603.448考点:三视图的识读与几何体的体积的运用.12.已知函数223,0()log ||,0x x f x x x x ⎧+≥=⎨∙<⎩,则1(())2f f -= ,若()1f x ax =-有三个零点,则a 的取值范围是 .【答案】1344a>考点:分段函数的求值与数形结合思想的运用.13.设P是函数2(0)y x xx=+>的图象上任意一点,过点P分别向直线y x=和y轴作垂线,垂足分别为,A B ,则PA PB ∙的值是 . 【答案】1-考点:向量的数量积公式及运用. 14.已知方程组222x y z yz x μμ-=-⎧⎨=⎩,对此方程组的每一组正实数解{,,,}x y z u ,其中z y ≥,都存在正实数M ,且满足zM y≤,则M 的最大值是 .【答案】6+【解析】试题分析:因为yz x x z y 42222=≥+=+μμ,所以y z y z 42≥+,令1>=t yz,则242≥-t t ,所以2)2(2≥-t ,即22+≥t ,所以246+≥yz,则246+≤M ,应填6+考点:多元方程组的解法及基本不等式的综合运用.【易错点晴】本题以多元方程组222x y z yz x μμ-=-⎧⎨=⎩的解),,,(μz y x 满足的条件z y ≥为背景,借助题设条件与基本不等式建立不等关系式yz x x z y 42222=≥+=+μμ,然后通过换元1>=t yz建立关于t 的不等式242≥-t t .最后通过解不等式242≥-t t ,从而求得22+≥t ,所以246+≥y z ,由于zM y≤,因此246+≤M ,M 的最大值是6+15.如图,在平面四边形ABCD 中,已知,,,E F G H 分别是棱,,,AB BC CD DA 的中点,若22||||1EG HF -=,设||,||,||,||1AD x BC y AB z CD ====,则228x yz ++的最大值是.【答案】12【解析】试题分析:由题设可得))((1)()(cos ))((2)()(1cos 22222222222y n x m m n y n x m z n m y n x m y n x m m n n m z ++=-+++-+⇒⎪⎩⎪⎨⎧++-+++=-+=θθ,运用基本不等式可得式))((12222222y n x m mn mx ny xy mn z n m ++≥-+++-+,从而求得82≤z ;同理可得42≥+y x ,所以228x y z ++的最大值是2184=,故应填12.考点:基本不等式及运用.【易错点晴】本题以平面四边形ABCD 所满足的条件22||||1EG HF -=,1=AD 为背景,精心设置了一道求228x yz ++的最大值的问题.求解时先运用余弦定理并借助题设22||||1EG HF -=建立方程组))((1)()(cos ))((2)()(1cos 22222222222y n x m m n y n x m z n m y n x m y n x m m n n m z ++=-+++-+⇒⎪⎩⎪⎨⎧++-+++=-+=θθ,然后借助基本不等式建立关系式))((12222222y n x m mnmx ny xy mn z n m ++≥-+++-+,从而求得82≤z ;同理可得42≥+y x ,所以228x y z ++的最大值是2184=. 三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本题满分14分)在ABC ∆中,边,,a b c 的对角分别为,,A B C ,且,,A B C 成等差数列. (1)求a cb+的取值范围;(2)若AC ,求角A 的值. 【答案】(1)(1,2];(2)6A π=.试题解析:(1)因为,,A B C 成等差数列,所以2B A C =+,而A B C π++=,所以3B π=.由余弦定理,222b ac ac =+-① 所以2222231()3()()()44b ac ac a c a c a c =+-≥+-+=+, 故2a cb+≤,当且仅当a c =时取等号, 另一方面a c b +>,故1a cb+>, 综上,a c b+的取值范围是(1,2].法二:由正弦定理得sin sin 2sin()sin 3a c A C Ab B π++==+, 因为203A π<<,所以(1,2]a cb+∈.考点:余弦定理及基本不等式等有关知识的综合运用. 17.(本题满分15分)如图,ABC ∆为正三角形,且2BC CD ==,CD BC ⊥,将ABC ∆沿BC 翻折.(1)若点A 的射影在BD 上,求AD 的长;(2)若点A 的射影在BCD ∆内,且AB 与面ACD 所成的角的正弦值为11,求AD 的长.【答案】(1)2AD =;(2)AD =【解析】试题分析:(1)借助题设条件建立空间直角坐标系运用空间向量的知识求解;(2)借助题设运用空间向量的数量积公式探求. 试题解析:(1)取BC 的中点O ,如图以O 为原点建立空间直角坐标系,则(0,1(1,2,0)A D ,则2AD =.考点:空间向量的数量积公式及有关知识的综合运用. 18.(本题满分15分)已知函数2()|1|1()f x x ax a R =---∈.(1)若关于x 的方程2()10f x x ++=在区间(0,2]上有两个不同的解12,x x . (ⅰ)求a 的取值范围; (ⅱ)若12x x <,求1211x x +的取值范围; (2)设函数()f x 在区间[0,2]上的最大值和最小值分别为(),()M a m a ,求()()()g a M a m a =-的表达式.【答案】(1)(i )7(1,]2;(ii )(2,4];(2)222,42,244()1,123,1122,1a a a a g a a a a a a a -≥⎧⎪⎪+≤<⎪⎪=+≤<⎨⎪--≤<⎪-≤-⎪⎪⎩.(ⅰ)作出函数1,0112,12x xy x x x ⎧<≤⎪⎪=⎨⎪-<≤⎪⎩图象,得712a <≤,故a 的取值范围是7(1,]2. (ⅱ)∵12x x <,11a x =,2212a x x =-, 则有212112x x x =-,即212112x x x +=, 又212x <≤,∴212112(2,4]x x x +=∈, 故1211x x +的取值范围是(2,4]. (2)22,01()2,12x ax x f x x ax x ⎧--≤≤=⎨--<≤⎩,当4a ≥时,有0,222a a-<≥,()f x 在[0,2]上为减函数, 则()(0)(2)22g a f f a =-=-. 当24a ≤<时,有0,1222a a -<≤<,()f x 在[0,]2a 上为减函数,在[,2]2a上为增函数, 此时2()()224a a m a f ==--,()max{(0),(2)}0M a f f ==,则2()24a g a =+. 当02a ≤<时,有0,0122a a-<≤<,()f x 在[0,1]上为减函数,在[1,2]上为增函数, 此时,()(1)1m a f a ==--,22,01()max{(0),(2)}0,12a a M a f f a -≤<⎧==⎨≤<⎩,则3,01()22,12a a g a a a -≤<⎧=⎨-≤<⎩.当20a -<<时,有012a <-<,02a <,()f x 在[0,]2a -上为增函数,在[,1]2a-上为减函数,在[1,2]上为增函数,此时1,10()min{(0),(1)}0,21a a m a f f a --<<⎧==⎨-<≤-⎩,()max{(),(2)}222aM a f f a =-=-,则3,10()22,21a a g a a a --<<⎧=⎨--<≤-⎩.当2a ≤-时,有1,022a a-≥<,()f x 在[0,2]上为增函数, 则()(2)(0)22g a f f a =-=-.则222,42,244()1,123,1122,1a a a a g a a a a a a a -≥⎧⎪⎪+≤<⎪⎪=+≤<⎨⎪--≤<⎪-≤-⎪⎪⎩考点:二次函数的图象和性质及不等式的性质等有关知识的综合运用. 19.(本题满分15分)已知抛物线24x y =的焦点为F ,,A B 是抛物线上的两个动点,且(0)AF FB λλ=>,过,A B 两点分别作抛物线的切线,设其交点为M .(1)证明:FM AB ∙为定值;(2)设ABM ∆的面积为S ,求S 的最小值. 【答案】(1)证明见解析;(2)4.(2)2||4(1),AB k d =+=所以322214(1)4(1)42S k k =⨯+⨯=+≥,所以S 的最小值为4.考点:向量的数量积公式和抛物线的几何性质等有关知识的综合运用.【易错点晴】本题重在考查圆锥曲线中的代表曲线抛物线与直线的位置关系等有关知识的综合运用问题.求解时要充分利用题设中所提供的信息,先运用向量的数量积公式求出1212(,)24x x x x M +,再求出222121(,)(2,2)04x x AB FM x x k -∙=-∙-=.第二问借助曲线的弦长公式求得2||4(1),AB k d =+=,进而求得ABM∆的面积322214(114(1)42S kk =⨯++=+≥,即求得面积S 的最小值为4,从而使得使问题获解.20.(本题满分15分) 已知数列{}n a 满足112a =,都有3*112,33n n n a a a n N +=+∈.(1)求证:11*1213()(),2324n n n a n N --∙≤≤∙∈; (2)求证:当*n N ∈时,313124241231231111116[1()]111112n n n n n a a a a a a a a a a a a a a a a ++----++++≥+++++-----. 【答案】(1)证明见解析;(2)证明见解析.当2n ≥时,132112113()24n n n n a a a a a a a a --=∙∙∙∙≤∙, 且132112112()23n n n n a a a a a a a a --=∙∙∙∙>∙, 又001213()()2324n a ⨯≤≤⨯,∴111213()()2324n n n a --⨯≤≤⨯,*n N ∈. (2)∵11111(1)1(1)3n n n n n n n n n a a a a a a a a a +++---==+--,又321111(23)(1)(3)33n n n n n n a a a a a a ++=++=+-+,∴3211111111(3)[()3]1332212n n n n a a a a ++=-+≥-+=+.当2n ≥时,13211211113111(1)()111212n n n n a a a a a a a a --++++=+∙∙∙∙≥∙+++,又1113111()212a -+=∙,∴11111(1)()3212n n a -+≥∙. ∴3131242123121111()()1111n n n na a aa a a a a a a a a a a ++----++++-+++---- 121[(1)(1)(1)]3n a a a =++++++1111()1111111112[1()]6[1()]1121212212112nn n --≥+++=∙=-- ∴3131242123121111116[1()]111112n n n n n a a a a a a a a a a a a a a ++----++++≥++++----- 考点:数列的有关知识和不等式的性质等有关知识的综合运用.【易错点晴】数列是高中数学中的重要内容之一,也是高考和各级各类考试的重要内容和考点.解答本题时要充分利用题设中提供的有关信息,借助题设数列的递推关系式3*112,33n n n a a a n N +=+∈,运用缩放的数学数学思想进行推理论证的思想方法证明了不等式111213()()2324n n n a --⨯≤≤⨯的成立.第二问题中,先运用不等式13211211113111(1)()111212n n n n a a a a a a a a --++++=+∙∙∙∙≥∙+++及有关性质进行推算,进而使用缩放的方法进行推证,从而使得两个不等式获得证明.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成四个部分,则k与m满足的关系为()
2017年镇海中学高考模拟数学试卷(理科)
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一
项是符合题目要求的。
(1)已知复数z满足zi2i,i为虚数单位,则z()
(A)12i(B)12i(C)12i(D)12i
影
()
(A){x|x1}(B){x|1x2}(C){x|0x1}(D){x|x1}
(3)设m,n是空间两条不同直线,,是空间两个不同平面,则下列选
项中不正确的是()
(A)当n⊥时,“n⊥”是“∥”成立的充要条件
(B)当m时,“m⊥”是“”的充分不必要条件
(C)当m时,“n//”是“m//n”必要不充分条件
(D)当m时,“n”是“mn”的充分不必要条件
(4)已知函数f(x)Asin(x)的图像如右图所示,又
y
2
f(),那么f(0)Hale Waihona Puke 值为()232211
(A)(B)(C)(D)
3322
2
3
o
π11π
212
7π
12
x
1m
)
(A)21(B)21(C)7(D)7
(6)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则
该几何体的体积为()
(A)63(B)93(C)123(D)183