《过不共线三点作圆》教案新部编本
九年级数学下册2.4过不共线三点作圆教案(新版)湘教版

2.4 过不共线三点作圆1.掌握过不共线的三点作圆的方法;2.认识三角形的外接圆和外心的概念,并会进行运用.(重点)一、情境导入如图所示,点A ,B ,C 表示因支援三峡工程建设而移民的某县新建的三个移民新村.这三个新村地理位置优越,空气清新,环境幽雅.花园式的建筑住宅让人心旷神怡,但迁居后发现一个极大的现实问题:学生目前就读的学校离家太远,给学生上学和家长接送学生带来了很大的麻烦.根据上面的实际情况,政府决定为这三个新村就近新建一所学校,让三个村到学校的距离相等,你能帮助他们为学校选址吗?二、合作探究探究点一:过不共线三点作圆如图,AB ︵是一座石拱桥的桥拱.请你确定出AB ︵所在圆的圆心.解析:要作AB ︵所在圆的圆心,就要在AB ︵上确定三点.找与这三点距离都相等的那个点.即是圆心.解:作法:1.在AB ︵上任找异于A 、B 的一点C ;2.连接AC 、BC ;3.分别作线段AC 、BC 的垂直平分线,两线交于点O ,则点O 即为所求作的AB ︵所在圆的圆心.方法总结:确定已知弧所在圆的圆心,只需在弧上任取两条弦,这两条弦的垂直平分线的交点即为圆心.探究点二:三角形的外接圆及外心的相关计算【类型一】 与圆的内接三角形有关的角的计算如图,△ABC 内接于⊙O ,若∠OAB =20°,则∠C 的度数是________.解析:由OA =OB ,知∠OAB =∠OBA =20°,所以∠AOB =140°,根据圆周角定理,得∠C =12∠AOB =70°.故填70°. 方法总结:在圆中求圆周角的度数,可以根据圆周角定理找相等的角实现互换,也可以寻找同弧所对的圆周角与圆心角的关系.【类型二】 与圆的内接三角形有关线段的计算如图,在△ABC 中,O 是它的外心,BC =24cm ,O 到BC 的距离是5cm ,求△ABC 的外接圆的半径.解:连接OB ,过点O 作OD ⊥BC 于D ,则OD =5cm ,BD =12BC =12cm.在Rt△OBD 中,OB =OD 2+BD 2=52+122=13(cm).即△ABC 的外接圆的半径为13cm.方法总结:由外心的定义可知外接圆的半径等于OB ,过点O 作OD ⊥BC ,易得BD =12cm.由此可求它的外接圆的半径.三、板书设计教学过程中,强调三角形的外接圆的圆心到三角形三个顶点的距离相离,它是三角形三边垂直平分线的交点.在圆中充分利用这一点可解决相关的计算问题. 第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
过三点的圆数学教案

过三点的圆数学教案
主题:过三点的圆
一、教学目标:
1. 理解并掌握如何通过三个不在同一直线上的点作圆。
2. 能够运用所学知识解决实际问题。
3. 培养学生的观察力、思考能力和解决问题的能力。
二、教学重点与难点:
1. 重点:过三点作圆的方法。
2. 难点:理解为什么必须是三个不在同一直线上的点才能确定一个圆。
三、教学过程:
1. 引入新课:
教师可以通过展示一些关于圆形的实物或图片,引导学生讨论并思考,引出“如何确定一个圆”的问题。
2. 讲授新知:
(1)定义:不在同一条直线上的三个点确定一个圆。
(2)过三点作圆的方法:
a. 找到任意两点连线的中垂线;
b. 第三个点到这条中垂线的距离就是圆的半径;
c. 以中垂线的交点为圆心,以半径画圆。
3. 演示与实践:
教师在黑板上演示过三点作圆的过程,然后让学生自己动手尝试。
4. 练习与应用:
设计一些相关的练习题,让学生巩固所学的知识,并能运用到实际问题中。
5. 小结:
总结本节课的主要内容,强调重点和难点。
6. 作业布置:
布置一些相关习题,要求学生回家完成。
四、教学评价:
通过课堂观察、作业批改和测验等方式,对学生的学习情况进行评估。
《过不在同一直线上的三点作圆》教案-02

《过不在同一直线上的三点作圆》教案【知识与技能】1.理解确定圆的条件及外接圆外心的定义。
2.掌握三角形外接圆的画法。
【过程与方法】经历过不在一直线上的三点确定一个圆的探索过程,让学生会用尺规作过不在同一直线上的三点的圆。
【情感态度与价值观】在探究过不在同一直线上的三点确定一个圆的过程中,进一步培养探究能力和动手能力。
教学重点和难点【重点】(1)确定圆的条件和外心的定义。
(2)三角形外接圆的画法。
【难点】过不共线的三点的圆的圆心的确定。
教学过程一 创设情境,导入新课1.几点确定一条直线?既然一条直线可以由两点确定,那么一个圆需要几点才能确定呢?2.如图一考古学家在马王堆汉墓挖掘时,发现一圆形瓷器碎片,为了便于进行研究,这位考古学家想画出这个碎片所在的圆,你能帮助他解决这个问题吗?为了解决上面问题我来学习:3.1.3过不在同一直线上的三点作圆二合作交流,探究新知 1探究确定圆的条件(1)如何过点A 作圆,可以作多少个圆?(学生独立完成) 教师归纳:任意取点O 作圆心,OA 为半径作圆。
(2)如何过两点作圆?过两点可以作多少个圆?已知点,圆心确定以后,半径也随之确定,因此,关键是确定圆心. ①过A 、B 两点的圆的圆心在哪儿?由于A 、B 两点在圆上,所以OA=OB,因此点O 在AB 的垂直平分线上。
② 如何过A 、B 两点作圆?以线段AB 垂直平分线上任意一点O 为圆心,OA 长为半径作圆。
③ 过A 、B 两点可以作多少个圆?由于AB 垂直平分线上任意一点都可以作为圆心,因此可以作无数个圆。
学生完成作图(3)如何过不在同一直线上的三点作圆? 已知:不在同一直线上的三点A、B、C(如图) 求作:⊙O,使它经过点A、B、C.分析:由于圆O 经过点A 、B 、C ,因此点OA=OB=OC,于是点O 在线段AB 的垂直平分线上,也在BC 的垂直平分线上。
作法:① 连接AB ,作AB 的垂直平分线EF , ② 连接BC ,作BC 的垂直平分线MN 交EF 于O.③ 以O 为圆心,OA 为半径作圆,则圆O 就是要作的圆。
九年级数学下册 2_4 过不共线三点作圆学案2(新版)湘教版

2.4 过不共线三点作圆 学习目标 1. 了解不共线三点确定一个圆的方法,三角形的外接圆及外心等概念;2. 经历不共线三个点确定一个圆的探索过程,培养学生的探索能力.重点难点 重点:掌握过不共线三点作圆的方法,了解三角形的外接圆及外心等概念.难点:怎么样去确定过不在同一条直线上的三点的圆的圆心.学习过程:一、课前抽测: A B1.怎样作线段的垂直平分线?已知线段AB ,求作:线段AB 的垂直平分线L2.三角形两边垂直平分线的交点到三角形三个顶点的距离是否相等?若在△ABC 中,边AB 与边BC 的垂直平分线交于点P ,则PA= = ,为什么?3.位置和大小确定一个圆.决定圆的大小的是圆的 ,决定圆的位置的是 .二、自主学习:阅读教材,回答下列问题.1.(1)经过一个已知点A画圆; ·A想一想:经过已知点A 可以画多少个圆?(2)经过两个已知点C 、B 画圆.想一想:①经过两个已知点可以画多少个圆?C · · B②圆心在哪儿?半径怎么确定?B CA P2.设三点A,B,C不在同一直线上.⑴过三点A,B,C的圆的圆心在哪儿?怎么确定?A··BC·⑵过不在同一直线上的三点A,B,C如何作圆?已知:不在同一直线上的三点A,B,C,求作:圆O,使它经过点A,B,C.作法: ①连结AB,作线段AB的;②连结BC,作线段BC的;③以和的交点O为圆心,以为半径作圆,则圆O就是所求作的圆.⑶过不在同一直线上的三点A,B,C能作多少个圆?为什么?⑷过同一直线上的三点A,B,C能作一个圆吗?为什么?定理:不在同一直线上的三个点 .强调:(1)过同一直线上三点不行;(2)“确定”一词应理解成“有且只有”. 3.三角形的外接圆: .圆的内接三角形:.外心: .三、合作探究:例1:作出下列三角形的外接圆(只要作图痕迹,不要求作法)归纳:锐角三角形的外心在三角形的直角三角形的外心是三角形钝角三角形的外心在三角形的四、展示质疑:1.如图,A 、B 、C 表示三个工厂,要建一个供水站,使它到这三个工厂的距离相等,求供水站的位置(用点P 表示,保留作图痕迹)。
九年级数学下册《过不共线三点作圆》优秀教学案例

在本章节的教学过程中,教师应关注学生的全面发展,将知识与技能、过程与方法、情感态度与价值观有机地结合起来,使学生在掌握基本几何知识的同时,提高自身的综合素质,为未来的学习和发展奠定坚实的基础。
三、教学策略
(一)情景创设
1.创设生活化的教学情境,以学生熟悉的事物或场景作为引入,如校园里的圆形花坛、篮球场的圆形边界等,让学生感受到圆就在我们的身边,激发他们的学习兴趣。
4.通过对几何性质的学习和证明,使学生掌握几何学的基本研究方法和思维方式,提高学生的几何素养。
(三)情感态度与价值观
1.激发学生对数学几何学科的兴趣,培养他们主动探究、勇于创新的科学精神。
2.培养学生严谨、细心的学习态度,使他们认识到几何学习的严密性和逻辑性,从而提高学习的自觉性和自律性。
3.引导学生关注数学与生活的联系,体会数学在现实生活中的广泛应用,增强数学学习的实用性和价值感。
3.教师巡回指导,关注每个小组的讨论情况,给予适当的提示和引导,确保讨论的有效性。
(四)总结归纳
1.邀请各小组代表汇报讨论成果,让学生在倾听他人观点的过程中,加深对知识点的理解。
2.教师针对学生的讨论成果进行点评,总结“过不共线三点作圆”的基本原理、尺规作图方法以及几何证明过程。
3.强调本节课的重点和难点,指导学生掌握几何学习的思维方法和技巧。
4.能够运用所学的知识,解决一些与圆相关的实际问题,如测量圆形场地、设计圆形图案等。
(二)过程与方法
1.通过小组合作和自主探究,培养学生的团队合作意识和解决问题的能力,让学生在实践中学会如何观察、分析和解决问题。
2.引导学生运用尺规作图、直观演示等方法,提高学生的动手操作能力和空间想象能力。
《过不共线三点做圆 》教案 (同课异构)2022年湘教版 (2)

一、 复习引入
1. 怎样作线段的垂直平分线?
2. 三角形两边垂直平分线的交点到三角形三 个顶点的距离是否相等?
3. 位置和大小确定 一个圆.决定圆的大小的是圆的
,决定圆的位置的
是
.
4. 几点可以确定一条直线?
既然一条直线可 以由 点来确定,那么一个圆需用几点来确定呢?今天这节课就
来研究这个问题.
二、 讲授新课
〔1〕求 B 点的坐标和 k 的值;〔2〕假设点 A〔x,y〕是第一象限内的 直线 y=kx-1 上的一个动点.当点 A 运动过程中,试写出△AOB 的面积 S 与 x 的函数关系式;〔3〕探索:①当点 A 运动到什么位置时,△AOB 的
B
O
x
2.如图 2,点 A 的坐标为(-1,0),点 B 在直线 y x 上 运动,当线段 AB 最短时,点 B 的坐标为〔 〕
y
A
B 〔1 题〕
A.〔0,0〕
B.〔-1,-1〕
C.〔- 1 ,- 1 〕 D.〔- 2 ,- 2 〕
A
O
x
22
2
2
3.沪杭高速铁路已开工建设,在研究列车的行驶速度时, 〔2 题〕
O1
A
O2
B
O3
接下下来我们来学习过三个点画圆. 〔板书课题〕
A
2. 例:作圆,使它经过不在同一直线上的三个点.
:不在同一直线上的三点A、B、C〔如图〕 求作:⊙O,使它经过点A、B、C.
分析:
O
B C
以前 我们学过三角形两边垂直平分线的交点到三角形三个顶点的距离相等,假设把三
个点看作是三角形的三个顶点构造三角形 ,那么 ,两边垂直平分线的交点就是我们要找的
湘教版数学九年级下册《2.4 过不共线三点作圆》教学设计2

湘教版数学九年级下册《2.4 过不共线三点作圆》教学设计2一. 教材分析《2.4 过不共线三点作圆》是湘教版数学九年级下册的一节内容。
本节课主要让学生掌握过不共线三点作圆的方法,理解圆的性质,并能够运用这些知识解决一些实际问题。
教材通过实例引入,让学生观察、思考、探索,从而得出圆的定义和性质。
教材还提供了丰富的练习题,帮助学生巩固所学知识。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的周长、面积等。
但学生对于过不共线三点作圆的方法可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
此外,学生可能对圆的性质的理解还不够深入,需要在教学中进行引导和拓展。
三. 教学目标1.知识与技能目标:让学生掌握过不共线三点作圆的方法,理解圆的性质。
2.过程与方法目标:通过观察、思考、探索,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:过不共线三点作圆的方法,圆的性质。
2.难点:对圆的性质的理解和运用。
五. 教学方法1.情境教学法:通过实例引入,让学生观察、思考、探索,从而得出圆的定义和性质。
2.问题驱动法:提出问题,引导学生思考,激发学生的学习兴趣。
3.合作学习法:分组讨论,培养学生的团队合作意识和自主学习能力。
六. 教学准备1.准备相关的实例和练习题,用于引导学生观察、思考、探索。
2.准备多媒体教学设备,如投影仪、电脑等,用于展示实例和讲解。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如地图上的圆形区域,引起学生的兴趣。
提出问题:如何通过这三个点作圆呢?引导学生思考。
2.呈现(10分钟)通过实例展示过不共线三点作圆的方法,引导学生观察、思考。
讲解圆的定义和性质,如圆的半径、直径等。
3.操练(10分钟)让学生分组讨论,每组选择三个不共线的点,尝试用所学的方法作圆。
教师巡回指导,解答学生的问题。
《2.4过不共线三点作圆》作业设计方案-初中数学湘教版12九年级下册

《过不共线三点作圆》作业设计方案(第一课时)一、作业目标1. 使学生熟练掌握不共线三点作圆的几何知识。
2. 提升学生的几何图形的操作和画图能力。
3. 通过实际作业加深学生对课堂知识点的理解,并能运用到实际解题中。
二、作业内容本次作业的内容主要是关于“过不共线三点作圆”的学习,主要步骤包括:1. 基础理论复习:学生需复习圆的基本性质,以及如何通过不共线的三点确定一个圆的原理。
2. 题目实践练习:(1) 提供一系列关于“过不共线三点作圆”的例题和练习题,题型涵盖文字表述题、图解题和解析几何题等。
(2) 学生需根据题目要求,利用几何工具(如直尺、圆规等)在纸上完成作图,并标注相关数据。
(3) 对于文字表述的题目,学生需要转化为几何图形进行理解分析。
三、作业要求1. 学生应保证每次作图都是独立完成的,不可抄袭或互相借鉴。
2. 图形绘制应准确、清晰,符合几何规范。
3. 标注的数据应准确无误,符合题目要求。
4. 学生在完成题目后,需对解题过程进行反思和总结,找出自己的不足和错误,以便下次改正。
5. 作业需按时提交,不得拖延。
四、作业评价1. 教师将根据学生的作业完成情况、图形绘制准确性、数据标注的准确性等方面进行评价。
2. 对于完成较好的学生,教师将给予表扬和鼓励;对于完成较差的学生,教师将指出其不足之处,并给予指导。
3. 教师将对整个班级的作业情况进行总结,找出共性问题,以便在课堂上进行讲解和纠正。
五、作业反馈1. 教师将在课堂上对作业进行讲评,重点讲解共性问题和学生普遍出现的错误。
2. 对于学生在作业中出现的错误,教师将进行指导纠正,并引导学生自己找出错误原因及改正方法。
3. 教师将鼓励学生之间互相交流学习,分享解题经验和技巧。
4. 作业反馈将作为学生平时成绩的一部分,以激励学生认真完成每一次作业。
作业设计方案(第二课时)一、作业目标本作业设计旨在通过巩固“过不共线三点作圆”这一课题的学习内容,让学生熟练掌握圆的性质与几何图形的构造,同时培养学生分析问题和解决问题的能力,并提升其数学思维的严谨性和创造性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师学科教案[ 20 – 20 学年度第__学期]
任教学科:_____________
任教年级:_____________
任教老师:_____________
xx市实验学校
《过不共线三点作圆》教案
教学目标
知识与技能
1.理解、确定圆的条件及外接圆和外心的定义.
2.掌握三角形外接圆的画法.
过程与方法
经过不在同一直线上的三点确定一个圆的探索过程,让我们学会用尺规作不在同一直线上的三点的圆.
情感态度
在探究过不在同一直线上的三点确定一个圆的过程中,进一步培养探究能力和动手能力,提高学习数学的兴趣.
教学重点
确定圆的条件及外接圆和外心的定义.
教学难点
任意三角形的外接圆的作法.
教学过程
一、情境导入,初步认识
如图所示,点A,B,C表示因支援三峡工程建设而移民的某县新建的三个移
民新村.这三个新村地理位置优越,空气清新,环境幽雅.花园式的建筑住宅让人
心旷神怡,但安居后发现一个极大的现实问题:学生就读的学校离家太远,给学生
上学和家长接送学生带来了很大的麻烦.
根据上面的实际情况,政府决定为这三个新村就近新建一所学校,让三个村到学校的距离相等,你能帮助他们为学校选址吗?
二、思考探究,获取新知
1.确定圆的条件活动1如何过一点A作一个圆?过点A可以作多少个圆?
活动2如何过两点A、B作一个圆?过两点可以作多少个圆?
【教学说明】以上两个问题要求学生独立动手完成,让学生初步体会,已知一点和已知两点都不能确定一个圆,并帮助学生得出如下结论.
(1)过平面内一个点A的圆,是以点A以外的任意一点为圆心,以这点到A的距离为半径的圆,这样的圆有无数个.
(2)经过平面内两个点A,B的圆,是以线段AB垂直平分线上的任意一点为圆心,以这一点到A或B的距离为半径的圆.这样的圆有无数个.
活动3如图,已知平面上不共线三点A、B、C,能否作一个圆,使它刚好
都经过A,B,C三点.
【教学说明】假设经过A、B、C三点的圆存在,圆心为O,则点O到A、B、C三点的距离相等,即OA=OB=OC,则点O位置如何确定?是否唯一确定?教师提示到此,让学生动手画圆,最后教师归纳出.
(3)经过不在同一直线上的三个点A,B,C的圆,是以AB,BC,CA的垂直平分线的交点为圆心,以这一点到点A,点B或点C的距离为半径的圆,这样的圆只有一个.
例1判断正误:
(1)经过三点可以确定一个圆.
(2)三角形的外心就是这个三角形两边垂直平分线的交点.
(3)三角形的外心到三边的距离相等.
(4)经过不在同一直线上的四点能作一个圆.
【分析】经过不在同一直线上的三点确定一个圆;三角形的外心到三角形三个顶点的距离相等;经过不在同一直线上的四点不一定能作一个圆.
解:(1)×(2)√(3)×(4)×
2.三角形的外接圆,三角形的外心.
活动4经过△ABC的三个顶点可以作一个圆吗?请动手画一画.
【教学说明】因为△ABC的三个顶点不在同一条直线上,所以过这三个顶点可以作一个圆,并且只可以作一个圆,并且得出如下结论.
1.三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,它的圆心叫做三角形的外心,是三角形三边垂直平分线的交点.
2.三角形的外心到三角形三顶点的距离相等.强调:任意一个三角形都有唯一的一个外接圆,但对于一个圆来说,它却有无数个内接三角形.
教学延伸:经过不在同一直线上的任意四点能确定一个圆吗?什么样的特殊四边形能确定一个圆?
【教学说明】提示:不一定.对角互补的四边形一定可以确定一个圆.
例2小明家的房前有一块矩形的空地,空地上有三棵树A,B,C,小明想建一
个圆形花坛,使三棵树都在花坛的边上.
(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).
(2)若在△ABC中,AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积.
解:(1)用尺规作出两边的垂直平分线,作出图.⊙O即为所求的花坛的位
置.
(2)∵∠BAC=90°,AB=8米,AC=6米,
∴BC=10米,∴△ABC外接圆的半径为5米.
∴小明家圆形花坛的面积为25π平方米.
三、运用新知,深化理解
1.下列说法正确的是()
A.过一点A的圆的圆心可以是平面上任意点
B.过两点A、B的圆的圆心在一条直线上
C.过三点A、B、C的圆的圆心有且只有一点
D.过四点A、B、C、D的圆不存在
2.已知a、b、c是△ABC三边长,外接圆的圆心在△ABC一条边上的是()
A.a=15,b=12,c=11
B.a=5,b=12,c=12
C.a=5,b=12,c=13
D.a=5,b=12,c= 14
3.下列说法正确的是()
A.过一点可以确定一个圆
B.过两点可以确定一个圆
C.过三点可以确定一个圆
D.三角形一定有外接圆
4.在一个圆中任意引两条平行直线,顺次连结它们的四个端点组成一个四边形,则这个四边形一定是()
A.菱形
B.等腰梯形
C.矩形
D.正方形
【教学说明】通过练习巩固三角形的外心和外接圆的概念,强调过不在同一条直线上的三点确定唯一一个圆.
【答案】1.B2.C3.D4.C
四、师生互动,课堂小结
1.师生共同回顾:过已知点作圆,条件一是确定圆心,二是确定半径,不在同一直线上的三个点确定一个圆.了解三角形的外接圆、外心等概念.
2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.
【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳. 课后作业
1.教材P63第1、2题.
2.完成同步练习册中本课时的练习.。