对应各章的习题及Lingo求解
运用lingo解决问题的例子

运用lingo解决问题的例子
以下是一个运用LINGO解决实际问题的例子:
问题描述:
某公司生产A、B两种产品,已知生产1单位A产品需要3单位原料1和2单位原料2,同时产生2单位废料;生产1单位B产品需要4单位原料1和2单位原料2,同时产生3单位废料。
该公司有10单位原料1和8单位原料2,同时最多可以产生10单位废料。
请为公司制定一个生产计划,使得A、B两种产品的产量最大。
模型建立:
1. 设x1为A产品的产量,x2为B产品的产量。
2. 设原料1的消耗为3x1 + 4x2,原料2的消耗为2x1 + 2x2,废料产生为2x1 + 3x2。
3. 原料1的限制条件为3x1 + 4x2 <= 10,原料2的限制条件为2x1 +
2x2 <= 8,废料的限制条件为2x1 + 3x2 <= 10。
4. 目标函数为max x1 + x2,即最大化A、B两种产品的产量之和。
LINGO代码:
SETS:
I / 1 /;
J / 1,2 /;
K / I,J /;
PARAMETERS:
C(K) / 3I + 4J, 2I + 2J, 2I + 3J /; D(I) / 10 /;
E(I) / 8 /;
F(I) / 10 /;
VARIABLES:
X(K) / >=0 /;
MAXIMIZE Z: X(1) + X(2); SUBJECT TO:
3X(1) + 4X(2) <= D(1);
2X(1) + 2X(2) <= E(1);
2X(1) + 3X(2) <= F(1); ENDSETS
END。
专题资料(2021-2022年)lingo学习教程

例3.7
sets:
days /MO,TU,WE,TH,FR,SA,SU/:needs,cost;
endsets
data:
needs cost = 20 100;
enddata
3.1.5 数据部分的未知数值
有时只想为一个集的部分成员的某个属性指定值,让其余成员的该属性保持未知,以 便让LINGO去求出它们的最优值。 在数据声明中输入两个相连的逗号表示该位置对应的集成员的属性值未知。两个逗号 间可以有空格。
• Setname是你选择的来标记集的名字,最好具有较强的 可读性。集名字必须严格符合标准命名规则:以拉丁字 母或下划线(_)为首字符,其后由拉丁字母(A—Z)、 下划线、阿拉伯数字(0,1,…,9)组成的总长度不 超过32个字符的字符串,且不区分大小写。
• 注意:该命名规则同样适用于集成员名和属性名等的命 名。
!产量约束;
@for(warehouses(I):
@sum(vendors(J):
volume(I,J))<=capacity(I));
• !这里是数据;
• data:
• capacity=60 55 51 43 41 52;
• demand=35 37 22 32 41 32 43 38;
• cost=6 2 6 7 4 2 9 5
• LINGO有两种类型的集:原始集(primitive set)和 派生集(derived set)。
• 一个原始集是由一些最基本的对象组成的。 • 一个派生集是用一个或多个其它集来定义的,也
就是说,它的成员来自于其它已存在的集。
2.3 模型的集部分
• 集部分是LINGO模型的一个可选部分。在 LINGO模型中使用集之前,必须在集部分事 先定义。集部分以关键字“sets:”开始,以 “endsets”结束。一个模型可以没有集部分, 或有一个简单的集部分,或有多个集部分。 一个集部分可以放置于模型的任何地方,但 是一个集及其属性在模型约束中被引用之前 必须定义了它们。
Lingo精选题目及参考答案

Lingo 精选题目及答案答题要求:将Lingo 程序复制到Word 文档中,并且附上最终结果。
1、简单线性规划求解(目标函数)2134maxx x z += s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x2、整数规划求解219040Max x x z +=⎪⎩⎪⎨⎧≥≤+≤+0,702075679212121x x x x x x 3、0-1规划求解Max 432215.18.04.0x x x x f +++=10106234321≤+++x x x x10,,,4321或=x x x x4、非线性规划求解||4||3||2||min 4321x x x x z +++=s.t. ⎪⎪⎩⎪⎪⎨⎧-=+--=-+-=+--2132130432143214321x x x x x x x x x x x x5、集合综合应用产生一个集合5052--=x x y ,(10,...,2,1=x ),求y 前6个数的和S 1,后6个数的和S 2,第2~8个数中的最小值S 3,最大值S 4。
6、综合题要求列出具体的目标函数和约束条件,然后附上Lingo 程序和最终结果。
6.1 指派问题有四个工人,要指派他们分别完成4项工作,每人做各项工作所消耗的时间如下表:问指派哪个人去完成哪项工作,可使总的消耗时间为最小?6.2 分配问题某两个煤厂A1,A2每月进煤数量分别为60t和100t,联合供应3个居民区B1,B2,B3。
3个居民区每月对煤的需求量依次分别为50t,70t,40t,煤厂A1离3个居民区B1,B2,B3的距离依次分别为10km,5km,6km,煤厂A2离3个居民区B1,B2,B3的距离分别为4km,8km,12km。
问如何分配供煤量使得运输量(即t·km)达到最小?1、model:max=4*x1+3*x2;2*x1+x2<10;x1+x2<8;x2<7;end2、model:max=40*x1+90*x2;9*x1+7*x2<56;7*x1+20*x2<70;@gin(x1);@gin(x2);end3、model:max=x1^2+0.4*x2+0.8*x3+1.5*x4;3*x1+2*x2+6*x3+10*x4<10;@bin(x1); @bin(x2);@bin(x3); @bin(x4);end4、model:max=@abs(x1)+2*@abs(x2)+3*@abs(x3)+4*@abs(x4);x1-x2-x3+x4=0;x1-x2+x3-3*x4=1;x1-x2-2*x3+3*x4=-1/2;end5、model:sets:jihe/1..10/:y;ss/1..4/:S;endsets!由于y和s中部分有负数,所以要先去掉这个约束;@for(jihe:@free(y));@for(ss(i):@free(S));!产生元素;@for (jihe(x):y(x)=x^2-5*x-50); S(1)=@sum (jihe(i)|i#le#6:y(i)); S(2)=@sum (jihe(i)|i#ge#5:y(i));S(3)=@min (jihe(i)|i#ge#2 #and# i#le#8:y(i)); S(4)=@max (jihe(i)|i#ge#2 #and# i#le#8:y(i)); end6.1、设:第i 个工人做第j 项工作用时ij t ,标志变量ij f 定义如下:⎩⎨⎧=其他件工作个工人去做第指派第01j i f ijmin∑∑==⨯4141i j ij ijt fs.t. 141=∑=i ijf()4,3,2,1=j 每份工作都有一人做∑==411j ijf()4,3,2,1=i 每人都只做一项工作model : sets :work/A B C D/;worker/jia yi bing ding/; time(worker,work):t,f; endsets!目标函数可以用[obj]标志出,也可以省略;[obj] min =@sum (time(i,j):t(i,j)*f(i,j)); data :!可以直接复制表格,但是在最后要有分号; t=; e !每份工作都有一人做;@for (work(j):@sum (time(i,j):f(i,j))=1); !每人都只做一项工作;@for (worker(i):@sum (time(i,j):f(i,j))=1); !让f 取0-1值,此条件可以省略;!@for(time(i,j):@bin(f(i,j))); end6.2设:煤厂进煤量i s ,居民区需求量为i d ,煤厂i 距居民区j 的距离为ij L ,煤厂i 供给居民区j 的煤量为ij g那么可以列出如下优化方程式∑∑==⨯=3121min j i ij ij L gs.t ()3,2,121==∑=j d gi jij()2,131=≤∑=i s gj iijmodel : sets :supply/1,2/:s; demand/1,2,3/:d;link(supply,demand):road,sd; endsets data :road=10 5 6 4 8 12; d=50 70 40; s=60 100; enddata[obj] min =@sum (link(i,j):road(i,j)*sd(i,j)); @for (demand(i):@sum (supply(j):sd(j,i))=d(i)); @for (supply(i):@sum (demand(j):sd(i,j))<s(i));end1.线性规划模型。
《管理运筹学》lingo模型

习题4-2 lingo模型模型为:min z=P1-1d+P2-2d+P3(-3d++3d)+P4-4d+P5-5d x1+x2+x3<=300000.5*x1+0.2*x2+0.3*x3<=20000240*x1+1200*x2+700*x3+-1d—+1d=3500000 s.t. 0.5*x1+0.2*x2+0.3*x3+-2d—+2d=12500 x1+-3d—+3d=5000x2+-4d—+4d=2000x3+-5d—+5d=2000①首先对应于第一优先等级,建立线性规划问题:min z=-1dx1+x2+x3<=30000s.t. 0.5*x1+0.2*x2+0.3*x3<=20000240*x1+1200*x2+700*x3+-1d—+1d=3500000用lingo求解,得最优解-1d=0,最优值为0,具体过程如下:在lingo工作区中录入以下程序:(其中,d1_、d1分别代表偏差变量、)在菜单lingo下点选:”solve”,进行求解。
求解结果报告的详细信息如下:②对应于第二优先等级,建立线性规划问题:min z=-2dx1+x2+x3<=300000.5*x1+0.2*x2+0.3*x3<=20000s.t. 240*x1+1200*x2+700*x3+-1d—+1d=35000000.5*x1+0.2*x2+0.3*x3+-2d—+2d=12500-1d=0用lingo求解,得最优解-2d=0,最优值为0,具体过程如下:在lingo工作区中录入以下程序:在菜单lingo下点选:”solve”,进行求解。
求解结果报告的详细信息如下:③对应于第三优先等级,建立线性规划问题:min z=-3d++3dx1+x2+x3<=300000.5*x1+0.2*x2+0.3*x3<=20000240*x1+1200*x2+700*x3+-1d—+1d=3500000s.t. 0.5*x1+0.2*x2+0.3*x3+-2d—+2d=12500x1+-3d—+3d=5000-1d=0-2d=0用lingo求解,得最优解-3d=0,+3d=12500,具体过程如下:在lingo工作区中录入以下程序:在菜单lingo下点选:”solve”,进行求解。
线性规划问题的Lingo求解

Lingo中参数设置与调整
01
参数设置
02
调整策略
Lingo允许用户设置求解器的参数, 如求解方法、迭代次数、收敛精度等 。这些参数可以通过`@option`进行 设置。
如果求解过程中遇到问题,如无解、 解不唯一等,可以通过调整参数或修 改模型来尝试解决。常见的调整策略 包括放松约束条件、改变目标函数权 重等。
02
比较不同方案
03
验证求解结果
如果存在多个可行解,需要对不 同方案进行比较,选择最优方案。
可以通过将求解结果代入原问题 进行验证,确保求解结果的正确 性和合理性。
感谢您的观看
THANKS
问题,后面跟随线性表达式。
02 03
约束条件表示
约束条件使用`subject to`或简写为`s.t.`来引入,后面列出所有约束条 件,每个约束条件以线性表达式和关系运算符(如`<=`, `>=`, `=`, `<`, `>`)表示。
非负约束
默认情况下,Lingo中的变量是非负的,如果变量可以为负,需要使用 `@free`进行声明。
问题的解通常出现在约束条件的边界上 。
变量通常是连续的。
特点 目标函数和约束条件都是线性的。
线性规划问题应用场景
生产计划
确定各种产品的最优生产量, 以最大化利润或最小化成本。
资源分配
在有限资源下,如何最优地分 配给不同的项目或任务。
运输问题
如何最低成本地将物品从一个 地点运输到另一个地点。
金融投资
03
求解结果
通过Lingo求解,得到使得总加工时间最短的生产计划安 排。
运输问题优化案例
问题描述
某物流公司需要将一批货物从A地运往B地,可以选择不同的运输方式和路径,每种方式和路径的运输时间和成本不 同。公司需要在满足货物送达时间要求的前提下,选择最优的运输方式和路径,使得总成本最低。
lingo题目与答案(附程序)

Lingo软件题目与答案1.一奶产品加工厂用牛奶生产A1,A2两种奶产品,1桶牛奶可以在甲类设备上用12h加工,成3kg A1,或者在乙类设备上用8h加工成4kg A2。
根据市场需求,生产的A1,A2全部能售出,且每千克A1获利24元,每千克A2获利16元。
现在加工厂每天能得到50桶牛奶供应,每天正式工人的劳动时间为480h,并且甲类设备每天最多加工100kg A1,乙类设备的加工时间没有限制,讨论以下问题1)若35元可以买一桶牛奶,做这项投资是否值得?若投资,每天最多购买多少桶牛奶?2)若聘用临时工人以增加劳动时间,付给临时工人的工资最多是多少?3)由于市场需求变化,每千克A1的获利增加到30元,是否改变原有的生产计划?Lingo程序:model:max=72*x+64*y;x+y<50;12*x+8*y<480;3*x<100;end2.一汽车厂生产小、中、大三种类型的的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润以及每月工厂钢材、劳动时间如下表。
1)制定生产计划,使工厂利润最大;2)若生产某类型车,则至少需生产80辆,求改变后的生产计划。
3.建筑工地的位置(a,b)和水泥日用量d如下表,目前有两个临时料场位于P(5,1),Q(2,7),日储量各有20t。
1)求从P,Q两料场分别向各工地运送多少吨水泥,使总的吨公里数最小;2)现打算舍弃原有料场,新建两个料场A,B,求新料场的位置,使新的吨公里数最小,此时与P,Q相比能节省多少吨公里。
4.设从4个产地Ai往3个销地Bj运送物资,产量、销量和单位运费如下表,求总运费最少的运输方案和总运费。
Lingo程序:Model:sets:warehouse/1..3/:a;customer/1..4/:b;link(warehouse,customer):c,x;endsetsdata:a=30,25,21;b=15,17,22,12;c=6,2,6,7,4,9,5,3,8,8,1,5;enddata[OBJ]min=@sum(link:c*x);@for(warehouse(i): @sum(customer(j):x(i,j))<a(i));@for(customer(j):@sum(warehouse(i):x(i,j))=b(j));end5.求下图中v1到v11的最短路Lingo程序:Model:sets:cities/1..11/;roads(cities,cities):p,w,x; endsetsdata: !半连通图和权图;p=0 1 1 1 0 0 0 0 0 0 00 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 10 0 0 0 1 1 1 1 0 1 10 0 0 0 0 0 1 0 1 0 10 0 0 0 0 0 0 1 1 1 0;w=0 2 8 1 0 0 0 0 0 0 02 0 6 0 1 0 0 0 0 0 08 6 0 7 5 1 2 0 0 0 01 0 7 0 0 0 9 0 0 0 00 1 5 0 0 3 0 2 9 0 00 0 1 0 3 0 4 0 6 0 00 0 2 9 0 4 0 0 3 1 00 0 0 0 2 0 0 0 7 0 90 0 0 0 9 6 3 7 0 1 20 0 0 0 0 0 1 0 1 0 40 0 0 0 0 0 0 0 9 2 4;enddatan=@size(cities);min=@sum(roads:w*x);@for(cities(i)|I # ne # 1 # and # I # ne # n: @sum(cities(j):p(i,j)*x(i,j))=@sum(cities(j):p(j,i)*x(j,i)));@sum(cities(j):p(1,j)*x(1,j))=1;end6.露天矿里有若干个爆破生成的石料堆,每堆称为一个铲位,每个铲位已预先根据铁含量将石料分成矿石和岩石。
lingo习题及答案

第一题:一、摘要本文是一篇关于基金的使用计划模型。
在现实经济高速发展的背景下,人们越来越清醒地意识到:一个合理的数学应用模型对于现今生产、投资、规划等实际应用项目的重要性。
本文所建立的存款模型就是个很好的例子,此模型最终要解决的是选择最佳基金使用计划,使得学校基金会能够有充分的资金在基金会运转。
这个模型的解决是我们更清楚掌握了最优化模型的解决方法及LINGO软件求解线性规划的方法。
二、问题的提出某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。
当前银行存款及各期国库券的利率见下表。
假设国库券每年至少发行一次,发行时间不定。
取款政策参考银行的现行政策。
校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。
校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。
请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果:1.只存款不购国库券;2.可存款也可购国库券。
3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金二、模型的假设(1)银行利息和国库券结算方式为单利;(2) 定期存款和国库券不到期均不能取款;(3)国库券每年发行一期,发行月份不定,但于发行月一号发行;(4)基金结算后马上又进行投资(存入银行或买国库券)中间间隔时间不予考虑;(5)定期存款实际收益利率为公布利率的80%(20%为利息税上交国库)国库券存款利率与同期的定期存款利率相同,但不交利息税;(6)每年年初评奖且奖金数目相同(除第三问),N年后本金仍为M;三、符号的说明x第i年所存入银行的j年期的存款;ijy第i年说购买的j年期的国库券;ij'r银行同期活期利率;r银行同期活期税后利率;'r银行同期j年期固定利率;jr银行同期j年期固定利率税后利率;jM本金=5000万元,Z=每年的奖金四、模型的建立与求解第一种情况:只存款不买国库券我们考虑到这种情况下,存款的时间是一定的,所以活期和三个月,半年的利率都太低,所以在这种情况下,我们直接考虑一年的利率,这样才能获得较多的利息,从而使得每年发放的奖金数目尽可能多——即我们要实现的目标。
上机练习题目(LINGO部分)

表
料场 a b d
工地的位置(a,b)及水泥日用量d 1 2 3 4 5 6 1.25 8.75 0.5 5,75 3 7.25 1.25 0.75 4.75 5 6.5 7.75 3 5 4 7 6 11
十一、某厂生产的一种产品有甲、乙两个牌号,讨论在产 销平衡的情况下如何确定各自的产量,使总的利润最大。 所谓产销平衡指工厂的产量等于市场上的销量,没有卖不 出去的产品的情况。显然,销售总利润既取决于两种牌号 产品的销量和(单件)价格,也依赖于产量和(单件)成 本。按照市场经济规律,甲的价格p1固然会随其销量x1的 增长而降低,同时乙的销量x2的增长也会使甲的价格有稍 微的下降。可以简单地假设价格与销量成线性关系,即 p1=b1-a11x1-a12x2,b1,a11,a12>0,a11>a12;类似地,乙的 价格p2遵循同样的规律,即有p2=b2-a21x1-a22x2,b2,a21, a22>0,a22>a21。例如,假定实际中b1=100,a11=1, a12=0.1,b2=280,a21=0.2,a22=2。此外,假设工厂的生 产能力有限,两种牌号产品的产量之和不可能超过100件, 且甲的产量不可能超过乙的产量的两倍,甲、乙的单件生 产成本分别是q1=2和q2=3(假定为常数)。求甲、乙两个 牌号的产量x1、x2,使总利润最大。
十、某公司有6个建筑工地要开工,每个工地的位置(用平面坐标a, b表示,距离单位:km)及水泥日用量d(单位:t)由下表给出。 目前有两个临时料场位于P(5, 1),Q(2, 7),日储量各有20t,请回答 以下两个问题: (1)假设从料场到工地之间均有直线道路相连,试制定每天的供 应计划,即从A,B两料场分别向各工地运送多少吨水泥,使总的 顿公里数最小。 (2)为了进一步减少顿公里数,打算舍弃目前的两个临时料场, 改建两个新的料场,日储量仍各为20t,问应建在何处,与目前相 比节省的顿公里数有多大下线性规划(LP)问题:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lingo 精选题目及答案答题要求:将Lingo 程序复制到Word 文档中,并且附上最终结果。
1、简单线性规划求解(目标函数)2134m axx x z += s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x2、整数规划求解219040Maxx x z +=⎪⎩⎪⎨⎧≥≤+≤+0,702075679212121x x x x x x 3、0-1规划求解Max 432215.18.04.0x x x x f +++=10106234321≤+++x x x x10,,,4321或=x x x x4、非线性规划求解||4||3||2||m in4321x x x x z +++=s.t. ⎪⎪⎩⎪⎪⎨⎧-=+--=-+-=+--2132130432143214321x x x x x x x x x x x x5、集合综合应用产生一个集合5052--=x x y ,(10,...,2,1=x ),求y 前6个数的和S 1,后6个数的和S 2,第2~8个数中的最小值S 3,最大值S 4。
6、综合题要求列出具体的目标函数和约束条件,然后附上Lingo 程序和最终结果。
6.1 指派问题有四个工人,要指派他们分别完成4项工作,每人做各项工作所消耗的时间如下表:问指派哪个人去完成哪项工作,可使总的消耗时间为最小?6.2 分配问题某两个煤厂A1,A2每月进煤数量分别为60t和100t,联合供应3个居民区B1,B2,B3。
3个居民区每月对煤的需求量依次分别为50t,70t,40t,煤厂A1离3个居民区B1,B2,B3的距离依次分别为10km,5km,6km,煤厂A2离3个居民区B1,B2,B3的距离分别为4km,8km,12km。
问如何分配供煤量使得运输量(即t·km)达到最小?1、model:max=4*x1+3*x2;2*x1+x2<10;x1+x2<8;x2<7;end2、model:max=40*x1+90*x2;9*x1+7*x2<56;7*x1+20*x2<70;@gin(x1);@gin(x2);end3、model:max=x1^2+0.4*x2+0.8*x3+1.5*x4;3*x1+2*x2+6*x3+10*x4<10;@bin(x1); @bin(x2);@bin(x3); @bin(x4);end4、model:max=@abs(x1)+2*@abs(x2)+3*@abs(x3)+4*@abs(x4);x1-x2-x3+x4=0;x1-x2+x3-3*x4=1;x1-x2-2*x3+3*x4=-1/2;end5、model:sets:jihe/1..10/:y;ss/1..4/:S;endsets!由于y和s中部分有负数,所以要先去掉这个约束;@for(jihe:@free(y));@for(ss(i):@free(S));!产生元素;@for (jihe(x):y(x)=x^2-5*x-50); S(1)=@sum (jihe(i)|i#le#6:y(i)); S(2)=@sum (jihe(i)|i#ge#5:y(i));S(3)=@min (jihe(i)|i#ge#2 #and# i#le#8:y(i)); S(4)=@max (jihe(i)|i#ge#2 #and# i#le#8:y(i)); end6.1、设:第i 个工人做第j 项工作用时ij t ,标志变量ij f 定义如下:⎩⎨⎧=其他件工作个工人去做第指派第01j i f ijmin∑∑==⨯4141i j ij ijt fs.t. 141=∑=i ijf()4,3,2,1=j 每份工作都有一人做∑==411j ijf()4,3,2,1=i 每人都只做一项工作model : sets :work/A B C D/;worker/jia yi bing ding/; time(worker,work):t,f; endsets!目标函数可以用[obj]标志出,也可以省略;[obj] min =@sum (time(i,j):t(i,j)*f(i,j)); data :!可以直接复制表格,但是在最后要有分号; t=; e !每份工作都有一人做;@for (work(j):@sum (time(i,j):f(i,j))=1); !每人都只做一项工作;@for (worker(i):@sum (time(i,j):f(i,j))=1); !让f 取0-1值,此条件可以省略;!@for(time(i,j):@bin(f(i,j))); end6.2设:煤厂进煤量i s ,居民区需求量为i d ,煤厂i 距居民区j 的距离为ij L ,煤厂i 供给居民区j 的煤量为ij g那么可以列出如下优化方程式∑∑==⨯=3121min j i ij ij L gs.t ()3,2,121==∑=j d gi jij()2,131=≤∑=i s gj iijmodel : sets :supply/1,2/:s; demand/1,2,3/:d;link(supply,demand):road,sd; endsets data :road=10 5 6 4 8 12; d=50 70 40; s=60 100; enddata[obj] min =@sum (link(i,j):road(i,j)*sd(i,j)); @for (demand(i):@sum (supply(j):sd(j,i))=d(i)); @for (supply(i):@sum (demand(j):sd(i,j))<s(i));end1.线性规划模型。
某战略轰炸机群奉命摧毁敌人军事目标。
已知该目标有四个要害部位,只要摧毁其中之一即可达到目的。
为完成此项任务的汽油消耗量限制为48000升、重型炸弹48枚、轻型炸弹32枚。
飞机携带重型炸弹时每升汽油可飞行2千米,带轻型炸弹时每升汽油可飞行3千米。
又知每架飞机每次只能装载一枚炸弹,每出发轰炸一次除来回路程汽油消耗(空载时每升汽油可飞行4千米)外,起飞和降落每次各消耗100升。
表1 相关数据2、资源配置模型。
某工厂有原料钢管:每根19米,用户需求4米50根,6米20根,8米15根。
如何下料钢管剩余总余量最小? 由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种。
表1 不同切割的模式模式4米钢管根数6米钢管根数8米钢管根数余料(米)1 4 0 0 32 3 1 0 13 2 0 1 34 1 2 0 35 1 1 1 16 0 3 0 13、图论模型(动态规划)。
求出下图所示的最小费用和最大流量,以及在最小费用下的最大流量。
其中(x,y)中x表示容量,y表示费用。
图1 网络图题目解答1.线性规划模型。
解:设用了x 枚重型炸弹,用了y 枚轻型炸弹,攻击的是第i 个部位,再设一标志变量f 定义如下:⎩⎨⎧=个部位不攻击第个部位攻击第i i f i 01目标函数为: ()[]∑=⨯⨯+⨯=41max i i li ih f p y px()()480002004/3/2004/2/≤++⨯+++⨯i i i i d d y d d x48≤x ,32≤y141=∑=i ifmodel : sets :pd/1..4/:Ph,Pl,d,f; endsets data :d=450,480,540,600; Ph=0.1,0.2,0.15,0.25; Pl=0.08,0.16,0.12,0.2; enddatamax =@sum (pd(i):(x*Ph(i)+y*Pl(i))*f(i));@for (pd(i):x*(d(i)/2+d(i)/4+200)+y*(d(i)/3+d(i)/4)+200<48000); x<48;y<32;@for (pd(i):@bin (f(i))); @sum (pd(i):f(i))=1;!验证用油量;!l=x*(d(4)/2+d(4)/4+200)+y*(d(4)/3+d(4)/4)+200; end2、资源配置模型。
某工厂有原料钢管:每根19米,用户需求4米50根,6米20根,8米15根。
如何下料钢管剩余总余量最小? 由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种。
表1 不同切割的模式模式 4米钢管根数6米钢管根数8米钢管根数余料(米)1 4 0 0 323 1 0 1 3 2 0 1 34 1 2 0 35 1 1 1 16 0 3 0 1 设:模式i 的供应量为i m ,对于第i 种模式,切割的4米钢管根数,6米钢管根数,8米钢管根数,分别为ij t ,余料为i s ,每种钢管的需求量分别为i d ,再设一标志变量f 定义如下:⎩⎨⎧=种模式不采用第种模式采用第i i f i 01目标函数:min∑=⨯⨯71i i i im s fj j i ij id m t f=⨯⨯∑=71i =1,2,…,7∑==713i ifmodel : sets :mode/1..7/:m,s,f; demand/1..3/:d; md(mode,demand):t; endsets data :s=3 1 3 3 1 1 3; d=50 20 15; t=4 0 0 3 1 0 2 0 1 1 2 0 1 1 1 0 3 0 00 2; enddata[obj] min =@sum (mode(i):f(i)*s(i)*m(i));@for (demand(j):@sum (mode(i):f(i)*m(i)*t(i,j))=d(j)); @for (mode(i):@bin (f(i))); @sum (mode(i):f(i))<3; end3、图论模型(动态规划)。
求出下图所示的最小费用和最大流量,以及在最小费用下的最大流量和最大流量下的最小费用。
其中(x ,y )中x 表示容量,y 表示费用。
图1 网络图1)求最小费用,解法一:稀疏矩阵0-1规划法假设图中有n 个原点,现需要求从定点1到n 的最短路。
设决策变量为ij f ,当1=ij f ,说明弧(i ,j )位于定点1至定点n 的路上;否则0=ij f ,其数学规划表达式为min∑∑==n i nj ij ijf w11约束条件,源点只有一条路指出去,终点只有一条路指进来,其余各点指进去的和指出去的相等,表达式如下,⎪⎩⎪⎨⎧≠=-==-∑∑==ni n i i f f nj ji n j ij ,10,1,1111model : sets :node/1..6/;road(node,node)/1 2,1 3,2 4,2 5, 3 4,3 5,4 6,5 6/:w,f; endsets data :w=2 1 5 3 4 3 0 0; enddatan=@size (node);[obj] min =@sum (road(i,j):w(i,j)*f(i,j)); @for (node(i)|i#ne#1 #and# i#ne#n:@sum (road(i,j):f(i,j))=@sum (road(j,i):f(j,i))); @sum (road(i,j)|i#eq#1:f(i,j))=1;!下面这个条件可以省略,这个条件包含在上面的条件了, 因为如果满足上面所以的条件指向终点的路只有且只有一条; @sum (road(j,i)|i#eq#n:f(j,i))=1; end解法二:求源点到任意点的最小费用,动态规划法。