数理方程关于振动方程的分析matlab
振动力学基础与matlab应用_概述说明

振动力学基础与matlab应用概述说明引言是一篇文章的开篇部分,用于介绍文章的背景、目的和结构。
在本文中,引言部分将包括概述、文章结构以及研究目的。
1.1 概述振动力学作为工程领域的一个重要分支,研究物体在受到外界激励时发生的振动现象。
振动力学的理论与应用在许多工程领域都有广泛应用,包括结构工程、机械工程、航空航天等。
了解振动力学的基础知识和掌握相应的计算工具是进行相关工程设计和问题分析的必要前提。
1.2 文章结构本文将按照以下方式组织:第二部分将介绍振动力学的基础知识。
我们将阐述振动概念,并详细讨论振动模型及其方程。
此外,还将重点介绍自由振动与强迫振动之间的区别以及其在实际问题中的应用。
第三部分将探讨Matlab在振动力学中的应用。
我们将回顾Matlab基础知识,并简要介绍Matlab中常用的振动计算工具箱。
通过案例分析与实践应用,我们将展示如何利用Matlab解决振动力学中的实际问题。
第四部分将重点讨论典型振动问题及其解决方法。
我们将介绍频率响应分析与谱密度法在振动工程中的研究应用,以及模态分析与阻尼系统优化设计方法的论述。
此外,本文还将给出数值仿真模拟在振动工程中的应用示例讲解。
最后,我们将在第五部分总结本文所得结果,并讨论研究的局限性。
同时,对未来研究方向进行了展望。
1.3 目的本文旨在提供一个关于振动力学基础和Matlab应用的概述说明。
通过深入了解振动力学理论和掌握相关计算工具,读者可以更好地理解和解决振动问题。
同时,本文还旨在为未来相关研究提供参考和启发,促进该领域的进一步发展与探索。
通过本篇文章,“振动力学基础与Matlab应用”的概述说明已经清晰地介绍了引言部分内容,并包含了概述、文章结构以及研究目的等方面的信息。
2. 振动力学基础:2.1 振动概念介绍振动是物体在时间和空间上的周期性运动。
它是一种重要的物理现象,在工程领域中有广泛的应用。
振动可以分为自由振动和强迫振动两种类型。
如何在Matlab中进行模态分析和振动控制

如何在Matlab中进行模态分析和振动控制Matlab是一款强大的数值计算软件,被广泛用于工程学科中的各种模拟和分析任务。
在这篇文章中,我们将探讨如何利用Matlab进行模态分析和振动控制。
这两个主题在工程学中具有重要的意义,因为它们可以帮助我们理解和控制结构体系的动态响应。
首先,让我们来了解一下什么是模态分析。
模态分析在结构动力学中是一个重要的概念,它用于研究结构的固有振动特性。
通过模态分析,我们可以确定结构的固有频率、振型和动力特性。
这对于理解和设计结构体系都是至关重要的。
在Matlab中进行模态分析的第一步是建立结构的有限元模型。
有限元分析是一种将结构划分为有限个元素并对每个元素进行离散近似的方法。
在Matlab中,我们可以使用预定义的有限元分析工具包(例如,FEA Toolbox),或者自己编写基于有限元方法的代码。
一旦我们建立好有限元模型,就可以通过求解结构的特征值问题来进行模态分析。
特征值问题是一个矩阵本征值和本征向量的求解问题。
在Matlab中,我们可以使用eig函数来求解这个问题。
解特征值问题将给出结构的固有频率和振型。
除了模态分析,振动控制也是一个重要的课题。
振动控制的目标是通过施加外部力或采取其他措施来改变结构的振动行为,从而降低结构对外界激励的敏感性,减小结构的振动响应。
在Matlab中进行振动控制的基本方法之一是采用主动控制策略。
主动控制的核心思想是通过主动调节结构的刚度、阻尼或质量来改变结构的振动特性。
这可以通过施加电磁力、压电驱动器或其他控制器来实现。
在Matlab中,我们可以使用控制系统工具箱来设计和仿真各种主动控制策略。
另一种常见的振动控制方法是采用被动控制策略,其中结构上添加一些被动装置(例如阻尼器、质量块等)来减小结构的振动响应。
在Matlab中,我们可以使用动力学建模工具箱来模拟并优化被动控制装置的性能。
无论是模态分析还是振动控制,Matlab的强大功能和丰富的工具包都为工程师和研究人员提供了很多便利。
基于MATLAB的振动模态分析

摘要振动系统是研究机械振动的运动学和动力学,研究单自由系统的振动有着实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。
模态是振动系统的一种固有振动特性,模态一般包含频率、振型、阻尼。
振动系统问题是个比较虚拟的问题,比较抽象的理论分析,对于问题的分析可以实体化建立数学模型,通过MATLAB可以转化成为图像。
单自由度频率、阻尼、振型的分析,我们可以建立数学模型,最后通过利用MATLAB编程实现数据图形;多自由度主要研究矩阵的迭代求解,我们在分析抽象的理论的同时根据MATLAB编程实现数据的迭代最后可以得到所要的数据,使我们的计算更加简便。
利用MATLAB编程并验证程序的正确性。
通过程序的运行,能快速获得多自由度振动系统的固有频率以及主振型,为设计人员提供了防止系统共振的理论依据,也为初步分析各构件的振动情况以及解耦分析系统响应奠定了基础。
关键词:振动系统;单自由度;MATLAB;多自由度AbstractVibration system is to study the kinematics and dynamics of mechanical vibration, the vibration of a single free system has practical significance, because there are many engineering problems by simplifying, using the vibration theory of a single degree of freedom system can be satisfied with the results.Vibration system problems is a relatively virtual problems, more abstract and theoretical analysis, problem analysis for a mathematical model can be materialized by MATLAB can be converted into images. Single degree of freedom frequency, damping, mode shape analysis, we can create mathematical models, the final program data through the use of MATLAB graphics; many degrees of freedom main matrix iterative solution, our analysis based on abstract theory, while MATLAB programming The last iteration of data can be the desired data, so our calculations easierUsing MATLAB programming and verify the correctness of the program.Through the process of operation, can quickly obtain multiple degrees of freedom vibration system and the main vibration mode natural frequency for the design to prevent resonance provide the theoretical basis for the preliminary analysis of the vibration of each component, and laid the decoupling of system response basis.Key words:vibrating system; Single Degree of Freedom ;MATLAB; multiple degree offreedom辽宁工程技术大学毕业设计(论文)1 绪论1.1问题的提出机械振动是一门既古老又年轻的科学,随着人类科学技术的不断进步振动理论得到不断的发展和完善。
振动力学基础与matlab应用

振动力学是研究物体在作往复振动或周期性运动时的力学规律和特性的一门学科。
它在工程、物理、地震学等领域中有着广泛的应用。
MATLAB是一种强大的数值计算和科学绘图软件,可以用于振动力学的建模、仿真和可视化。
在振动力学基础方面,需要掌握以下内容:
1. 单自由度系统:这是振动力学的基础,主要研究质点的简谐振动和阻尼振动等。
需要了解自由度、刚度、阻尼和质量等概念,并能够利用牛顿第二定律、欧拉-拉格朗日原理等方法分析运动方程和相应的振动特性。
2. 多自由度系统:多自由度系统是复杂振动问题的常见形式,需要掌握刚体系统、弹性系统和连续系统等的振动特性。
这里需要了解模态分析、正交性原理和频率响应等概念,并学会通过欧拉-拉格朗日方程和质量矩阵、刚度矩阵等进行系统参数的求解和模拟。
在MATLAB应用方面,需要掌握以下内容:
1. MATLAB基础语法和常用命令,如数据类型、矩阵运算、函数定义和图形绘制等。
2. 振动力学的MATLAB模型建立和仿真分析。
需要学会利用MATLAB解决振动力学问题的程序设计和编写,如求解ODE方程组、进行模态分析和频率响应分析等。
3. MATLAB可视化工具的使用,如画图工具箱、动画工具箱、GUI界面设计与应用等,以便更加直观地展现振动力学问题的结果和结论。
振动力学基础与MATLAB应用是一门需要深入掌握的学科。
通过深入学习这门学科,可以更好地理解和应用振动力学的理论和方法,同时也可以更好地掌握MATLAB在振动力学中的应用。
matlab振动算法

matlab振动算法
MATLAB是一种用于数学建模、仿真和数据分析的强大工具,它提供了许多用于处理振动问题的算法和工具。
在MATLAB中,振动问题通常涉及到求解微分方程、频率分析、模态分析等内容。
以下是一些在MATLAB中处理振动问题常用的算法和工具:
1. 求解微分方程,MATLAB提供了强大的微分方程求解器,如ode45、ode23等,用于求解振动系统的运动方程。
用户可以通过编写自定义的微分方程函数来描述振动系统的运动规律,并利用求解器得到系统的解析解或数值解。
2. 频率分析,MATLAB中的信号处理工具箱提供了丰富的频谱分析函数,如fft、pwelch等,用于分析振动信号的频谱特性。
用户可以通过这些函数对振动信号进行频谱分析,了解系统的频率响应特性。
3. 模态分析,MATLAB中的模态分析工具箱提供了用于计算结构模态参数的函数,如modeShape、naturalFrequency等。
用户可以利用这些函数计算振动系统的模态形状和固有频率,从而了解系统的振动特性。
4. 有限元分析,MATLAB中的有限元分析工具箱提供了用于建立和求解有限元模型的函数,用户可以利用这些函数对复杂结构的振动特性进行分析和预测。
总之,MATLAB提供了丰富的算法和工具,用于处理各种振动问题,用户可以根据具体的振动分析需求选择合适的算法和工具进行使用。
希望以上信息能够帮助到你。
matlab 正弦振动加速度与位移转换

一、概述1. Matlab 作为一种专业的计算软件,被广泛运用于工程、科学领域;2. 在动力学仿真中,正弦振动是常见的运动形式;3. 本文将探讨如何利用 Matlab 对正弦振动的加速度与位移进行转换。
二、正弦振动的数学表达式1. 正弦振动的数学模型可以表示为:x(t) = A * sin(ωt + φ);2. 其中,x(t) 为振动位移,A 为振幅,ω 为角频率,φ 为初相位。
三、求取正弦振动的加速度1. 由位移函数可得速度函数为v(t) = A * ω * cos(ωt + φ);2. 对速度函数进行一次求导可得加速度函数:a(t) = - A * ω^2 * sin(ωt + φ)。
四、Matlab 实现1. 利用 Matlab 定义振动的参数:振幅 A、角频率ω、初相位φ;2. 利用 Matlab 编写位移函数,并绘制出振动位移随时间变化的曲线图;3. 根据位移函数,利用 Matlab 编写速度函数和加速度函数,并分别绘制出随时间变化的曲线图;4. 通过 Matlab 可视化工具,将位移、速度、加速度曲线图进行合并展示,以便直观比较振动的不同参数对加速度的影响。
五、实例分析1. 选定振幅 A = 1m、角频率ω = 2π rad/s、初相位φ = π/4;2. 利用 Matlab 编写相应的位移函数、速度函数和加速度函数,并绘制曲线图;3. 分析振动参数对加速度的影响,比较不同振动条件下加速度变化的规律。
六、结果讨论1. 通过 Matlab 实现对正弦振动加速度与位移的转换,并成功绘制出位移、速度、加速度随时间变化的曲线图;2. 通过实例分析,发现振动参数 A、ω、φ 对加速度的影响规律,为动力学仿真和振动控制提供了参考依据。
七、结论1. 本文介绍了 Matlab 实现正弦振动加速度与位移转换的方法;2. 通过实例分析,展示了振动参数对加速度的影响规律;3. 基于 Matlab 的动力学仿真技术,能够更准确地分析和预测振动系统的运动特性,具有重要的工程应用价值。
matlab计算单自由度振动反应的程序

一、引言在工程领域中,单自由度振动系统是一种常见的动力学模型,其在建筑结构、机械设备等领域都有重要的应用。
而计算单自由度振动系统的反应是工程设计和分析中的重要任务之一,对于系统的稳定性、安全性等具有重要意义。
为了快速而准确地计算单自由度振动系统的反应,工程师和研究人员常常使用MATLAB编写程序来实现计算。
二、MATLAB在单自由度振动反应计算中的优势1. 灵活性:MATLAB是一种功能强大的编程语言和工具,可以实现复杂的算法和数学模型,能够满足工程设计和分析中的各种需求。
2. 可视化:MATLAB具有丰富的绘图和可视化功能,可以直观地展示单自由度振动系统的反应结果,使工程师和研究人员更好地理解系统的运动特性。
3. 高效性:MATLAB提供了丰富的计算和求解工具,可以快速而准确地计算单自由度振动系统的反应,节约了工程师和研究人员的时间和精力。
三、MATLAB编写单自由度振动反应计算程序的基本步骤1. 确定系统参数:首先需要确定单自由度振动系统的质量、刚度、阻尼系数等参数,这些参数将影响系统的振动响应。
2. 构建系统模型:根据系统的参数和运动方程,可以利用MATLAB编写对应的单自由度振动系统模型。
3. 求解运动方程:利用MATLAB提供的求解工具,可以求解单自由度振动系统的运动方程,得到系统的振动响应。
4. 可视化结果:最后可以利用MATLAB的绘图和可视化工具,将系统的振动响应以图表的形式展现出来,便于工程师和研究人员对系统的运动特性进行分析和评估。
四、MATLAB编写单自由度振动反应计算程序的示例代码以下是一个简单的MATLAB示例代码,用于计算单自由度振动系统的阻尼比为0.2时的阻尼比对应的阻尼比比,供读者参考。
```matlab定义系统参数m = 1; 质量k = 10; 刚度zeta = 0.2; 阻尼比omega_n = sqrt(k / m); 自然频率计算阻尼比对应的阻尼比比omega_d = omega_n * sqrt(1 - zeta^2);disp(['阻尼比对应的阻尼比比为:', num2str(omega_d /omega_n)]);```通过上述示例代码,可以看出MATLAB的编写方式简单明了,利用MATLAB可以快速计算单自由度振动系统的各种响应参数。
基于MATLAB的随机振动数据分析方法研究

基于MATLAB的随机振动数据分析方法研究随机振动数据分析在工程学、物理学、地质学等领域中具有重要应用价值。
本文将基于MATLAB平台,对随机振动数据分析方法进行研究。
首先,我们需要了解随机振动的基本知识。
随机振动是指振动系统中的激励力或振动速度、位移等参数是随机变量的振动。
其特点是频谱分布连续,振动信号不具有明显的重复规律,且无法用简单的数学函数来描述。
随机振动数据的分析包括概率统计分析、频谱分析、相关分析等。
我们首先可以进行概率统计分析。
通过收集随机振动数据,可以计算其均值、方差、标准差等统计量,以了解数据的集中趋势和离散程度。
MATLAB中提供了各种用于概率统计分析的函数,如mean(、var(、std(等。
这些函数可以帮助我们得到数据的统计特征,并进行绘图可视化,进一步分析数据的分布规律。
其次,我们可以进行频谱分析。
频谱分析可以将随机振动信号从时域转换为频域,得到信号在不同频率上的能量分布情况。
在MATLAB中,可以使用快速傅里叶变换(FFT)等函数进行频谱分析。
通过绘制频谱图,可以判断随机振动信号的主要频率成分和峰值,进一步得到信号的特征。
相关分析也是随机振动数据分析的重要方法之一、相关分析可以帮助我们研究不同振动信号之间的关系。
通过计算信号之间的相关系数或互谱密度,可以判断信号之间的同相性、滞后性及相关性强弱。
MATLAB中提供了相关性分析的函数,如corrcoef(、xcorr(等。
这些函数可以帮助我们计算相关系数和自相关函数,进一步了解振动信号之间的关系。
此外,对于随机振动数据分析,我们还可以使用MATLAB中的滤波、降噪和特征提取等函数。
滤波可以去除信号中的噪声和杂波,得到更准确的振动信号。
降噪可以通过滤波、小波变换等方法,减小信号中的噪声影响。
特征提取可以从振动信号中提取出有意义的特征,如振动频率、振动幅值等。
总之,基于MATLAB的随机振动数据分析方法研究是一个重要的研究领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理方程基于MATLAB 的问题分析报告一、问题的提出、背景、意义振动是指物体经过它的平衡位置所作的往复运动或某一物理量在其平衡值附近的来回变动。
而波动则是一种能量传播的方式。
虽然形式不同,但是两者的联系十分紧密,振动是波动的根源,波动是振动的传播形式。
因此在分析问题乃至实际操作中,往往是把两者放在一起分析的,首先讨论振动的各方面特性,这样就相当于已知了波动一点上的相应特性,再对波动进行分析时,就只用讨论距离的影响了。
一般来说,振动只受时间影响,加上距离的参数,最终波动就只受两个变量影响,而且也知道了它们是无关的,就可以使用分离变量法进行求解。
弦振动是波动的一类特殊形式,它在音乐物理学、材料学、地理学、物质分析学等许多领域都得到了应用,而弦振动所属声学又是力学的一个非常独立的分支,因此它在各领域的作用几乎是不可取代的。
由于近年来的各方面硬件设施和软件的发展,曾经停止发展很长一段时间的对弦振动的分析又开始体现出它独特的优势。
在产生音乐的过程中,琴弦的振动是很常见的一种方式,本文就将对琴弦振动进行一定的研究,通过对弦振动方程的理解,给出不同初始条件,并分析出琴弦不同地方产生波的特性,再用MATLAB做好程序,画出相应的图像,经比较后得到琴弦的拨发与产生声音的联系。
二、问题分析思路2.1建立偏微分方程分析一根琴弦的振动问题,通过针对具体要分析的问题,可以列出弦振动方程以及初始条件2,0,0(0,)0,(,)0(,0)(),(,0)()tt xxtu a u x L tu t u L tu x x u x xϕ⎧=<<>⎪==⎨⎪==ψ⎩(L为弦的长度,因为是两端固定的弦,初始条件一定有(0,)0,(,)0u t u L t==),用分离变量法很容易求得它相应的解,即弦振动的函数。
2.2对琴弦参数的求解已知常量T=128N,普通钢琴弦密度37.9/g cmρ=,根据琴弦传播速度公式v=v。
2.3 求解对象由弦振动的函数可以得到弦上不同点的振动情况。
随机选取几个点,得到它们的振动情况,并比较。
2.4作图方法通过MATLAB仿真出不同点的图像,比较图像的幅值周期等参数。
(开始考虑到有两种方式,一种直接通过上一个步骤求出的解使用简单的MATLAB命令画出图,另一种则是通过MATLAB解方程后再画出相应的图像,事实上第一种MATLAB是做不到的,于是用第二种)2.5 仿真结果仿真出弦振动的频谱图,即以频率和振幅为横纵坐标的图,得到不同频率与振幅的关系,对图可以进行一系列的分析,得到相应的结果。
2.6方程解的现实意义由于琴弦振动实际意义,我们将弦振动的实际音效也用MATLAB做出来了,这样更能直观的体会到琴弦振动条件不同带来的影响。
但是发出的声音不如实际生活那么和谐美妙(缺少腔体等音乐元件)。
三、具体求解步骤3.1标准齐次弦振动的求解如前文所提,对于这样一个标准的齐次弦振动问题,分离变量法是我们主要所采取的解题方法。
设方程具有的解的形式为:u(x,t)=T(t)X(x)(3-1)将变量t与变量x分离开后,代入原方程,得到:2T X a TX ''''= (3-2)2T X a T X''''= (3-3) 令:2T X a T Xλ''''==- (3-4) 此时,得到两个常微分方程:0X X λ''+= (3-5)20T a T λ''+=, (3-6)代入边界条件,得到:T(t)X(0)=0,T(t)X(L)=0 (3-7)由于(,)0u x t ≡不是我们需要的解,对T (t )不能恒为0,所以对于X (x ),我们可以得到:(0)()0X X L == (3-8)这样一来,我们可以得到常微分方程0X x λ''+=满足边界条件(0)()0X X L ==的平凡解。
当0λ≤时,原方程的边值问题就只有零解。
当0λ>时,原方程的通解为:22n 2n =Lπλ()X x A B =+ (3-9) 代入边界条件,得:(0)100X A B =+= (3-10)()0X L A B =+=20n T a T λ''+= (3-11)解得的结果为,A=0,sin 0B =。
为了使X (x )不恒为0,应有0B ≠,亦即0=,1,2,3n n π==…… 则:22n 2n =Lπλ (3-12) 相应的特征函数为()sinn n n x X x B Lπ=,其中Bn 为任意非零常数,对应每一个特征值方程20n T a T λ''+=的解是 ()cos sin n n n n at n at T t C D L L ππ=+()cos sin n n n n at n at T t C D L Lππ=+ (3-13) 其中,Cn,Dn 为任意常数。
我们得到原方程一系列特解为:(,)()()cos sin sin n n n n n n at n at n x u x t T t X x C D L L L πππ⎛⎫==+ ⎪⎝⎭(3-14) 为了求出满足的解,我们将(,)u x t 作傅立叶拓展,把每一项(,)n u x t 全部叠加起来,则:1(,)cos sin sin n n n n at n at n x u x t C D L L L πππ∞=⎛⎫=+ ⎪⎝⎭∑ (3-15) 为了确定系数Cn ,Dn ,将方程代入初始条件,得11(,0)()sin ,(,0)()sin n t n n n n x n a n x u x x C u x x D L L L πππϕ∞∞=====ψ=∑∑ (3-16) 之后即可解出Cn ,Dn :02()sin ,L n n C d n N L Lπεϕεε=∈⎰ (3-17) 02()sin ,L n n D d n N n a L πξψξξπ=∈⎰ (3-18) 3.2实际弦振动的求解对于第二节一开始提出的一维实际琴弦振荡问题,我们将实际参数代入公式中。
这里,取a v ==考虑到弦乐器的常见技法就是拨弦,拨弦即用手指把琴弦拨离平衡位置。
使其振动发声。
这相当于在X=a 处把弦拉高到高度h ,然后松开,使其自由振动,即弦振动的初始位移不为零而初速度为零。
(1)假设在琴弦的正中间拨弦,则a=L/2,取值为434mm ,拨弦高度h 为4mm 。
可以得到:40434434()4(868)434868434x x x x x ϕ⎧≤≤⎪⎪⎨-⎪≤≤⎪⎩ ()0x ψ=那么,此时的波动方程表达式为:221321(,)sin sin cos 2n n n n a u x t x t n L L ππππ∞=⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ (3-19)X 为坐标,t 为时间,如果我们取弦上三个具有代表性的点,根据琴弦的对称性,就可以大致了解整个弦的振动情况;为此,我们不妨选取x=L/6,x=L/3,x=L/2三个点作为特征点。
此时,分别令x=L/6,x=L/3,x=L/2,代入(3-19),有:1221321(,)sin sin cos 26n n n n a u x t t n L ππππ∞=⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ (3-20) 2221321(,)sin sin cos 23n n n n a u x t t n L ππππ∞=⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑(3-21) 3221321(,)sin sin cos 22n n n n a u x t t n L ππππ∞=⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑(3-22) (2)若不是在琴弦的正中间拨弦,是在a=L/3处拨弦,则此时的波动方程为:221361(,)sin sin cos 2n n n n a u x t x t n L L ππππ∞=⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ (3-23)仅仅是最前端系数发生变化,不影响我们对问题的研究。
故仅取a=L/2即可。
3.3琴弦特征点的图像下面依照(3-20)-(3-22)的表达式作出对应的图像当a取L/6时当a取L/3时当a取L/2时3.4琴弦特征点图像的分析综合上面三张图可以得到:相同点:三张图都并不是想象中那种较为正常的正弦波波形,主要是因为其函数就是2个sin和一个cos函数相乘得到的。
仔细观察还可以得到,三张图的周期,即频率都是一样的,这与已知到的弦振动物理驻波方面的知识相符。
知道上面的直观结论后,可以进一步实验得到,在整条弦上,每一个点的振动都是非正弦且周期的,振动过程中都有一部分极大值是相同的。
不同点:1/6弦长处的平均振幅最小,且波峰最大值持续时间长,1/2弦长处的的平均振幅最大,且波峰最大值持续时间短,1/3弦长处则是处于中间。
在多做实验可以进一步得到,越靠近弦端点处,振幅越小,波峰最大值持续时间越长,声音越容易浑厚低沉;越靠近中点处振幅越大,波峰最大值持续时间越短,声音越容易高亢嘹亮,可见幅值响应对于不同的点是不同的。
3.5琴弦振动问题的结论及现实意义事实上,振幅越大的地方在物理意义就是此时音量比较大,综合以上分析,在拨弦的时候若拨动点越靠近中点,则产生音量越大。
另一方面,对于不同拨弦点,其频率基本是一致的,这也与实际比较吻合,因为对琴弦乐器,改变音调(即频率)的方法就是换一根更长(或更短)的琴弦拨动。
3.6 琴弦问题的反思及延伸利用matlab程序,我们较好地解决了一维琴弦振动问题,但是我们并不能满足于此。
因为我们既然已经画出了这根琴弦的振动图像,相当于将该琴弦振动情况完全模拟了出来。
与此相关,我们甚至可以求出它振动的频率,找到它的音调,再予以分析。
但由于能力有限,我们找不到合适的方法来分析该琴弦振动的频谱,只能止步于此。
四、遇到的困难及解决方法4.1遇到的困难我们本次课程设计遇到了如下困难:(1)如何选择合适的题目(2)如何表示求和的表达式(3)如何实现图像的对比(4)动态图的画法4.2解决方法(1)对于题目的选择,我们经过多次讨论后决定对某一根琴弦振动情况进行分析,为了更具科学性,选取不同的拨弦点。
(2)对求和表达式,引入for循环和即可解决。
(3)为了在不同情况中进行清楚的对比,需要对坐标轴参数进行设定。
(4)对于动态图,查阅资料后,用组合函数的方式予以解决。
五、总结及心得体会5.1总结本次通过matlab程序解决波动方程,我们看到了一根琴弦振动时各点的真实情况,一来加深了我们对方程本身的认识,二来使我们看到了方程更直观,更形象的解的实际情况,实在是获益匪浅。