第23章 旋转单元测试(提高卷)-2020-2021学年九年级数学上册课时同步练(人教版)(原卷版)

合集下载

2020-2021学年人教版九年级上数学第23章《旋转》练习题及答案 (5)

2020-2021学年人教版九年级上数学第23章《旋转》练习题及答案 (5)

2020-2021学年人教版九年级上数学
第23章《旋转》练习题
5.已知∠AOB=60°,P为它的内部一点,M为射线OA上一点,连接PM,以P为中心,将线段PM顺时针旋转120°,得到线段PN,并且点N恰好落在射线OB上.
(1)依题意补全图1;
(2)证明:点P一定落在∠AOB的平分线上;
(3)连接OP,如果OP=2√3,判断OM+ON的值是否变化,若发生变化,请求出值的变化范围,若不变,请求出值.
解:(1)图形如图所示:
(2)作PE⊥OA于E,PF⊥OB于F.
∵∠PEO=∠PFO=90°,∠EOF=60°,
∴∠EPF=∠MPN=120°,
∴∠EPM=∠FPN,
∵PM=PN,∠PEM=∠PFN=90°,
∴△PEM≌△PFN(AAS),
∴PE=PF,
∵PE⊥OA于E,PF⊥OB于F,
∴OP平分∠AB,
∴点P在∠AOB的角平分线上.
(3)结论:OM+ON=6,值不变.
理由:∵∠PEO=∠PFO=90°,OP=OP,PE=PF,∴Rt△OPE≌Rt△OPF(HL),
∴OE=OF,
∵OP=2√3,∠POE=∠POF=30°,
∴OE=OF=OP•cos30°=3,
∵△PEM≌△PFN,
∴ME=FN,
∴OM+ON=OE﹣EM+OF+FN=2OE=6.。

人教版九年级数学上《第23章旋转》单元测试含答案解析

人教版九年级数学上《第23章旋转》单元测试含答案解析

15.已知 a<0,则点 P( a2,﹣ a+3)关于原点的对称点 P1 在第
象限.
16.如图,△ COD是△ AOB绕点 O顺时针方向旋转 40°后所得的图形, 点 C恰好在 AB上,∠AOD=9°0 ,
则∠ D 的ቤተ መጻሕፍቲ ባይዱ数是
°.
17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为
中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是(

A.30° B .45° C .60° D .90°
9.如图中的一个矩形是另一个矩形顺时针方向旋转
90°后形成的个数是(

A.4 个 B.3 个 C.2 个 D. l 个
10.如图 1,△ ABC和△ ADE都是等腰直角三角形,∠ C 和∠ ADE都是直角,点 C 在 AE 上,△ ABC绕
着 A点经过逆时针旋转后能够与△ ADE重合得到图 1,再将图 1 作为“基本图形”绕着 A 点经过逆时
针连续旋转得到图 2.两次旋转的角度分别为(

第 2 页(共 27 页)
A.45°, 90° B.90°, 45° C.60°, 30° D.30°, 60°
二、填空题
11.关于某一点成中心对称的两个图形,对称点的连线都经过
《第 23 章 旋转》
一、选择题
1.下面的图形中,是中心对称图形的是(

A.
B.
C.
D.
2.平面直角坐标系内一点 P(﹣ 2, 3)关于原点对称的点的坐标是(

A.( 3,﹣ 2) B.( 2, 3) C .(﹣ 2,﹣ 3) D .( 2,﹣ 3)
3.3 张扑克牌如图( 1)所示放在桌子上,小敏把其中一张旋转

人教版九年级上册数学《第23章 旋转》单元测试卷(有答案)

人教版九年级上册数学《第23章 旋转》单元测试卷(有答案)

2020-2021学年人教新版九年级上册数学《第23章旋转》单元测试卷一.选择题1.下列几何图形中,绕其对称中心点旋转任意角度后,所得到的图形都和原图形重合,这个图形是()A.正方形B.正六边形C.圆D.五角星2.如图,△ABC与△A′B′C′成中心对称,则下列说法不正确的是()A.S=△ACBB.AB=A′B′C.AB∥A′B′,A′C′∥AC,BC∥B′C′D.=S△ACO3.下列图形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.平行四边形C.矩形D.直角三角形4.点M(1,2)关于原点对称的点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)5.下列四个图案中,既可以用旋转来分析整个图形的形成过程,又可以用轴对称来分析整个图案的形成过程的图案有()个.A.1B.2C.3D.46.如图,在这四个图案中都是某种衣物的洗涤说明,请指出不是利用图形的平移、旋转和轴对称设计的()A.B.C.D.7.下列现象属于旋转的是()A.摩托车在急刹车时向前滑动B.火箭冲向空中的时候C.笔直的铁轨上飞驰而过的复兴号D.幸运大转盘转动的过程8.如图,点A,B,C都在方格纸的格点上,请你再确定格点D,使点A,B,C,D组成一个轴对称图形,那么所有符合条件的点D的个数是()A.3B.4C.5D.69.如图,将△AOB绕着O点沿顺时针方向旋转180°后,A、B两点的坐标是()A.(2,﹣5)(2,5)B.(﹣2,5)(﹣5,2)C.(2,﹣5)(2,0)D.(﹣2,﹣5)(﹣5,2)10.如图所示的旋转对称图形中,旋转角为45°的是()A.B.C.D.二.填空题11.中心对称图形是.12.若|2a﹣1|+(b﹣3)2=0,则点A(a,b)关于原点对称的点的坐标为.13.在横线里填上图形从甲到乙的变换关系:(1),(2),(3).14.如果两个图形的对应点连成的线段都经过某一点,并且被这一点平分,则这两个图形一定关于这一点成对称.15.正九边形(填“是“或“否”)中心对称图形,其旋转角的大小是;正九边形是轴对称图形,共有条对称轴.16.钟表的时针匀速旋转一周需12小时,它的旋转中心是,经过5小时,时针转了度.17.如图所示的图形绕点至少旋转度后能与自身重合.18.如图,在方格纸上有两个形状大小一样的图形,请你说出第一个图形(在下方)是绕着点旋转度,再向移动单位,然后向移动单位到第二个图形位置.19.如图,四边形ABCD是正方形,三角形ADF旋转一定角度后得到三角形ABE,且AF =4,AB=7.则旋转中心是,旋转角是,旋转度数是,DE的长度是,BE与DF的位置关系是.20.观察图案的规律,画出第6个图案.三.解答题21.如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?22.如果点P(1﹣x,1﹣y)在第二象限,那么点Q(1﹣x,y﹣1)关于原点的对称点M在第几象限?23.把下列图形中符合要求的图形的编号填入圈内.24.如图所示,画出五边形ABCDE关于点O的中心对称图形A'B'C'D'E′.25.已知点P为等边△ABC外一点,且∠BPC=120°,试说明PB+PC=AP.26.如图所示,三角形ABC和三角形A′B′C′关于某一点成中心对称,一同学不小心把墨水泼在纸上,只能看到三角形ABC和线段BC的对应线段B′C′,请你帮该同学找到对称中心O,且补全三角形A′B′C′.27.把图中的小船向右平移,使得小船上的点A向右平移到A′.参考答案与试题解析一.选择题1.解:这个图形是圆.故选C .2.解:A 、根据中心对称的两个图形全等,即可得到,故本选项正确;B 、成中心对称的两图形全等,对应线段相等,故本选项正确;C 、根据对称点到对称中心的距离相等,即可证得对应线段平行,故本选项正确;D 、=S △ABO ≠S △ACO ,本选项错误.故选:D .3.解:A 、正三角形,是轴对称图形,不是中心对称图形,故本选项不合题意;B 、平行四边形不是轴对称图形,是中心对称图形,故本选项不合题意;C 、矩形既是轴对称图形,又是中心对称图形,故本选项符合题意;D 、直角三角形不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:C .4.解:点M (1,2)关于原点对称的点的坐标为(﹣1,﹣2),故选:B .5.解:图形1可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形2可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合; 图形3可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合; 图形4不可以旋转得到,只可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有3个.故选:C .6.解:根据平移、旋转和翻转的定义,分析可得:A 、B 是轴对称图形,D 既是轴对称又是中心对称的图形,只有C 的图形三者都不符合, 故选:C .7.解:A 、摩托车在急刹车时向前滑动不是旋转,故此选项不符合题意;B 、火箭冲向空中的时候不是旋转,故此选项不符合题意;C、笔直的铁轨上飞驰而过的复兴号不是旋转,故此选项不符合题意;D、幸运大转盘转动的过程属于旋转,故此选项符合题意.故选:D.8.解:如图所示:共3个点,故选:A.9.解:由图可知,点A(2,5),B(5,﹣2),点A、B绕O点沿顺时针方向旋转180°后,即关于原点对称的点的坐标为A(﹣2,﹣5),B(﹣5,2).故选:D.10.解:A、旋转角为180°,不符合题意;B、旋转角为72°,不符合题意;C、旋转角为60°,不符合题意;D、旋转角为45°,符合题意;故选:D.二.填空题11.解:中心对称图形是绕某一点旋转180°后能够与原来的图形重合的图形.故答案为:绕某一点旋转180°后能够与原来的图形重合的图形.12.解:由题意得:2a﹣1=0,b﹣3=0,解得:a=,b=3,则点A(,3)关于原点对称的点的坐标为(﹣,﹣3),故答案为:(﹣,﹣3).13.解:由图可知,从甲到乙的变换关系是:(1)轴对称;(2)旋转;(3)平移.故答案为:轴对称;旋转;平移.14.解:如果两个图形的对应点连成的线段都经过某一点,并且被这一点平分,则这两个图形一定关于这一点成中心对称.故答案为:中心.15.解:正九边形不是中心对称图形,其旋转角的大小是40°,80°,120°,160°,200°,240°,280°正九边形是轴对称图形,共有9条对称轴.故答案为:不是;40°,80°,120°,160°,200°,240°,280°;9.16.解:钟表的时针匀速旋转一周需12小时,它的旋转中心是钟面的轴心,∵钟表上的刻度把圆周12等分.∴每一等分所对的圆心角是360°÷12=30°.时针经过5小时整,需要旋转5格,即旋转角为30°×5=150°.故答案为:钟面的轴心,150.17.解:该图形围绕自己的旋转中心,至少针旋转=72°后,能与其自身重合.故答案为:旋转中心、72°.18.解:由图可知:第一个图形(在下方)是绕着(1,1)点旋转90度,再向右移动3单位,然后向上移动6单位到第二个图形位置.故答案为:(1,1);90;右;3;上;6.19.解:∵四边形ABCD是正方形,三角形ADF旋转一定角度后得到三角形ABE,∴则旋转中心是点A,旋转角是∠FAD或∠DAB,旋转度数是90°,DE的长度是3,延长BE交DF于H,∵∠EDH=∠EBA,∠DEH=∠AEB,∴∠DHE=∠EAB=90°,∴BE⊥DF,∴BE与DF的位置关系是BE⊥DF.故答案为点A,∠FAD或∠DAB,90°,3,BE⊥DF20.解:.三.解答题21.解:这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.22.解:∵点P(1﹣x,1﹣y)在第二象限,∴1﹣x<0,1﹣y>0,∴y﹣1<0,∴点Q(1﹣x,y﹣1)在第三象限,∵点M与点Q关于原点对称,∴点M在第一象限.23.解:轴对称图形:①、③、④、⑥、⑦、⑧;旋转对称图形:①、②、④、⑤、⑥、⑦、⑧;中心对称图形:①、②、④、⑤.24.解:如图所示,五边形A′B′C′D′E′即为所求.25.证明:延长BP至E,使PE=PC,连接CE,∵∠BPC=120°,∴∠CPE=60°,又PE=PC,∴△CPE为等边三角形,∴CP=PE=CE,∠PCE=60°,∵△ABC为等边三角形,∴AC=BC,∠BCA=60°,∴∠ACB=∠PCE,∴∠ACB+∠BCP=∠PCE+∠BCP,即:∠ACP=∠BCE,在△ACP和△BCE中,,∴△ACP≌△BCE(SAS),∴AP=BE,∵BE=BP+PE,∴AP=BP+PC.26.解:如图,△A′B′C′即为所求;27.解:如图所示.。

第23章 旋转单元测试(提高卷)-2020-2021学年九年级数学上册课时同步练(人教版)(解析版)

第23章 旋转单元测试(提高卷)-2020-2021学年九年级数学上册课时同步练(人教版)(解析版)

单元卷旋转提高卷一、单选题(共12小题)1.如图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误.C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形而不是中心对称图形,故本选项正确;故选:D.【知识点】中心对称图形、轴对称图形2.在平面直角坐标系中,点P(﹣,﹣2)关于原点对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵P(﹣,﹣2)关于原点对称的点的坐标是(,2)∴点P(﹣,﹣2)关于原点对称的点在第一象限.故选:A.【知识点】关于原点对称的点的坐标3.如图,将△ABC绕点C按逆时针方向旋转60°后得到△A′B′C,若∠ACB=25°,则∠ACB′的度数为()A.25°B.35°C.60°D.85°【解答】解:根据旋转的定义可知旋转角∠ACA′=60°,∵∠ACB=25°,∴∠A′CB′=25°,∴∠ACB′=∠ACA′+∠A′CB′=60°+25°=85°.故选:D.【知识点】旋转的性质4.如图,在小正三角形组成的网格中,已有7个小正三角形涂黑,还需要涂黑n个小正三角形,使它们和原来涂黑的小正三角形组成新的图案后既是轴对称图形又是中心对称图形,则n的最小值为()A.3B.4C.5D.6【解答】解:如图所示,再涂黑5个小正三角形,可使它们和原来涂黑的小正三角形组成新的图案后既是轴对称图形,又是中心对称图形,故选:C.【知识点】利用旋转设计图案、利用轴对称设计图案5.如图,四边形ABCD中,∠DAB=∠CBA=90°,将CD绕点D逆时针旋转90°至DE,连接AE,若AD=6,BC=10,则△ADE的面积是()A.B.12C.9D.8【解答】解:如图,过D作DH⊥BC于点H,过E作EF⊥AD交AD的延长线于F,则HC=BC﹣BH=BC﹣AD=10﹣6=4,∵将CD绕点D逆时针旋转90°至DE,∴△DHC≌△DFE,∴EF=HC=4,且∠EF A=∠DHC=90°,∴S△ADE=AD•EF=×6×4=12,故选:B.【知识点】旋转的性质、勾股定理6.如图,将△ABC绕点C(﹣1,0)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a﹣2,﹣b)C.(﹣a﹣1,﹣b+1)D.(﹣a,﹣b﹣2)【解答】解:设A′的坐标为(m,n),∵A和A′关于点C(﹣1,0)对称.∴=﹣1,=0,解得m=﹣a﹣2,n=﹣b.点A′的坐标(﹣a﹣2,﹣b).故选:B.【知识点】坐标与图形变化-旋转7.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,N是A'B'的中点,连接MN,若BC=4,∠ABC=60°,则线段MN的最大值为()A.4B.8C.4D.6【解答】解:连接CN,如图所示:在Rt△ABC中,∠ACB=90°,BC=4,∠B=60°,∴∠A=30°,∴AB=A′B′=2BC=8,∵NB′=NA′,∴CN=A′B′=4,∵CM=BM=2,∴MN≤CN+CM=6,∴MN的最大值为6,故选:D.【知识点】旋转的性质、含30度角的直角三角形8.如图,在四边形ABCD中,∠B=90°,AB=BC=1,CD=,AD=2,若∠D=α,则∠BCD的大小为()A.2αB.90°+αC.135°﹣αD.180°﹣α【解答】解:连接AC,∵∠B=90°,AB=BC=1,∴∠BCA=∠BAC=45°,AC2=12+12=2,∵AC2+AD2=2+22=6,CD2=6,∴AC2+AD2=CD2,∴△ACD是直角三角形,∠CAD=90°,∴∠ACD=90°﹣∠D=90°﹣α,∴∠BCD=∠BCA+∠ACD=135°﹣α,故选:C.【知识点】旋转的性质、勾股定理、勾股定理的逆定理、等腰直角三角形、全等三角形的判定与性质9.如图,将正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,如果AB=1,点C与C′的距离为()A.B.﹣C.1 D.﹣1【解答】解:如图,连接AC',AC,CC',过C作CF⊥AC'于F,由旋转可得,∠DAD'=30°,∠DAB'=60°,∴∠DAC'=45°﹣30°=15°,同理可得,∠B'AC=15°,∴∠CAC'=60°﹣15°﹣15°=30°,∵AB=BC=1,∴AC==AC',∴CF=,∴AF=,∴C'F=﹣,∴Rt△CC'F中,CC'=====,故选:D.【知识点】正方形的性质、旋转的性质10.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90°,则第2019次旋转结束时,点D的坐标为()A.(3,﹣10)B.(10,3)C.(﹣10,﹣3)D.(10,﹣3)【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵2019=4×504+3,∴每4次一个循环,第2019次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,每次旋转90°,∴点D的坐标为(﹣10,﹣3).故选:C.【知识点】坐标与图形变化-旋转、规律型:点的坐标11.如图,在正方形ABCD中,AB=5,点M在CD的边上,且DM=2,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.B.C.D.【解答】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=5.∵DM=2,∴CM=3.∴在Rt△BCM中,BM===,∴EF=,故选:A.【知识点】正方形的性质、旋转的性质、勾股定理、轴对称的性质12.如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA.其中正确的有()A.4个B.3个C.2个D.1个【解答】解:如图,①设∠1=x度,则∠2=(60﹣x)度,∠DBC=(x+60)度,故∠4=(x+60)度,∴∠2+∠3+∠4=60﹣x+60+x+60=180度,∴D、A、E三点共线;故①正确;②∵△BCD绕着点C按顺时针方向旋转60°得到△ACE,∴CD=CE,∠DCE=60°,∴△CDE为等边三角形,∴∠E=60°,∴∠BDC=∠E=60°,∴∠CDA=120°﹣60°=60°,∴DC平分∠BDA;故②正确;③∵∠BAC=60°,∠E=60°,∴∠E=∠BAC.故③正确;④由旋转可知AE=BD,又∵∠DAE=180°,∴DE=AE+AD.∵△CDE为等边三角形,∴DC=DB+BA.故④正确;故选:A.【知识点】旋转的性质、全等三角形的判定与性质、等边三角形的性质二、填空题(共4小题)13.下列4种图案中,既是轴对称图形,又是中心对称图形的有个.【解答】解:第一个图形是轴对称图形,也是中心对称图形;第二个图形不是轴对称图形,也不是中心对称图形;第三个图形不是轴对称图形,也不是中心对称图形;第四个图形是轴对称图形,不是中心对称图形.故答案为:1.【知识点】轴对称图形、中心对称图形14.已知点P(m﹣1,2)与点Q(1,n)关于原点对称,那么m+n的值是﹣.【解答】解:∵点P(m﹣1,2)与点Q(1,n)关于原点对称,∴m﹣1=﹣1,n=﹣2,∴m=0,n=﹣2,故m+n=﹣2.故答案为:﹣2.【知识点】关于原点对称的点的坐标15.如图,正方形ABCD的边长为1,把这个正方形绕点A旋转,得到正方形AB'C′D';且点C′在直线AD上,那么△C′D′D的面积是.【解答】解:如图,过点D'作D'E⊥AD,∵把这个正方形绕点A旋转,得到正方形AB'C′D';∴AD'=AD=CD=C'D'=1∴AC'==∴D'E=当点C'在AD延长线上时,S△C'D'D=×(﹣1)×=当点C'在DA延长线上时,S△C'D'D=×(+1)×=故答案为:或【知识点】旋转的性质、正方形的性质16.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D为BC中点,E为AC边上一动点,连接DE,以DE为边并在DE的右侧作等边△DEF,连接BF,则BF的最小值为.【解答】解:如图,以CD为边向右作等边△CDG,连接FG,作BK⊥FG于K,CH⊥FG交FG的延长线于H.∵△DEF,△DCG都是等边三角形,∴∠CDG=∠EDF=60°,DC=DG,DE=DF,∴△DCE≌△DGF(SAS),∴∠DCE=∠DGF=90°,∴点F的在直线FG上运动,在Rt△GCH中,∵CG=CD=BD=2,∠CGH=30°,∴CH=CG=1,∵DG∥BK∥CH,CD=DB,∴GH=GK,∴DG=,∴2=,∴BK=3,根据垂线段最短可知,当点F与K重合时,BF的值最小,最小值为3.故答案为3.【知识点】旋转的性质、三角形三边关系、等边三角形的性质、等腰直角三角形、全等三角形的判定与性质三、解答题(共6小题)17.如图所示,在△ABC中,∠BAC=120°,以BC为边向外作等边三角形BCD,把△ABD绕点D按顺时针方向旋转60°后到△ECD的位置,若AB=6,AC=4,求∠BAD的度数和AD的长.【解答】解:∵把△ABD绕点D按顺时针方向旋转60°后到△ECD的位置,∴AD=DE,∠ADE=60°,AB=CE,∵∠BDC+∠BAC=60°+120°=180°,∴A,B,C,D四点共圆,∴∠ABD+∠ACD=180°,∵∠ABD=∠DCE,∴∠ACD+∠DCE=180°,∴A,C,E在一条直线上,∴△ADE是等边三角形,∴∠DAE=60°,∴∠BAD=120°﹣60°=60°;AE=AD=AC+EC=AC+AB=10.【知识点】三角形内角和定理、作图-旋转变换、等边三角形的性质18.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC和△A1B1C1关于x轴成轴对称,画出△A1B1C1(2)点C1的坐标为﹣﹣,△ABC的面积为.【解答】解:(1)如图,△A1B1C1为所作;(2)点C1的坐标为(﹣1,﹣3),△ABC的面积=2×4﹣×2×2﹣×2×1﹣×4×1=3.故答案为(﹣1,﹣3),3.【知识点】作图-轴对称变换、作图-旋转变换19.如图,AC⊥BC,垂足为C,AC=6,BC=4,将线段AC绕点C按顺时针方向旋转60°,得到线段CD,连接AD,DB.(1)求线段BD的长度;(2)求四边形ACBD的面积.【解答】解:(1)由旋转得AC=CD=6,∠ACD=60°,∴△ACD是等边三角形过点D作DE⊥BC于点E∵AC⊥BC,∴∠DCE=∠ACB﹣∠ACD=90°﹣60°=30°∴在Rt△CDE中,DE=CD=3,CE=DE=3∴BE=BC﹣CE=∴BD==2(2)∵S四边形ACBD=S△ACD+S△BCD,∴S四边形ACBD=×36+×4×3=15【知识点】旋转的性质20.如图,在正方形ABCD中,点E在边AB上,将点E绕点D逆时针旋转得到点F,若点F恰好落在边BC的延长线上,连接DE,DF,EF.(1)判断△DEF的形状,并说明理由;(2)若EF=4,则△DEF的面积为.【解答】解:(1)△DEF是等腰直角三角形.理由如下:在正方形ABCD中,DA=DC,∠ADC=∠DAB=∠DCB=90°.∵F落在边BC的延长线上,∴∠DCF=∠DAB=90°.∵将点E绕点D逆时针旋转得到点F,∴DE=DF.∴Rt△ADE≌Rt△CDF(HL).∴∠ADE=∠CDF.∵∠ADC=∠ADE+∠EDC=90°,∴∠CDF+∠EDC=90°,即∠EDF=90°.∴△DEF是等腰直角三角形;(2)∵△DEF是等腰直角三角形,∴DE=DF=EF=×4=4,∴△DEF的面积=×4×4=8.故答案为8.【知识点】正方形的性质、作图-旋转变换、三角形的面积21.已知△ABD是一张直角三角形纸片,其中∠A=90°,∠ADB=30°,小亮将它绕点A逆时针旋转后β得到△AMF,AM交直线BD于点K.(1)如图1,当β=90°时,BD所在直线与线段FM有怎样的位置关系?请说明理由.(2)如图2,当0<β<180°,求△ADK为等腰三角形时的度数.【解答】证明:(1)BD与FM互相垂直,理由如下:设此时直线BD与FM相交于点N,∵∠DAB=90°,∠D=30°,∴∠ABD=90°﹣∠D=60°,∴∠NBM=∠ABD=60°,由旋转的性质得△ADB≌△AMF,∴∠D=∠M=30°,∴∠MNB=180°﹣∠M﹣∠NBM=180°﹣30°﹣60°=90°,∴BD与FM互相垂直.(2)解:当KA=KD时,则∠KAD=∠D=30°,即β=30°;当DK=DA时,则∠DKA=∠DAK,∵∠D=30°,∴∠DAK=(180°﹣30°)÷2=75°,即β=75°;当AK=AD时,则∠AKD=∠D=30°,∴∠KAD=180°﹣30°﹣30°=120°,即β=120°,综上所述,β的度数为30°或75°或120°.【知识点】含30度角的直角三角形、等腰三角形的性质、旋转的性质22.如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.(1)求证:∠DEF=∠ABF;(2)求证:F为AD的中点;(3)若AB=8,AC=10,且EC⊥BC,求EF的长.【解答】(1)证明:如图1中,∵CB=CE,∴∠CBE=∠CEB,∵∠ABC=∠CED=90°,∴∠DEF+∠CEB=90°,∠ABF+∠CBE=90°,∴∠DEF=∠ABF.(2)证明:如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.∵∠ABN=∠DEM,∠ANB=∠M=90°,AB=DE,∴△ANB≌△DME(AAS),∴AN=DM,∵∠ANF=∠M=90°,∠AFN=∠DFM,AN=DM,∴△AFN≌△DFM(AAS),∴AF=FD.(3)解:如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.在Rt△ABC中,∵∠ABC=90°,AC=10,AB=8,∴BC=EC==6,∵EC⊥BC,∴∠BCE=∠ACD=90°,∵AC=CD=10,∴AD=10,∴DF=AF=5,∵∠MED=∠CEB=45°,∴EM=MD=4,在Rt△DFM中,FM==3,∴EF=EM﹣FM=.【知识点】旋转的性质。

(期末复习)人教版九年级上《第23章旋转》单元试卷有答案(PDF版)-(数学)

(期末复习)人教版九年级上《第23章旋转》单元试卷有答案(PDF版)-(数学)

15.如图,将 Rt△ABC 绕直角顶点 A 按顺时针方向旋转 180° 得△AB1C1,写
出旋转后 BC 的对应线段

16.如图,数轴上点 A 对应实数 ,线段 AB 垂直于数轴,线段 AB 的长为 2,
现将线段 AB 绕点 A 旋转 90°,得到线段 AB',则 B'对应的实数是

17.如图,将直角三角形 AOB 绕点 0 旋转得到直角三角形 COD,若∠AOB=90°,
则△A'DB 就是与△ACD 关于点 D 成中心对称的三角形; (2)A'B=AC, 理由是:在△ADC 和△A'DB 中,


∴△ADC≌△A'DB(SAS), ∴A C=A'B; (3)AB+AC>2AD; 理由:∵△ADC 与△A'DB 关于 D 点成中心对称, ∴AD=A'D,AC=A'B. 在△ABA'中,AB+BA'>AA', 即 AB+AC>AD+A'D. ∴AB+AC>2AD.
∵旋转过程中,点 C′始终落在△ABC 内部(不包括边上), ∴PC'<PH, 即 x< (12﹣x),
解得 x<4, 又∵PC>0, ∴0<PC<4, 故选:A.
8.【解答】解:设等边三角形的边长为 a, ∵等边△AB C 绕点 B 逆时针旋转 30°, ∴∠CBC′=30°,BC=BC′=a, ∵△ABC 为等边三角形, ∴∠ABC=60°, ∴BD 平分∠ABC, ∴BD⊥AC, ∴CD=AD= a,BD= CD= a,
有图形可知,△HPA 中,边 HP 和边 AP 边上高相等 ∴由面积法 HP=AP ∴AP=4+

人教版九年级数学上第23章旋转单元测试卷及答案(Word版)

人教版九年级数学上第23章旋转单元测试卷及答案(Word版)

人教版九年级数学上第23章旋转单元测试卷及答案(Word版)一、填空题:〔共23分〕1.如图1,△ABC是等腰直角三角形,D是AB上一点,△CBD经旋转后抵达△ACE的位置,那么旋转中心是;旋转角度是;点B的对应点是;点D的对应点是;线段CB的对应点是;∠B的对应角是;假设点M是CB的13,那么经过上述旋转后,点M移到了.2. 3点12分和3点40分时,时针与分针构成的角各是度和度.3.请你写出5个成中心对称的汉字,填在下面的横线上.4.如图2所示的四个图形中,图形(1)与图形成轴对称;图形(1)与图形成中心对称.(填写契合要求的图形所对应的符号)5.如图3所示,△ABC绕点A逆时针旋转某一角度失掉△ADE,假定∠1=∠2=∠3=20°,那么旋转角为度.6.如图4所示,线段AB=4cm,且CD⊥AB于O,那么阴影局部的面积是.7.如图5①,将字母〝V〞沿平移格会失掉字母〝W〞。

如图5②,将字母〝V〞绕点旋转度后失掉字母N,绕点旋转度后会失掉字母X.(图中E、F区分是其所在线段的中点)8.如图6是由面积为1的单位正三角形经过平移旋转,拼成由24个相反的三角形组成的正六边形,我们把面积为4的正三角形称为〝希望杯〞,那么图中可数出个不同的〝希望杯〞.9.在直角坐标系中,点A〔2,-3〕关于原点对称的坐标是.10. 在以下图7的四个图案中,既是轴对称图形,又是中心对称图形的有个.图7二、选择题:〔共40分〕11.观察以下图形,其中是旋转对称图形的有( )A.1个B.2个C.3个D.4个(1) (2) (3) (4)12.你玩过扑克牌吗?你细心观察过每张扑克牌中的图案吗?请你指出图案是中心对称图形的一组为( )A.黑桃6与黑桃9B.红桃6与红桃9C.梅花6与梅花9D.方块6与方块913.在平面直角坐标系中,点P(2,1)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第四象限14. 以下图形中,是.中心对称图形的为〔〕ABC D15.以下图形中是中心对称图形的是A B C D16.在以下四个图案中,既是轴对称图形,又是中心对称图形的是( )A B C D17.以下图案都是由宁母〝m 〞经过变形、组合而成的.其中不是中心对称图形的是( )18.将下面的直角梯形绕直线 l 旋转一周,可以失掉左边平面图形的 .〔 〕 19.数学课上,教员让同窗们观察如图 8 所示的图形,问:它绕着圆 心 O 旋转多少度后和它自身重合?甲同窗说:45°;乙同窗说:60°; 丙同窗说:90°;丁同窗说:135°。

第23章 旋转 人教版九年级数学上册单元过关测试提升卷含答案

第23章 旋转 人教版九年级数学上册单元过关测试提升卷含答案

2022-2023学年人教版九年级数学上册单元测试第二十三章旋转(提升卷)时间:100分钟总分:120分一、选择题(每题3分,共24分)1.下列图形中,是中心对称图形的是()A.B.C.D.【解析】解:A、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;B、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;C、能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故此选项符合题意;D、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;故选:C.【点睛】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.如图,点D为等边△ABC的边AB上一点,且AD AB,将△ACD绕点C逆时针旋转60°,得到△BCE,连接DE交BC于点F,则下列结论不成立的是()A.BE∥AC B.△CDE为等边三角形C.∠BFD=∠ADC D.DF=4EF【解析】解:∵△ABC是等边三角形,∴AB=BC,∠A=∠ABC=60°,由旋转的性质得:∠DCE=60°,△ACD≌△BCE,AC=BC,AD=BE,∠A=∠ABE=60°,∴△CDE是等边三角形,∠A+∠ABE=180°,∴BE∥AC,故A,B结论正确,但不符合题意;∵△ABC和△CDE是等边三角形,∴∠ABC=∠CDF=60°,∵∠BFD=∠CDF+∠DCF=60°+∠DCF,∠ADC=∠ABC+∠DCF=60°+∠DCF,∴∠BFD=∠ADC,故C结论正确,但不符合题意;故选:D.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.3.在平面直角坐标系中,点与点关于原点成中心对称,则的值为()A.B.C.1D.3【解析】解:∵点与点关于原点成中心对称,∴,,故选C.【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,代数式求值,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.4.如图,在平面直角坐标系中,线段AB的端点在方格线的格点上,将AB绕点P顺时针方向旋转90°,得到线段A′B′,则点P的坐标为()A.(1,2)B.(1,4)C.(0,4)D.(2,1)【解析】解:如图所示,作线段AA'和BB'的垂直平分线,交于点P,则点P即为旋转中心,由图可得,点P的坐标为(1,2),故选:A.【点睛】本题主要考查了坐标与图形变换,解决问题的关键是掌握旋转的性质.一般情况,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.5.如图,在Rt中,,将绕点顺时针旋转,得到,连接交于点,则与的周长之和为()A.44B.43C.42D.41【解析】解:∵△BDE由△BCA旋转得出,∴BD=BC=12.∵∠CBD=60°,∴△BCD为等边三角形,∴CD=BC=12.在Rt△ABC中,∠ACB=90°,AC=5,BC=12,∴,∴C△ACF+C△BDF=AC+CF+AF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42.故选:C.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、勾股定理以及三角形的周长,利用三角形的周长公式结合边与边的关系,找出C△ACF+C△BDF=AC+AB+CD+BD是解题的关键.6.如图,,将平行四边行绕原点O逆时针旋转,则点B的对应点的坐标是()A.B.C.D.【解析】解:连接OB、AC交于点M,∵,∴M(,),即M(,2),∴B(5,4),将平行四边行绕原点O逆时针旋转,则点B的对应点,连接OB′,分别过点B′、B作y轴、x轴的垂线,垂足为E、F,则OF=5,BF=4,∠B′EO=∠OFB=90°,OB′=OB,∵∠B′OB=∠EOF=90°,∴∠B′OE=∠BOF,∴△B′OE≌△BOF(AAS),∴OE=OF=5,B′E=BF=4,∴,故选:B.【点睛】本题考查了坐标与图形,平行四边形的性质,旋转的性质,全等三角形的判定和性质等,求出点B的坐标是解答此题的关键.7.如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A 逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.B.C.D.【解析】解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.8.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标是,顶点B 的坐标是,对角线AC,BD的交点为M.将正方形ABCD绕着原点O逆时针旋转,每次旋转45°,则第2022次旋转结束时,点M的坐标为()A.B.C.D.【解析】解:∵,,∴,.过点D作轴,垂足为N,如解图所示,则.∵四边形ABCD为正方形,∴,.∴.∴.∴,.∴点D的坐标为.∵点M为BD的中点,∴点M的坐标为.由题意,可知正方形ABCD绕着原点O逆时针旋转,每次旋转45°,点M也绕着原点O逆时针旋转,每次旋转45°,则点M旋转一周需要旋转(次).又∵,,∴第2022次旋转结束时和第6次旋转结束时,点M的坐标相同,且此时点M 的位置就是绕点O逆时针旋转270°(或顺时针旋转90°)的位置.∴第2022次旋转结束时,点M的坐标为,故选:D.【点睛】本题考查坐标与旋转规律,正方形性质,全等三角形的判定及性质,解题的关键是理解第2022次旋转结束时和第6次旋转结束时,点M的坐标相同,且此时点M的位置就是绕点O逆时针旋转270°(或顺时针旋转90°)的位置.二、填空题(每题3分,共24分)9.如图,将△ABC绕点A逆时针旋转60°得到△AB'C',若AC⊥B'C',则∠C=________度.【解析】解:∵将△ABC绕点A逆时针旋转60°得到△AB'C',∴∠CAC'=60°,∠C=∠C',∵AC⊥B'C',∴∠C'=90°-∠CAC'=30°=∠C,故答案为:30.【点睛】本题考查了旋转的性质,掌握旋转的性质是解题的关键.10.如图,在中,,将绕点逆时针旋转能与重合,若,则_________.【解析】解:∵CD∥AB,∴∠ACD=∠CAB=65°,∵△ABC绕点A旋转得到△AED,∴AC=AD,∴∠CDA=∠ACD =65°,∴∠CAD=180°-2∠ACD=180°-2×65°=50°,故答案为:.【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.11.将边长为3的正方形ABCD绕点C顺时针方向旋转45°到FECG的位置(如图),EF与AD相交于点H,则HD的长为___.(结果保留根号)【解析】解:∵四边形ABCD为正方形,∴CD=3,∠CDA=90°,∵边长为3的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D 落在对角线CF上,∴CF=3,∠CFE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=3﹣3.故答案为:3﹣3.【点睛】本题考查了旋转的性质,正方形的性质,熟练掌握旋转的性质是解题的关键.12.如图,在平面直角坐标系中,△ABC顶点的横、纵坐标都是整数,若将△ABC 以某点为旋转中心,顺时针旋转得到△DEF,其中A、B、C分别和D、E、F对应,则旋转中心的坐标是___.【解析】解:如图所示,分别作线段AD、BE的垂直平分线,交于点Q,Q即为旋转中心,由A(1,2),D(4,-1),E(4,2),B(-2,2)知,线段BE的垂直平分线为x=1,△ADE为等腰直角三角形,E在AD垂直平分线上,AD中点坐标为(2.5,0.5),设线段AD垂直平分线解析式为y=kx+b,则:,解得:,则线段AD的垂直平分线为y=x-2,∴Q(1,-1),故答案为:(1,-1).【点睛】本题考查了坐标与图形的旋转变化及求线段垂直平分线解析式的方法.解题关键是理解旋转中心是对应点连线垂直平分线的交点.13.如图,中,,P是边AB上一点,连接CP,将线段CP绕点P逆时针旋转90°得,连接.若AP=BC=4,BP =2,则线段______.【解析】解:如图,过点作,交的延长线于点,将线段CP绕点P逆时针旋转90°得,连接.,,,,,,,,,中,,,故答案为:.【点睛】本题考查了旋转的性质,全等三角形的性质与判定,勾股定理,掌握以上知识是解题的关键.14.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=_____度.【解析】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′,∴AB=AB′,∠BAB′=30°,AB∥CD,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∠B+∠C=180°,∴∠C=180°﹣75°=105°.故答案为:105.【点睛】本题主要考查了图形的旋转,平行性四边形的性质,熟练掌握图形的旋转的性质,平行性四边形的性质是解题的关键.15.如图,△ABC中,∠C=90°,AC=BC=9cm,将△ABC绕点A顺时针旋转15°后得到△AB'C',则图中阴影部分面积等于_____cm2.【解析】解:等腰中,,,绕点顺时针旋转后得到△,,,,,在△中,,阴影部分的面积.故答案为:.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.16.如图,正方形中,,点E为边上一动点,将点A绕点E顺时针旋转得到点F,则的最小值为__________.【解析】如图,上截取,过点作交的延长线于点,正方形中,,将点A绕点E顺时针旋转得到点F,是等腰直角三角形,在射线上运动,则是等腰直角三角形,与点重合时,取得最小值,等于即的最小值为故答案为:【点睛】本题考查了正方形的性质,全等三角形的性质,垂线段最短,求得的轨迹是解题的关键.三、解答题(每题8分,共72分)17.如图,方格纸中有三个格点,,,要求作一个多边形使这三个点在这个多边形的边(包括顶点)上,且多边形的顶点在方格的顶点上.(1)在图甲中作一个三角形是轴对称图形;(2)在图乙中作一个四边形是中心对称图形但不是轴对称图形;(3)在图丙中作一个四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)【解析】解:(1)如图甲中,△DEC即为所求作.(2)如图乙中,四边形ABCD即为所求作.(3)如图丙中,四边形AECD即为所求作.【点睛】本题考查作图-旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.如图,在中,,将绕点A旋转一定的角度得到,且点E恰好落在边上.(1)求证:平分;(2)连接,求证:.【解析】(1)证明:由旋转性质可知:平分(2)证明:如图所示:由旋转性质可知:即在中,即【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.19.如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,对角线AC所在的直线绕点O顺时针旋转角α(0°<α<120°),所得的直线l分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当旋转角α为多少度时,四边形AFCE为菱形?试说明理由.【解析】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AO=CO,∴∠AEO=∠CFO,在△AOE和△COF中,,∴△AOE≌△COF(AAS);(2)解:当α=90°时,四边形AFCE为菱形,理由:∵△AOE≌△COF,∴OE=OF,又∵AO=CO,∴四边形AFCE为平行四边形,又∵∠AOE=90°,∴四边形AFCE为菱形.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,菱形的判定,矩形的性质等知识,证明△AOE≌△COF是解题的关键.20.已知△ABC中,∠ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.【解析】(1)证明:∵△AED是△ABC旋转90°得到的,,∠CAD=90°,∴AC=AD,∴△ACD是等腰直角三角形;(2)解:∵△ACD是等腰直角三角形,∴∠ADC=∠ACD=45°,AC=AD=2,,由(1)知,∠ADE=∠ACB=135°,∴∠CDE=∠ADE-∠ADC=90°,∵DE=BC=1,∴.【点睛】本题考查了旋转的性质、全等三角形的性质、勾股定理、等腰直角三角形的判定和性质,解题的关键是先证明△ACD是等腰直角三角形,并证明△CDE是直角三角形.21.如图,正方形ABCD中,M是对角线BD上的一个动点(不与B、D重合),连接CM,将CM绕点C顺时针旋转90°到CN,连接MN,DN,求证:BM=DN.【解析】证明:四边形ABCD是正方形,,将CM绕点C顺时针旋转到CN,,,,在和中,,.【点睛】本题考查正方形中的旋转变换,解题的关键是掌握旋转的旋转,证明△CBM≌△CDN.22.如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△D'CE'(如图乙).这时AB与CD'相交于点O,D'E'与AB相交于点F.求线段AD'的长.【解析】解:∵∠ACB=∠DEC=90°,∠A=45°,∠D=30°,∴∠DCE=60°,∠B=45°∵把三角板DCE绕点C顺时针旋转15°得到△D'CE',∴∠D'CE'=60°,∠BCE'=15°,∴∠OCB=45°,又∵∠B=45°,∴∠COB=90°,又∵△ACB是等腰直角三角形,∴AO=CO=BO=3cm,∴D'O=4cm,∴AD'===5cm.【点睛】本题考查了旋转的性质,直角三角形的性质,等腰直角三角形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.23.将两块完全相同的且含角的直角三角板和按如图所示位置放置,现将绕A点按逆时针方向旋转.如图,与交于点M,与交于点N,与交于点P.(1)在旋转过程中,连接,求证:所在的直线是线段的垂直平分线.(2)在旋转过程中,是否能成为直角三角形?若能,直接写出旋转角的度数;若不能,说明理由.【解析】(1)证明:∵两块是完全相同的且含角的直角三角板和,∴AE=AC,∠AEF=∠ACB=30°,∠F=60°,∴∠AEC=∠ACE,∴∠AEC-∠AEF=∠ACE-∠ACB,∴∠PEC=∠PCE,∴PE=PC,又AE=AC,∴所在的直线是线段的垂直平分线.(2)解:在旋转过程中,能成为直角三角形,由旋转的性质得:∠FAC= ,当∠CNP=90°时,∠FNA=90°,又∠F=60°,∴=∠FAC=180°-∠FNA-∠F=180°-90°-60°=30°;当∠CPN=90°时,∵∠NCP=30°,∴∠PNC=180°-90°-30°=60°,即∠FNA=60°,∵∠F=60°,∴=∠FAC=180°-∠FNA-∠F=180°-60°-60°=60°,综上,旋转角的的度数为30°或60°.【点睛】本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.24.【模型建立】(1)如图1,在正方形中,点E是对角线上一点,连接,.求证:.【模型应用】(2)如图2,在正方形中,点E是对角线上一点,连接,.将绕点E逆时针旋转,交的延长线于点F,连接.当时,求的长.【模型迁移】(3)如图3,在菱形中,,点E是对角线上一点,连接,.将绕点E逆时针旋转,交的延长线于点F,连接,与交于点G.当时,判断线段与的数量关系,并说明理由.【解析】(1)证明:如图1中,∵四边形是正方形,∴,,在和中,,∴;(2)解:如图2中,设交于点J.由(1)知,,,∵EF是绕点E逆时针旋转得到,∴,在中,;(3)解:结论:.理由:如图3中,∵四边形是菱形,∴,,在和中,,∴),∴,是绕点E逆时针旋转得到的,∴,∴是等边三角形,∴.【点睛】本题考查了正方形的性质,等边三角形的判定和性质,图形的旋转变换,全等三角形的判定和性质,勾股定理,正确理解图形的相关性质是解本题的关键.25.(1)发现:如图1,点是线段上的一点,分别以,为边向外作等边三角形和等边三角形,连接,,相交于点.结论:①线段与的数量关系为:________;②的度数为________;(2)应用:如图2,若点,,不在一条直线上,(1)中的结论①还成立吗?请说明理由;(3)拓展:在四边形中,,,,若,,请直接写出,两点之间的距离.【解析】(1)解:∵△ABC和△BDE都是等边三角形,∴AB=CB,EB=ED=DB,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,∴△ABE≌△CBD(SAS),∴AE=CD,∠BAE=∠BCD,由三角形的外角性质,∠AOC=∠BAE+∠BDC=∠BCD+∠BDC,∠ABC=∠BCD+∠BDC,∴∠AOC=∠ABC=;故答案为;.(2)依然成立,理由如下:∵和均是等边三角形,∴,,,∴,即在和中,∵,,,∴∴.设与交于点∵,∴在和中,其内角和均为∵,∴(3)将绕点顺时针旋转得到,根据旋转的性质可得:,,【点睛】考查全等三角形的判定与性质,等边三角形的性质,旋转的性质、三角形的外角性质等,掌握全等三角形的判定定理与性质定理是解题的关键.。

第23章 旋转单元测试(基础卷)-2020-2021学年九年级数学上册课时同步练(人教版)(解析版)

第23章 旋转单元测试(基础卷)-2020-2021学年九年级数学上册课时同步练(人教版)(解析版)

单元卷旋转基础卷一、单选题(共12小题)1.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【知识点】轴对称图形、中心对称图形2.点A(2,1)与点A′(﹣2,﹣1)关于()对称.A.x轴B.y轴C.原点D.都不对【解答】解:点A(2,1)与点A′(﹣2,﹣1)关于原点对称.故选:C.【知识点】关于原点对称的点的坐标、关于x轴、y轴对称的点的坐标3.如图,△ABC绕点B顺时针旋转到△EBD位置,若∠A=30°,∠D=15°,A、B、D在同一直线上,则旋转的角度是()A.50°B.45°C.40°D.30°【解答】解:∵△ABC绕点B顺时针旋转到△EBD位置,∴∠C=∠D=15°,∠CBD等于旋转角,∵∠CBD=∠A+∠C=30°+15°=45°,∴旋转角的度数为45°.故选:B.【知识点】旋转的性质4.如图,在△ABC中,∠ACB=α,将△ABC绕点C顺时针方向旋转到△A′B′C的位置,使AA′∥BC,设旋转角为β,则α,β满足关系()A.α+β=90°B.α+2β=180°C.2α+β=180°D.α+β=180°【解答】解:当△ABC绕点C顺时针旋转到△A′B′C的位置,使AA′∥BC,∴∠CAA′=∠ACB=α,AC=A′C,∴∠AA′C=∠A′AC=α;∴∠ACA′=180°﹣∠CAA′﹣∠CA′A=180°﹣2α=β,∴2α+β=180°,故选:C.【知识点】旋转的性质、平行线的判定5.下列各点关于原点对称的是()A.(2,﹣2)→(2,2)B.(0,2)→(﹣2,0)C.(a,﹣b)→(﹣a,b)D.(a,b)→(﹣a,b)【解答】解:根据两个点关于原点对称,则点(a,﹣b)关于原点对称的点的坐标是(﹣a,b).故选:C.【知识点】关于原点对称的点的坐标6.如果|3﹣a|+(b+5)2=0,那么点A(a,b)关于原点对称的点A′的坐标为()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(5,﹣3)【解答】解:∵|3﹣a|+(b+5)2=0,∴3﹣a=0,b+5=0,解得:a=3,b=﹣5,∴点A(a,b)关于原点对称的点A′的坐标为:(﹣3,5).故选:C.【知识点】非负数的性质:偶次方、关于原点对称的点的坐标、非负数的性质:绝对值7.如图,将△ABC绕点A按逆时针旋转50°后,得到△ADE,则∠ABD的度数是()A.30°B.45°C.65°D.75°【解答】解:∵△ABC绕点A按逆时针旋转50°后,得到△ADC′,∴AB=AD,∠BAD=50°,∴∠ABD=∠ADB,∴∠ABD=(180°﹣50°)=65°.故选:C.【知识点】旋转的性质8.在平面直角坐标系中,点A的坐标是(﹣1,3),将原点O绕点A顺时针旋转90°得到点O′,则点O′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣4,2)D.(2,4)【解答】解:观察图象可知O′(﹣4,2),故选:C.【知识点】坐标与图形变化-旋转9.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有()个是正确的.①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2A.4B.3C.2D.1【解答】解:由旋转可知:△BAE≌△CAF,∴∠BAE=∠CAF,∴∠EAF=∠BAC=90°,∵∠EAD=45°,∴∠EAD=∠F AD=45°,∴AD平分∠EAF,∵AD=AD,AE=AF,∴△DAE≌△DAF(SAS),故①③正确,∴DE=DF,∵∠ACF=∠B=∠ACB=45°,∴∠DCF=90°,∴DF2=CD2+CF2,∵DF=DE,BE=CF,∴BE2+CD2=DE2,故④正确,无法判断△ABE≌△ACD,故②错误.故选:B.【知识点】勾股定理、全等三角形的判定与性质、旋转的性质、等腰直角三角形10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,将△ABC绕点C逆时针旋转得到△A′B′C,且B′恰好落在AB上,M是BC的中点,N是A′B′的中点,连接MN,则C到MN的距离()A.1B.C.D.3【解答】解:如图,作CH⊥MN于H,连接NC,作MJ⊥NC交NC的延长线于J.∵∠ACB=90°,BC=4,∠A=30°,∴AB=A′B′=2BC=8,∠B=60°.∵CB=CB′,∴△CBB′是等边三角形,∴∠BCB′=60°,∵BN=NA′,∴CN=NB′=A′B′=4,∵∠CB′N=60°,∴△CNB′是等边三角形,∴∠NCB′=60°,∴∠BCN=120°,在Rt△CMJ中,∵∠J=90°,MC=2,∠MCJ=60°,∴CJ=MC=1,MJ=CJ=,∴MN===2,∵•NC•MJ=•MN•CH,∴CH==,故选:B.【知识点】旋转的性质、含30度角的直角三角形11.如图,将平行四边形ABCD绕点A顺时针旋转,其中B、C、D分别落在点E、F、G处,且点B、E、D、F在同一直线上,若∠CBA=115°,则∠CBD的大小为()A.65°B.55°C.50°D.40°【解答】解:∵平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,∴AB=AE,∠AEF=∠CBA=115°,∴∠AEB=∠ABE=65°,∴∠CBD=∠CBA﹣∠ABE=115°﹣65°=50°;故选:C.【知识点】平行四边形的性质、旋转的性质12.如图,边长为2的正方形ABCD的中心与坐标原点O重合,AB∥x轴,将正方形ABCD绕原点O顺时针旋2019次,每次旋转45°,则顶点B的坐标是()A.(,﹣1)B.(0,﹣)C.(0,﹣1)D.(﹣1,﹣1)【解答】解:由题意旋转8次回到原来位置,2019÷8=252…3,∴将正方形ABCD绕原点O顺时针旋2019次,每次旋转45°,则顶点B在y轴的负半轴上,B(0,﹣),故选:B.【知识点】坐标与图形变化-旋转、规律型:点的坐标二、填空题(共4小题)13.下列4种图案中,是中心对称图形的有个.【解答】解:第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符合题意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【知识点】中心对称图形14.已知点(a,8)与点(7,﹣8)关于原点对称,则a=﹣.【解答】解:由题意,得a+7=0,解得a=﹣7,故答案为:﹣7.【知识点】关于原点对称的点的坐标15.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°.将△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,B1C1交AC于点D,如果AD=4,则△ABC的面积等于.【解答】解:∵∠ABC=90°,∠ACB=30°,∵△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,∴AB=AB1,∠B1=∠ABC=90°,∠BAB1=15°,∴∠B1AD=45°,∴△AB1D是等腰直角三角形,∴AB1=AD=×4=4,∴AB=4,∵∠ABC=90°,∠ACB=30°,∴BC=AB=4,∴△ABC的面积=BC•AB=×4×4=8.故答案为:8.【知识点】旋转的性质16.如图,在△ABC中,AC=4+4,∠BAC=45°,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1,点E为线段AB中点,点P是线段AC上的动点,将△ABC绕点B按逆时针方向旋转的过程中,点P的对应点是点1,则线段EP1的最大值与最小值之差为.【解答】解:如图,过点B作BD⊥AC,D为垂足,在Rt△ABD中,∵∠ADB=90°,∠A=45°,∴AD=BD,设AD=BD=x,在Rt△BDC中,∵∠BDC=90°,BD=x,∠C=30°,∴CD=BD=x,∵AD+CD=AC,解得x=4,∴AD=BD=4,BC=2BD=8,AB=AD=4当P在AC上运动,BP与AC垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=4﹣2.当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=8+2,∴EP1的最大值与最小值之差为(8+2)﹣(4﹣2)=4+4.故答案为4+4.【知识点】勾股定理、旋转的性质三、解答题(共6小题)17.把三角形绕A点按顺时针方向旋转90°.画出旋转后的图形.【解答】解:如图,△AB′C′为所作.【知识点】作图-旋转变换18.已知点P(2x,y2+4)与Q(x2+1,﹣4y)关于原点对称,求x+y的值.【解答】解:∵点P(2x,y2+4)与Q(x2+1,﹣4y)关于原点对称,∴x2+1+2x=0,y2+4﹣4y=0,∴(x+1)2=0,(y﹣2)2=0,解得:x=﹣1,y=2,∴x+y=1.【知识点】关于原点对称的点的坐标19.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.【解答】解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8;(3)∵在△ABD和△CDE中,,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<8,∴1<AD<4.【知识点】中心对称20.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=3,AB=7,求(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由.【解答】解:(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=3,∠EAF=90°,∠EBA=∠FDA;可得旋转中心为点A;旋转角度为90°或270°;(2)DE=AD﹣AE=7﹣3=4;(3)∵∠EAF=90°,∠EBA=∠FDA,∴延长BE与DF相交于点G,则∠GDE+∠DEG=90°,∴BE⊥DF,即BE与DF是垂直关系.【知识点】旋转的性质、正方形的性质21.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP的长及点D的坐标.【解答】解:∵△AOB是等边三角形,∴∠OAB=60°,∵△AOP绕着点A按逆时针方向旋转边AO与AB重合,∴旋转角=∠OAB=∠P AD=60°,AD=AP,∴△APD是等边三角形,∴DP=AP,∠P AD=60°,∵A的坐标是(0,3),∠OAB的平分线交x轴于点P,∴∠OAP=30°,AP==2,∴DP=AP=2,∵∠OAP=30°,∠P AD=60°,∴∠OAD=30°+60°=90°,∴点D的坐标为(2,3).【知识点】坐标与图形变化-旋转22.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB,AC于M,N两点,以点D为中心旋转∠MDN(∠MDN的度数不变),若DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,若DM与AB不垂直时,点M在边AB上,点N在边AC上,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,若DM与AB不垂直时,点M在边AB上,点N在边AC的延长线上,上述结论是否成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.【解答】解:(1)结论BM+CN=BD成立,理由如下:过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠EDC=120°,∴BD=BE=DE,∠EDN+∠CDN=120°,∵∠EDM+∠EDN=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM+EM=BM+CN;(2)上述结论不成立,BM,CN,BD之间的数量关系为:BM﹣CN=BD;理由如下:过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠NCD=120°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠MED=∠EDC=120°,∴BD=BE=DE,∠NCD=∠MED,∠EDM+∠CDM=120°,∵∠CDN+∠CDM=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM﹣EM=BM﹣CN,∴BM﹣CN=BD.【知识点】含30度角的直角三角形、等边三角形的性质、旋转的性质、全等三角形的判定与性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元卷旋转
提高卷
一、单选题(共12小题)
1.如图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是()
A.B.C.D.
2.在平面直角坐标系中,点P(﹣,﹣2)关于原点对称的点在()
A.第一象限B.第二象限C.第三象限D.第四象限
3.如图,将△ABC绕点C按逆时针方向旋转60°后得到△A′B′C,若∠ACB=25°,则∠ACB′的度数
为()
A.25°B.35°C.60°D.85°
4.如图,在小正三角形组成的网格中,已有7个小正三角形涂黑,还需要涂黑n个小正三角形,使它们和
原来涂黑的小正三角形组成新的图案后既是轴对称图形又是中心对称图形,则n的最小值为()
A.3B.4C.5D.6
5.如图,四边形ABCD中,∠DAB=∠CBA=90°,将CD绕点D逆时针旋转90°至DE,连接AE,若AD=6,BC=10,则△ADE的面积是()
A.B.12C.9D.8
6.如图,将△ABC绕点C(﹣1,0)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()
A.(﹣a,﹣b)B.(﹣a﹣2,﹣b)
C.(﹣a﹣1,﹣b+1)D.(﹣a,﹣b﹣2)
7.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,N 是A'B'的中点,连接MN,若BC=4,∠ABC=60°,则线段MN的最大值为()
A.4B.8C.4D.6
8.如图,在四边形ABCD中,∠B=90°,AB=BC=1,CD=,AD=2,若∠D=α,则∠BCD的大小为()
A.2αB.90°+αC.135°﹣αD.180°﹣α
9.如图,将正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,如果AB=1,点C与C′的距离为()
A.B.﹣C.1 D.﹣1
10.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90°,则第2019次旋转结束时,点D的坐标为()
A.(3,﹣10)B.(10,3)C.(﹣10,﹣3)D.(10,﹣3)
11.如图,在正方形ABCD中,AB=5,点M在CD的边上,且DM=2,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()
A.B.C.D.
12.如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C为旋转中心把
△CBD旋转到△CAE,则下列结论:
①D、A、E三点共线;
②DC平分∠BDA;
③∠E=∠BAC;
④DC=DB+DA.
其中正确的有()
A.4个B.3个C.2个D.1个
二、填空题(共4小题)
13.下列4种图案中,既是轴对称图形,又是中心对称图形的有个.
14.已知点P(m﹣1,2)与点Q(1,n)关于原点对称,那么m+n的值是﹣.
15.如图,正方形ABCD的边长为1,把这个正方形绕点A旋转,得到正方形AB'C′D';且点C′在直线
AD上,那么△C′D′D的面积是.
16.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D为BC中点,E为AC边上一动点,
连接DE,以DE为边并在DE的右侧作等边△DEF,连接BF,则BF的最小值为.
三、解答题(共6小题)
17.如图所示,在△ABC中,∠BAC=120°,以BC为边向外作等边三角形BCD,把△ABD绕点D按顺时
针方向旋转60°后到△ECD的位置,若AB=6,AC=4,求∠BAD的度数和AD的长.
18.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,
3).
(1)若△ABC和△A1B1C1关于x轴成轴对称,画出△A1B1C1
(2)点C1的坐标为﹣﹣,△ABC的面积为.
19.如图,AC⊥BC,垂足为C,AC=6,BC=4,将线段AC绕点C按顺时针方向旋转60°,得到线段
CD,连接AD,DB.
(1)求线段BD的长度;
(2)求四边形ACBD的面积.
20.如图,在正方形ABCD中,点E在边AB上,将点E绕点D逆时针旋转得到点F,若点F恰好落在边BC的延长线上,连接DE,DF,EF.
(1)判断△DEF的形状,并说明理由;
(2)若EF=4,则△DEF的面积为.
21.已知△ABD是一张直角三角形纸片,其中∠A=90°,∠ADB=30°,小亮将它绕点A逆时针旋转后β得到△AMF,AM交直线BD于点K.
(1)如图1,当β=90°时,BD所在直线与线段FM有怎样的位置关系?请说明理由.
(2)如图2,当0<β<180°,求△ADK为等腰三角形时的度数.
22.如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE
交AD于点F.
(1)求证:∠DEF=∠ABF;
(2)求证:F为AD的中点;
(3)若AB=8,AC=10,且EC⊥BC,求EF的长.。

相关文档
最新文档