2019年秋八年级数学试卷及答案数学
2019年秋浙教版初中数学八年级上册《直棱柱》单元测试(含答案) (24)

8.(2 分)下列说法中,正确的是( )
A.棱柱的侧面可以是三角形
B.由六个大小一样的正方形所组成的图形是立方体的表面展开图
C.立方体的各条棱长度都相等
D.棱柱的各条校长度都相等
9.(2 分)一个长方体的主视图与左视图如图 所示(单位:cm),则其俯视图的面积是
()
A. l2cm2
B. 8cm2
C.6cm2
D.4cm2
10.(2 分)如图,桌面上放着一个圆锥和一个长方体,其中俯视图是( )
11.(2 分)直棱柱的侧面都是( )
A.长方形
B.梯形
C.正方形
12.(2 分)下列图形中,不是正方体的表面展开图的是( )
D.三角形
13.(2 分)下图中经过折叠可以围成一个三棱注的有( )
A.
B.
C.
D.
14.(2 分)将三个面上做有标记的立方体盒子展开,以下有可能是它的展开图的是( )
20.(2 分)用棱长为 1 cm 的小立方体靠墙角摆成如图的形状,然后在表面喷上颜色,如果 共摆了 6 层,那么喷上颜色的表面积是 cm2.
21.(2 分)有 14 个顶点的直棱柱是直 棱柱,有 条侧棱,相邻两条侧棱互相 . 22.(2 分)球体的三视图中,主视图是 ,左视图是 ,俯视图是 . 23.(2 分)如图是某个几何体的表面展开图,则该几何体是 .
浙教版初中数学试卷
2019-2020 年八年级数学上册《直棱柱》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:_____人 得分
一、选择题
1.(2 分)一个几何体的三视图中有一个是长方形,则该几何体不可能是( )
A.直五棱柱
2019秋北师大八上(BS)版数学测试题及答案(1-6章)

八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
2019年秋浙教版初中数学八年级下册《图形与证明》单元测试(含答案) (145)

八年级数学下册《图形与证明》测试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)下面四个语句:①内错角相等;②OC是∠AOB的角平分线吗?③π不是有理数.其中是真命题的个数为()A.1个B.2个C.3个D.4个2.(2分)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,则∠ABC的大小是()A.40°B.45°C.50°D.60°3.(2分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的例子是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°4.(2分)下列语句是命题的有()①若两个角都等于50o,则这两个角是对顶角;②直角三角形一定不是轴对称图形;③画线段AB=2㎝;④在同一平面内的两条直线,若不相交,则平行A.1个B.2个C.3个D.4个5.(2分)如图,在△ABC中,∠B和∠C的平分线相交于点F,过点F作DE∥BC,交AB 于点D,交AC于点E.若 BD+CE=9,则线段DE的长为()A.9 B.8 C.7 D.66.(2分)已知a,b,C是同一平面内三条直线,下列命题中,属于假命题的是()A.若a⊥c,b⊥c,则a⊥bB.若a∥b,b⊥c,则a⊥cC.若a⊥c,b⊥c,则a∥bD.若a⊥c,b∥a,则b⊥c7.(2分)“a,b,c三数中至少有一个正数”的反面是()A.a,b,c三个都是正数B.a,b,c至少有一个负数C.a,b,c有两个或三个是负数D.a,b,c全都是非正数8.(2分)如图,如果AB∥CD,那么角α,β,γ之间的关系式为()A.α+β+γ=360° B.α-β+γ=180°C.α+β+γ=180° D.α+β-γ=180°9.(2分)如图所示,能使BF∥EG的条件是()A.∠l=∠3 B.∠2=∠4 C.∠2=∠3 D.∠l=∠410.(2分)如图,在Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B. CH=CE=EF C.AC=AF D.CH=HD11.(2分)等腰三角形的一个外角是80°,则其底角是()A.40°B.100°或40°C.100°D.80°12.(2分)如图所示是人字形屋架的设计图,由AB、AC、AD、BC四根钢条焊接而成,其中A、B、C、D均为焊接点,现在焊接所需要的四根钢条已截好,且已标出BC的中点D,如果焊接工身边只有检验直角的角尺,那么为了准确快速度地焊接,他首先应取的两根钢条及焊接点是()A.AB和BC,焊接点B B.AB和AC,焊接点AC.AD和BC,焊接点D D.AB和AD,焊接点A13.(2分)下列命题中,假命题的个数为()①若线段AC,BC满足AC=BC,则点C是线段AB的中点;②若b>0,则a+b>a;③如果一个角的两条边分别平行于另一个角的两条边,那么这丽个角相等;④如果两个数中有一个数是负数,那么这两个数之积是负数.A.4个B.3个C.2个D.1个14.(2分)下列命题中,是假命题的为()A.两条直线相交,只有一个交点B.全等三角形对应边上的中线相等C.全等三角形对应边上的高相等D.三角形一边上的中线把这个三角形分成两个全等的小三角形评卷人得分二、填空题15.(3分)在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D.从这四个条件中选取三个条件能判定△ABC≌△DEF的方法共有种.解答题16.(3分)如图,在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数= .17.(3分)如图,点B,D在AN上,点C,E在AG上,且AB=BC=CD,EC=ED=EF,∠A=20°,则∠EG= .18.(3分)天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2 m,其侧面图如图所示,则购买地毯至少需要元.19.(3分)已知:如图所示,直线A8,CD相交.求证:AB,CD只有一个交点.证明:假设AB,CD相交有两个交点0与0′,那么过0,0′两点就有条直线.这与矛盾,所以假设不成立.所以.20.(3分)如图,点A,C在EF上,AD=BC,AD∥BC,AE=CF.求证:BF=DE.分析:要证BF=DE,只要证△≌△,已有条件AD=BC,AE=CF,只需证∠ =∠,只需证∠ =∠,而这可由证得.21.(3分)如图,把△ABC绕点C顺时针旋转35°到△A′B′C的位置,交AC于点D,若∠A′DC=90°,则∠A= .22.(3分)判断线段相等的定理(写出2个);.23.(3分)下面的判断是否正确:(1)我从书架上取出了5本书,5本书都是数学书.因此书架上的书都是数学书. ( )(2)有一条线段AB长3 cm.另一条线段BC长2 cm,那么AC长5cm ( )(3)直线AB,CD相交于O,∠AOC=30°,那么∠BOD=30°. ( )评卷人得分三、解答题24.(6分)判断命题“等腰三角形的角平分线平分对边”的真假,并给出证明.25.(6分)判断命题“两边及第三边上的高分别对应相等的两个三角形全等”的真假,并给出证明.26.(6分)如图,△ABC 中,AC ⊥BC ,CE ⊥AB 于点E ,AF 平分∠CAB 交CE 于点F ,过点F 作FD ∥BC 交AB 于点D ,求证:AC=AD .27.(6分)一个零件的形状如图所示,按规定∠A 应等于90°,∠B 和∠C 分别是32°和21°,检验工人量得∠BDC =148°,就断定这个零件不合格,你能否运用三角形的有关知识说明这个零件不合格的理由?28.(6分)阅读理解题:(1)如图,在△ABC 中,AD 是BC 边上的中线,且AD=21BC . 求证:∠BAC=90°. 证明:∵AD=12BC ,BD=CD=12BC ,∴AD=BD=DC , ∴∠B=∠BAD ,∠C=∠CAD , ∵∠B+∠BAD+∠CAD+∠C=180°,∴∠BAD+∠CAD=90°,即∠BAC=90°.(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直线运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为3,求这个三角形的面积.AB CD29.(6分)下列语句中,哪些是命题,哪些不是命题?若是命题,指出它的题设和结论.(1)立方等于本身的数是0或1;(2)画线段AB=3 cm.30.(6分)观察如图所示的四个图形,找出它们的共同特征并给以名称,再作出定义.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.B3.A4.C5.A6.A7.D8.D9.A10.D11.A12.C13.B14.D二、填空题15.216.36°17.100°18.480°19.两;两点确定一条直线;AB,CD只有一个交点20.DEA,BFC,EAD,FCB,DAF,BCE,AD∥BC21.55°22.全等三角形的对应边相等;在一个三角形中,等角对等边23.(1)× (2)× (3)√三、解答题24.假命题.若这条角平分线是底角的平分线,则不一定平分对边25.假命题,证明略26.利用“ASA”证△ACF≌△ADF,得AC=AD27.连结BC,则∠DBC+∠DCB=180°-148°=32°,∴∠ABC+∠ACB=32°+32°+21°=85°,∴∠A=95°>90°所以这个零件不合格.28.如果三角形一边上的中线等于这边的一半,则这个三角形是直角三角形,S=3 2.29.(1)是;题设:一个数的立方等于它本身;结论:这个数是0或1;(2)不是30.轴对称图形:把一个图形沿着一条直线对折,直线两旁的部分能够互相重合,这样的图形叫做轴对称图形.。
【沪科版】2019年秋八年级数学上册第13章《三角形中的边角关系、命题与证明》单元试卷附解析

二、填空题 27.下列命题: ①对角线互相垂直的四边形是菱形; ②点 G 是△ABC 的重心,若中线 AD=6,则 AG=3; ③若直线 y=kx+b 经过第一、二、四象限,则 k<0,b>0; ④定义新运算:a*b=2a﹣b2,若(2x)*(x﹣3)=0,则 x=1 或 9;
2019 年秋八年级数学上册
第 13 章《三角形中的边角关系、命题与证明》单元试卷
班级
姓名
一、选择题 1.下列命题是真命题的是( ) A.对角线互相平分的四边形是平行四边形 B.对角线相等的四边形是矩形 C.对角线互相垂直的四边形是菱形 D.对角线互相垂直的四边形是正方形 2.下列命题中,真命题的个数有( ) ①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形. A.3 个 B.2 个 C.1 个 D.0 个 3.下列命题正确的是( ) A.一组对边相等,另一组对边平行的四边形是平行四边形 B.对角线相互垂直的四边形是菱形 C.对角线相等的四边形是矩形 D.对角线相互垂直平分且相等的四边形是正方形 4.下列说法不正确的是( ) A.圆锥的俯视图是圆 B.对角线互相垂直平分的四边形是菱形 C.任意一个等腰三角形是钝角三角形 D.周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大 5.下列命题: ①平行四边形的对边相等; ②对角线相等的四边形是矩形; ③正方形既是轴对称图形,又是中心对称图形; ④一条对角线平分一组对角的平行四边形是菱形. 其中真命题的个数是( ) A.1 B.2 C.3 D.4 6.下列命题中错误的是( ) A.平行四边形的对角线互相平分 B.菱形的对角线互相垂直 C.同旁内角互补 D.矩形的对角线相等 7.下列命题中,为真命题的是( ) A.六边形的内角和为 360 度 B.多边形的外角和与边数有关 C.矩形的对角线互相垂直 D.三角形两边的和大于第三边 8.下列命题中,属于真命题的是( ) A.各边相等的多边形是正多边形
2019年秋浙教版初中数学八年级下册《一元二次方程》单元测试(含答案) (148)

八年级数学下册《一元二次方程》测试卷学校:__________ 题号一 二 三 总分 得分评卷人得分 一、选择题1.(2分)已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A .10B .11C .10或11D .3或112.(2分)若12+x 与12-x 互为倒数,则实数x 为( )A .±21 B .±1 C .±22 D .±2 3.(2分)已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是( )A .abB .a bC .a b +D .a b -4.(2分)三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是( )A .9B .11C .13D .11或135.(2分)用配方法解方程2410x x ++=,经过配方,得到( )A .()225x +=B .()225x -=C .()223x -=D .()223x += 6.(2分)哈尔滨市政府为了申办2010年冬奥会,决定改善城市容貌,绿化环境,计划经过两年时间,绿地面积增加44%,那么这两年平均每年绿地面积的增长率是( )A .19%B .20%C .21%D .22%7.(2分)下列方程一定是一元二次方程的是( )A .0ax bx c ++=B .22321x x mx -+=C .11x x +=D .22(1)230a x x +--=8.(2分) 如果代数式2934k k -+的值为 2,那么k 的值是( )A .32-B .3C .32± D .3-9.(2分)若代数式237x -的值为 5,则x 为( )A . 1x = 或2x =B .2x =-C .1x =±D .2x =±10.(2分)用直接开平方法解方程2(3)8x -=,得方程的根为( )A .3x =+B .3x =-C .13x =+,23x =-D .13x =+23x =-11.(2分)下列关于x 的方程,一定是一元二次方程的是( )A . 2(2)210m x x +-+=B . 2230m x m +-=C . 21320x x +-=D 21203x --=二、填空题12.(3分)请写出两根分别为-2,3的一个一元二次方程 .13.(3分)方程2220x x --=的二次项系数是 ,一次项系数是 ,常数项是 .14.(3分)关于x 的一元二次方程()423=-x x 的一般形式是_____ _____.15.(3分)若一个等腰三角形三边长均满足方程x 2-6x +8=0,则此三角形的周长为 .16.(3分)有一间长为20 m ,宽为15 m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,若四周未铺地毯的每边宽度相等,则每边的宽度是 .解答题17.(3分) 方程20x mx n ++=和方程20nx m χ++=仅有一个相同的根,则这个根是 .18.(3分)关于x 的一元二次方程2210x kx ++=有两个相等的实根,则k = ;方程的解为 .19.(3分)一元二次方程2980y -=的根是 .20.(3分) 方程2530x x -+=的根是 .21.(3分) 已知代数式251x x --的值为 5,则代数式23155x x -+的值为 .22.(3分)判断题(对的打“√”,错的打“×”)(1)一元二次方程的一次项系数、常数项可以是任意实数,但二次项系数不能是零. ( )(2) 2234x x ++是一元二次方程. ( )(3)方程(1)(3)1x x x --=-的解只有3x =. ( )三、解答题23.(6分)若规定两数a ,b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x ※x +2※x -2※4=0中x 的值.24.(6分) 阅读材料:为解方程222(1)5(1)40x x ---+=,我们可以将21x -视为一个整体,然后设21x y -=,则222(1)x y -=,原方程化为2540y y -+=.①解得11y =,24y =.当1y =时,211x -=,∴22x =,∴x =当4y =时,214x -=,∴25x =,∴x =∴原方程的解为1x =2x =3x 4x =.解答问题:(1)填空:在由原方程得到方程①的过程中,利用 法达到了降次的目的,体现了 的数学思想;(2)解方程:4260x x --=.25.(6分)某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元.(1)若该商店两次两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.若该商品原来每月可销售500件,那么两次调价后,每月可销售该商品多少件?26.(6分)如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)设铺设地面所用瓷砖的总块数为y,请写出y与n(表示第n个图形)的关系式;(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖?(4)否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.27.(6分)已知方程260+-=的一个根是2,求它的另一个根及k的值.x kx28.(6分)在一块边长为1m的正方形铁板上截出一个面积为800cm2的矩形铁板,使长比宽多20cm,问矩形铁板的长和宽各为多长?29.(6分)设a,b是一个直角三角形两条直角边的长,且2222+++=,求这个a b a b()(4)21直角三角形的斜边长.330.(6分) 不解方程,判别下列方程的根的情况:(1)2+-=;2340x x(2)216924y y +=;(3220+=;(4)2320t -=;(5)25(1)70x x +-=;【参考答案】***试卷处理标记,请不要删除一、选择题1.B2.C3.D4.C5.D6.B7.D8.C9.D10.D11.D二、填空题12.如(2)(3)0x x +-=等13.2,-1,-214.04632=--x x15.1016.2.5m17.118.±,19.y=20.x=21.2322.(1)√(2)×(3)×三、解答题23.(1) 60 (2)12x=,24x=-24.(1)换元,转化 (2)x=25.(1)10%;(2)880件26.(1)256y n n=++;(2)20n=;(3)1604(元);(4)不存在黑、白瓷砖块数相等的情形.27.1k=,3x=-28.长 40 cm,宽 20 cm2930.( 1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根;(5)无实数根。
【沪科版】2019年秋八年级数学上册第14章《全等三角形》单元试卷附解析

2019年秋八年级数学上册第14章《全等三角形》单元试卷班级姓名一、选择题1.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个 B.3个 C.2个 D.1个2.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个3.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE二、填空题4.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .5.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.6.如图,正方形ABCD的对角线相交于点O,△OEF是正三角形,且AE=BF,则∠AOE= .三、解答题7.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.8.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.9.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.10.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.11.已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.12.如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.13.如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.14.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.15.我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,请你写出与筝形ABCD的角或者对角线有关的一个结论,并证明你的结论.16.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.参考答案与试题解析一、选择题1.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个 B.3个 C.2个 D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.2.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】压轴题.【分析】由等边三角形的性质得出AB=DB,∠ABD=∠CBE=60°,BE=BC,得出∠ABE=∠DBC,由SAS即可证出△ABE≌△DBC;由△ABE≌△DBC,得出∠BAE=∠BDC,根据三角形外角的性质得出∠DMA=60°;由ASA证明△ABP≌△DBQ,得出对应边相等BP=BQ,即可得出△BPQ为等边三角形;证明P、B、Q、M四点共圆,由圆周角定理得出∠BMP=∠BMQ,即MB平分∠AMC.【解答】解:∵△ABD、△BCE为等边三角形,∴AB=DB,∠ABD=∠CBE=60°,BE=BC,∴∠ABE=∠DBC,∠PBQ=60°,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴①正确;∵△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BDC+∠BCD=180°﹣60°﹣60°=60°,∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,∴②正确;在△ABP和△DBQ中,,∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形,∴③正确;∵∠DMA=60°,∴∠AMC=120°,∴∠AMC+∠PBQ=180°,∴P、B、Q、M四点共圆,∵BP=BQ,∴,∴∠BMP=∠BMQ,即MB平分∠AMC;∴④正确;综上所述:正确的结论有4个;故选:D.【点评】本题考查了等边三角形的性质与判定、全等三角形的判定与性质、四点共圆、圆周角定理;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.3.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【考点】全等三角形的判定与性质.【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.二、填空题4.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= 3 .【考点】全等三角形的判定与性质.【分析】由已知条件易证△ABE≌△ACD,再根据全等三角形的性质得出结论.【解答】解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.【点评】本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.5.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.【考点】全等三角形的判定与性质;勾股定理;圆心角、弧、弦的关系;圆周角定理.【专题】压轴题.【分析】将△ACD绕点C逆时针旋转120°得△CBE,根据旋转的性质得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三点共线,解直角三角形求出即可;过C作CE⊥AB于E,CF⊥AD于F,得出∠E=∠CFD=∠CFA=90°,推出=,求出∠BAC=∠DAC,BC=CD,求出CE=CF,根据圆内接四边形性质求出∠D=∠CBE,证△CBE≌△CDF,推出BE=DF,证△AEC≌△AFC,推出AE=AF,设BE=DF=x,得出5=x+3+x,求出x,解直角三角形求出即可.【解答】解:解法一、∵A、B、C、D四点共圆,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵∠BAD=60°,AC平分∠BAD,∴∠CAD=∠CAB=30°,如图1,将△ACD绕点C逆时针旋转120°得△CBE,则∠E=∠CAD=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣CAB+∠ACB)+(180°﹣∠E﹣∠BCE)=180°,∴A、B、E三点共线,过C作CM⊥AE于M,∵AC=CE,∴AM=EM=×(5+3)=4,在Rt△AMC中,AC===;解法二、过C作CE⊥AB于E,CF⊥AD于F,则∠E=∠CFD=∠CFA=90°,∵点C为弧BD的中点,∴=,∴∠BAC=∠DAC,BC=CD,∵CE⊥AB,CF⊥AD,∴CE=CF,∵A、B、C、D四点共圆,∴∠D=∠CBE,在△CBE和△CDF中∴△CBE≌△CDF,∴BE=DF,在△AEC和△AFC中∴△AEC≌△AFC,∴AE=AF,设BE=DF=x,∵AB=3,AD=5,∴AE=AF=x+3,∴5=x+3+x,解得:x=1,即AE=4,∴AC==,故答案为:.【点评】本题考查了圆心角、弧、弦之间的关系,圆内接四边形性质,解直角三角形,全等三角形的性质和判定的应用,能正确作出辅助线是解此题的关键,综合性比较强,难度适中.6.如图,正方形ABCD的对角线相交于点O,△OEF是正三角形,且AE=BF,则∠AOE= 15°.【考点】全等三角形的判定与性质;等边三角形的性质;正方形的性质.【分析】根据正方形、等边三角形的性质,可得AO=BO,OE=OF,根据SSS可得△AOE≌△BOF,根据全等三角形的性质,可得对应角相等,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴OA=OB,∠AOB=90°.∵△OEF是正三角形,∴OE=OF,∠EOF=60°.在△AOE和△BOF中,,∴△AOE≌△BOF(SSS),∴∠AOE=∠BOF,∴∠AOE=(∠AOB﹣∠EOF)÷2=(90°﹣60°)÷2=15°,故答案为15°.【点评】本题考查了全等三角形的性质与判定,正方形、等边三角形的性质,利用SSS证明三角形全等得出∠AOE=∠BOF是解题的关键.三、解答题7.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.【考点】全等三角形的判定与性质;正方形的性质.【分析】根据正方形的性质,可得AB=AD,∠DAB=∠ABC=90°,根据余角的性质,可得∠ADE=∠BAF,根据全等三角形的判定与性质,可得BF与AE的关系,再根据等量代换,可得答案.【解答】解:线段AF、BF、EF三者之间的数量关系AF=BF+EF,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°.∵DE⊥AG于E,BF∥DE交AG于F,∴∠AED=∠DEF=∠AFB=90°,∴∠ADE+∠DAE=90°,∠DAE+∠BAF=90°,∴∠ADE=∠BAF.在△ABF和△DAE中,∴△ABF≌△DAE (AAS),∴BF=AE.∵AF=AE+EF,AF=BF+EF.【点评】本题考查了全等三角形的判定与性质,利用了正方形的性质,余角的性质,全等三角形的判定与性质,等量代换.8.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.【考点】全等三角形的判定与性质;三角形中位线定理.【专题】证明题.【分析】(1)根据三角形中位线,可得DF与CE的关系,DB与DC的关系,根据SAS,可得答案;(2)根据三角形的中位线,可得DF与AE的关系,根据平行四边形的判定与性质,可得答案.【解答】证明:(1)∵DE、DF是△ABC的中位线,∴DF=CE,DF∥CE,DB=DC.∵DF∥CE,∴∠C=∠BDF.在△CDE和△DBF中,∴△CDE≌△DBF (SAS);(2)∵DE、DF是△ABC的中位线,∴DF=AE,DF∥AE,∴四边形DEAF是平行四边形,∵EF与AD交于O点,∴AO=OD【点评】本题考查了全等三角形的判定与性质,(1)利用了三角形中位线的性质,全等三角形的判定;(2)利用了三角形中位线的性质,平行四边的性的判定与性质.9.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【考点】全等三角形的判定与性质.【专题】证明题;新定义.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.10.庆)如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据等式的性质得出BD=CE,再利用SAS得出:△ABD与△FEC全等,进而得出∠ADB=∠FCE.【解答】证明:∵BC=DE,∴BC+CD=DE+CD,即BD=CE,在△ABD与△FEC中,,∴△ABD≌△FEC(SAS),∴∠ADB=∠FCE.【点评】此题考查全等三角形的判定和性质,关键是根据等式的性质得出BD=CE,再利用全等三角形的判定和性质解答.11.已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD = AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.【考点】全等三角形的判定与性质;等腰三角形的性质;平移的性质.【专题】证明题.【分析】(1)根据等腰三角形的性质,可得∠ABC与∠ACB的关系,根据平移的性质,可得AC与DF 的关系,根据全等三角形的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得GM与HN的关系,BM与FN的关系,根据全等三角形的判定与性质,可得答案.【解答】(1)解:由AB=AC,得∠ABC=ACB.由△ABC沿BC方向平移得到△DEF,得DF=AC,∠DFE=∠ACB.在△ABF和△DFB中,,△ABF≌△DFB(SAS),BD=AF,故答案为:BD=AF;(2)证明:如图:,MN∥BF,△AMG∽△ABC,△DHN∽△DEF,=, =,∴MG=HN,MB=NF.在△BMH和△FNG中,,△BMH≌△FNG(SAS),∴BH=FG.【点评】本题考查了全等三角形的判定与性质,利用了平移的性质,相似三角形的判定与性质,全等三角形的判定与性质.12.如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】如图,首先证明∠ACB=∠DCE,这是解决问题的关键性结论;然后运用AAS公理证明△ABC≌△DEC,即可解决问题.【解答】解:如图,∵∠BCE=∠ACD,∴∠ACB=∠DCE;在△ABC与△DEC中,,∴△ABC≌△DEC(AAS),∴AB=DE.【点评】该题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是牢固掌握全等三角形的判定方法,这是灵活运用、解题的基础和关键.13.如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.【考点】全等三角形的判定与性质;等腰直角三角形;平行四边形的判定.【专题】证明题.【分析】(1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD为平行四边形;(2)利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE 为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.【解答】(1)解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AB=BC,∵△ABD和△ACE均为等腰直角三角形,∴BD==BC=2BC,∵G为BD的中点,∴BG=BD=BC,∴△CBG为等腰直角三角形,∴∠CGB=45°,∵∠ADB=45°,AD∥CG,∵∠ABD=45°,∠ABC=45°∴∠CBD=90°,∵∠ACB=90°,∴∠CBD+∠ACB=180°,∴AC∥BD,∴四边形ACGD为平行四边形;(2)证明:∵∠EAB=∠EAC+∠CAB=90°+45°=135°,∠CAD=∠DAB+∠BAC=90°+45°=135°,∴∠EAB=∠CAD,在△DAC与△BAE中,,∴△DAC≌△BAE,∴BE=CD;∵∠EAC=∠BCA=90°,EA=AC=BC,∴四边形ABCE为平行四边形,∴CE=AB=AD,在△BCE与△CAD中,,∴△BCE≌△CAD,∴∠CBE=∠ACD,∵∠ACD+∠BCD=90°,∴∠CBE+∠BCD=90°,∴∠CFB=90°,即BE⊥CD.【点评】本题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键.14.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.【考点】全等三角形的判定与性质.【分析】(1)易证得△ABE≌△CDF,即可得AB=CD;(2)易证得△ABE≌△CDF,即可得AB=CD,又由AB=CF,∠B=30°,即可证得△ABE是等腰三角形,解答即可.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AB=CD;(2)∵△ABE≌△CDF,∴AB=CD,BE=CF,∵AB=CF,∠B=30°,∴AB=BE,∴△ABE是等腰三角形,∴∠D=.【点评】此题考查全等三角形问题,关键是根据AAS证明三角形全等,再利用全等三角形的性质解答.15.我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,请你写出与筝形ABCD的角或者对角线有关的一个结论,并证明你的结论.【考点】全等三角形的判定与性质.【专题】计算题.【分析】AC与BD垂直,理由为:利用SSS得到三角形ABD与三角形CBD全等,利用全等三角形对应角相等得到BD为角平分线,利用三线合一性质即可得证.【解答】解:AC⊥BD,理由为:在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABO=∠CBO,∵AB=CB,∴BD⊥AC.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.16.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.【考点】全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质,证明AB=CD,AB∥CD,进而证明∠BAC=∠DCF,根据ASA即可证明△ABE≌△CDF,根据全等三角形的对应边相等即可证明.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∴△ABE和△CDF中,,∴△ABE≌△CDF,∴BE=DF.【点评】本题考查的是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.。
2019年秋八年级数学期末试卷

墨翰中学128班2019年(秋)季学期数学期末测试卷班级: 姓名: 得分:一、填空题。
(每小题3分,满分18分) 12.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科 学记数法表示为 .3.如图,ABC ∆≌DEF ∆,请根据图中提供的信息,写出x = .第3题图 4.正六边形一个内角的度数为 .5.一个等腰三角形的两边长分别为3和5,则它的周长为 . 6.若关于x 的分式方程3211m x x -=--无解,则m = . 二、选择题。
(每小题4分,满分32分.在每小题给出的四个选项中,只有一项是正确的) 7.京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术 形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是( )A .1个B .2个C .3个D .4个8.下列每组数分别表示三根小棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .1、2、3B .2、3、5C .2、3、6D .3、5、79.下列运算正确的是( ) A .448x x x +=B .623x x x ÷=C .45x x x ⋅=D .238()x x=B第10题图 第12题图 第14题图10.如图,BAD CAD ∠=∠,那么添加下列一个条件后,仍无法判定ABD ∆≌ACD ∆的条件是( )A .AB AC = B .BD CD = C .B C ∠=∠D .BDA CDA ∠=∠11.下列四个分式中,是最简分式的是( )A .21x x + B .24a C .22a b a b -+ D .11xx -- 12.如图,在ABC ∆中,AB AC =,40A ∠=︒,ED 垂直平分AB ,则C B E ∠的度数是( ) A .20°B .30°C .40°D .70°13.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( )A .88203x x += B .81833x x += C .88203x x =+ D .88133x x =+ 14.如图,在ABC ∆中,P 、Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别为R 、S ,若,AQ PQ PR PS ==,则这四个结论中错误..的有( ) ①AP 平分BAC ∠;②AS AR =;③QP ∥AR ;④BRP ∆≌CSP ∆. A .1个B .2个C .3个D .4个三、解答题。
人教新版2019年秋季学期八年级期末检测(答案)

25.(10 分)已知:如图,△ABC 中,∠A=60°,BD,CE 分别是∠ABC 和∠ACB 的平分线,BD,CE 交于点 F,试判断 BE,CD,BC 的数量关系,并加以证明。
2
2
A. a b c
B. a c b
C. c a b
D. c b a
2.一粒大米的质量大约有 0.000036 克,将 0.000036 用科学记数法表示为( )
A. 0.36 104
B. 3.6 104
C. 3.6 105
D. 3.6 106
长( )
A. 1
B. 2
C. 4
D. 6
八年级数学试卷第 1 页(共 6 页)
二、填空题。
13.因式分解: 2x3 8x2 x
14.当 x
x2 x 6
时,分式
的值为 0
x 3
15. △ABC 中,AB=AC=6,AB 的垂直平分线分别交 AB,AC 于 D,E.若△EBC 的周长为 11,则 BC 的长为
23.(10 分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款 1.2 万 元,乙工程队工程款 0.5 万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:
(1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用 6 天; (3)若甲,乙两队合做 3 天,余下的工程由乙队单独做也正好如期完成. 试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年秋八年级数学试卷及答案数学
满分:120分 考试时间:120分钟
一、选择题(每小题3分,共30分)
1、下列图形:①三角形,②线段,③正方形,④直角、⑤圆,其中是轴对称图形的个数是( ) A. 4个 B. 3个 C. 2个 D. 1个
2、已知点P (a+1,2a-3)关于x 轴的对称点在第一象限,则a 的取值范围是( ) A.
B. C. D.
、下列各式计算正确的是( )
A. B. C. D. 、把代数式 分解因式,A. B. C. D.
2
第7题 第8题
9、若数a 使关于x 的分式方程4
112=-+-x a x 的解为正数,且使关于y 的不等式组
213
22()0y y
y a +⎧-⎪
⎨⎪-≤⎩>的解集为2y -<,则符合条件的所有整数a 的和为( )
A 、10
B 、12
C 、14
D 、16
的坐标是(2,0),点B 的坐标是第15题 第16题
23、(8分)如图,在Rt △ABC 中,∠ACB =90∘,AC =BC ,点D 为BC 的中点,CE ⊥AD 于点E ,其延长线交AB 于点F ,连接DF .求证:∠ADC =∠BDF .
24、(8分)某工厂计划在规定时间内生产24000个零件。
若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件。
(1)求原计划每天生产的零件个数和规定的天数;
(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数。
25、(12分)(1)如图(1),已知:在△ABC 中,∠BAC =90∘,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D. E. 证明:DE =BD +CE .
(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D. A. E 三点都在直线l 上,且∠BDA =∠
AEC =∠BAC =α,其中α为任意锐角或钝角。
请问结论DE =BD +CE 是否成立?如成立;请你给出证明;
若不成立,请说明理由。
(3)拓展与应用:如图(3),D 、E 是直线l 上的两动点(D 、A. E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,求证:DF =EF .
2018年秋季八年级期末考试数学答案
一、选择题: (每小题3分,共30分) 1—5 ADDDC 6—10 ACABD
二、填空题:(每小题3分,共24分)
11、1×10-6
12、b 8
13、0或3 14、 15、8 16、45° 17、6 18、-4
三、解答题:
19、(1)2y-2x (4分)
(2)① 2(a-b )(m+3n) (4分)
②(a+2b )2
(4分)
20、(1)x=-4 (4分)
(2)此方程无解 (4分) (不检验扣1分)
21、(1)证明略 (5分)
(2)△ADE 是等边三角形,证明略 (5分)
22、原式= (3分)
由已知 1<a <5 又a ≠2且a ≠3 ∴a=4 (3分) 原式=1 (2分)
23、证明略 (8分)
24、(1)设每天原计划生产x 个零件
解得x=2400
经检验,x=2400是原方程的解 规定天数: 天
答:略 (4分,没检验扣1分)
(2)设原计划安排的工人人数为y 人,依题意得
解得 y=480
经检验,y=480是原方程的解,且符合题意
答:略 (4分,没检验扣1分)
25、(1)证明略 (4分)
(2)成立 证明略 (4分) (3)证明略 (4分)。