高中物理最容易失分的34个知识点——高中初中物理资料
高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单!(注意:全篇带★需要牢记!)高中物理重要知识点总结(史上最全)高中物理知识点总结(注意:全篇带★需要牢记!)一、力物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μF N进行计算,其中F N是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上. (2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2 |≤F≤F 1 +F 2 . (4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态. (3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑F x =0,∑F y =0.(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
高中物理知识点归纳总结

高中物理知识点归纳总结物理是一门研究物质运动、能量转化和相互作用的科学,无论是高考还是日常学习中,掌握高中物理知识点是非常重要的。
下面将对高中物理的主要知识点进行归纳总结,帮助大家更好地理解和记忆。
一、力学1. 运动的描述:位置、位移、速度、加速度、物体运动的图像描述等;2. 牛顿三定律:惯性、力和加速度的关系,相互作用力和反作用力;3. 研究直线运动的基本公式:平均速度、平均加速度,自由落体运动;4. 研究曲线运动的基本公式:力的合成、向心力、向心加速度。
二、热学1. 温度与热量:摄氏度、华氏度、开氏温标,热平衡及热传导;2. 热力学第一定律:内能变化、功、热量,焦耳定律;3. 热力学第二定律:热力学循环、热机效率,熵的概念;4. 热传递:传导、对流、辐射。
三、光学1. 光的本质:光的传播、光的直线传播、反射、折射、光的速度;2. 光的成像:球面镜、薄透镜成像公式,实物与像的关系;3. 光的干涉和衍射:双缝干涉、杨氏实验,多普勒效应;4. 光的波粒性:光的波动性、光的粒子性,光的电磁波性质。
四、电学1. 电荷与电场:静电力、库仑定律,电场的概念和特点;2. 电流和电阻:电源、电流强度,欧姆定律,串并联电阻;3. 电路和电源:串并联电路,理想电源与非理想电源,接地;4. 磁场与电磁感应:磁场的特征,洛伦兹力、电磁感应和感应电流。
五、原子物理1. 原子结构:原子核、质子、中子、电子,元素周期表;2. 放射性与核能:放射性衰变、半衰期、核反应,核能发电;3. 分子动理论:气体的性质、理想气体定律,摩尔质量;4. 固体物理:晶体结构,晶体缺陷,晶体的导电性。
综上所述,以上是高中物理的主要知识点的归纳总结。
通过对这些知识点的理解和掌握,同学们可以更好地应对高考和日常学习中的物理问题。
当然,物理是一门实践性较强的科学,掌握基本原理之后,还需要通过实验和练习加深对知识点的理解和应用能力。
祝愿大家在学习物理的过程中能够取得好的成绩和进步!。
高中物理最容易失分的34个“坑”

高中物理最容易失分的34个“坑”1.受力分析,往往漏“力”百出物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法”与“隔离法”两种。
物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。
在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。
在受力分析过程中,特别是在“力、电、磁”综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。
还要说明的是,在分析某个力发生变化时,运用的方法是数学计算法、动态矢量三角形法(注意只有满足一个力大小方向都不变、第二个力的大小可变而方向不变、第三个力大小方向都改变的情形)和极限法(注意要满足力的单调变化情形)。
2.对摩擦力认识模糊摩擦力包括静摩擦力,因为它具有“隐敝性”、“不定性”特点和“相对运动或相对趋势”知识的介入而成为所有力中最难认识、最难把握的一个力,任何一个题目一旦有了摩擦力,其难度与复杂程度将会随之加大。
最典型的就是“传送带问题”,这问题可以将摩擦力各种可能情况全部包括进去,小简老师建议同学们从下面四个方面好好认识摩擦力:(1)物体所受的滑动摩擦力永远与其相对运动方向相反。
这里难就难在相对运动的认识;说明一下,滑动摩擦力的大小略小于最大静摩擦力,但往往在计算时又等于最大静摩擦力。
还有,计算滑动摩擦力时,那个正压力不一定等于重力。
(2)物体所受的静摩擦力永远与物体的相对运动趋势相反。
显然,最难认识的就是“相对运动趋势方”的判断。
可以利用假设法判断,即:假如没有摩擦,那么物体将向哪运动,这个假设下的运动方向就是相对运动趋势方向;还得说明一下,静摩擦力大小是可变的,可以通过物体平衡条件来求解。
(3)摩擦力总是成对出现的。
全高中物理知识点归纳总结

全高中物理知识点归纳总结物理作为一门自然科学,涵盖了广泛的知识领域,为全体高中学生提供了深入探索世界本质的机会。
对于学习物理的同学们来说,系统地总结和归纳所学知识点,有助于巩固记忆、提高理解能力。
本文将全面归纳高中物理的知识点,以便同学们系统梳理各个重要知识点,加深对物理学的理解。
一、热力学1. 温度与热量:温度的定义及单位,物体的热平衡与温度的测量,气压的测量,热传递方式(传导,对流和辐射),热量的传递与热平衡,热力学第一定律:内能的变化与热量、功的关系。
2. 理想气体定律:火山喷发问题、定压过程、定容过程、定温过程,焦耳实验,微观模型与理想气体的不足,实际气体的状态方程。
3. 物态变化:三态及相互转化,相变潜热与显热,状态图与三相点,升华与凝华,气体的冷却过程。
二、力学1. 牛顿运动定律:第一定律、第二定律、第三定律及其应用;进行简单问题的分析与解决;运动学量的定义与计算;惯性与非惯性系。
2. 万有引力与重力:地球表面的物体自由落体运动,单位质点的万有引力与重力势能、重力势能与动能的转换,行星运动及开普勒定律。
3. 力的合成与分解:力的合成与平衡、合力与结果力,平行四边形法则,冲量与动量,不同质量刚性物体的碰撞问题。
三、波动1. 机械波:波的产生与传播、波状数与功率、波的干涉与衍射、波速与波长、波动方程。
2. 光的反射与折射:光的直线传播、光的反射定律、镜面成像、球面镜的成像、光的折射定律、全反射与光纤。
3. 光的波动性:杨氏实验、光的衍射、光的干涉、光的色散、单色光与白光。
四、电学1. 静电场:电荷的离散与转移、库仑定律、电场、电场强度、电势。
2. 电流与电阻:电流与带电粒子的运动、电流的定义与测量、欧姆定律、电阻与电阻率、电功、电源与电动势、电池、伏安特性、热效应。
3. 电磁感应:法拉第电磁感应实验、感应电动势、磁场中的载流导线受力、电磁感应定律、发电机与电磁铁。
五、相对论1. 狭义相对论:相对性原理、光速不变原理、钟慢效应、长度收缩效应、同时性。
高中物理重要知识点详细全总结(史上最全)

高中物理知识点总结(注意:全篇带★需要牢记!)一、力物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μF N进行计算,其中F N是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上. (2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2 |≤F≤F 1 +F 2 . (4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态. (3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑F x =0,∑F y =0.(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
中考物理容易失分的34个知识点

中考物理容易失分的34个知识点1500字中考物理考试中,有一些知识点容易让考生产生困惑或者失分。
下面列举了一些常见的失分知识点,以帮助考生们加强复习与注意。
1. 能量守恒定律:能量守恒定律是物理学中的一个重要定律,要求学生能够理解和应用。
例如,在做能量转化题目时,很多同学容易忽略某种能量的转化,导致全题得分不高。
2. 功与能的区别:功和能是物理学中两个不同的概念,但是很多同学容易混淆。
功是力对物体的作用,而能是物体由于位置、状态或其它因素而具有的做功能力。
3. 杠杆原理:杠杆原理是物理学中的一个基本原理,是解决杠杆问题的关键。
理解杠杆原理对于解题至关重要。
4. 摩擦力:摩擦力是物体之间接触面上的力,很多同学对于摩擦力的作用、计算方法等方面容易混淆。
5. 力的合成与分解:力的合成与分解是解决力合成问题的基本方法,要求学生能够灵活运用。
6. 牛顿第一定律:牛顿第一定律又称为惯性定律,要求学生理解物体在平衡状态时的特性,以及如何利用该定律解题。
7. 牛顿第二定律:牛顿第二定律是力学中的一个重要定律,要求学生理解并能够应用该定律解决加速度、力、质量之间的关系问题。
8. 牛顿第三定律:牛顿第三定律要求学生理解力的相互作用原理,即物体间的力是相互作用的,且大小相等、方向相反。
9. 重力加速度:学生需要明确地知道重力加速度的数值及其在力学问题中的应用。
10. 弹簧的伸长量和受力关系:弹簧的伸长量与受力之间有一定的关系,学生需要掌握弹簧伸长量与受力大小、形变程度之间的关系。
11. 机械波的传播特点与性质:了解机械波传播的特点、波长、频率等概念。
12. 定义与单位:学生需要掌握常见物理量的定义和单位,例如,长度、质量、时间、功、能等。
13. 平抛运动:学生需要掌握平抛运动的基本特点、运动轨迹等。
14. 光的反射与折射规律:学生需要理解光的反射与折射规律,以及能够应用这些规律解决相关的题目。
15. 透镜的成像规律:透镜的成像规律是物理学中一个重要的知识点,要求学生能够理解透镜的成像原理以及虚实的成像情况。
高中物理重要知识点详细全总结

完整的知识网络构建,让复习备考变得轻松简单!(注意:全篇带★需要牢记!)高中物理重要知识点总结(史上最全)高中物理知识点总结(注意:全篇带★需要牢记!)一、力物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体xx.3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,xx物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①xx的拉力方向总是沿着xx且指向xx收缩的方向,且一根轻xx上的xx大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量xx,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μF N 进行计算,其中FN 是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体xx的力,也不要把作用在其他物体xx的力错误地认为通过“力的传递”作用在研究对象xx.(2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方xx:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2 |≤F≤F 1 +F 2 .(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解xx.7.共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力. (2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.(3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解xx求解平衡问题,则平衡条件应为:∑Fx=0,∑Fy =0.(4)解决平衡问题的常用方xx:隔离xx、整体xx、图解xx、三角形相似xx、正交分解xx等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
高级中学物理知识点清单(非常详细)

高中物理知识点清单第一章 运动的描述第一节 描述运动的基本概念一、质点、参考系1.质点:用来代替物体的有质量的点.它是一种理想化模型.2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动.二、位移和速度 1.位移和路程(1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t,是矢量.(2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率(1)速率:瞬时速度的大小,是标量.(2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度1.定义式:a =ΔvΔt ;单位是m/s 2.2.物理意义:描述速度变化的快慢. 3.方向:与速度变化的方向相同. 考点一 对质点模型的理解1.质点是一种理想化的物理模型,实际并不存在.2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点.(2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点.考点二 平均速度和瞬时速度 1.平均速度与瞬时速度的区别平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度.2.平均速度与瞬时速度的联系(1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系2.物体加、减速的判定(1)当a 与v 同向或夹角为锐角时,物体加速. (2)当a 与v 垂直时,物体速度大小不变. (3)当a 与v 反向或夹角为钝角时,物体减速物理思想——用极限法求瞬时物理量1.极限法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的.那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思想方法.极限法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况.2.用极限法求瞬时速度和瞬时加速度 (1)公式v =ΔxΔt 中当Δt →0时v 是瞬时速度.(2)公式a =ΔvΔt 中当Δt →0时a 是瞬时加速度.第二节 匀变速直线运动的规律及应用一、匀变速直线运动的基本规律1.速度与时间的关系式:v =v 0+at . 2.位移与时间的关系式:x =v 0t +12at 2.3.位移与速度的关系式:v 2-v 20=2ax . 二、匀变速直线运动的推论 1.平均速度公式:v =v t2=v 0+v2.2.位移差公式:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2. 可以推广到x m -x n =(m -n )aT 2. 3.初速度为零的匀加速直线运动比例式 (1)1T 末,2T 末,3T 末……瞬时速度之比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)1T 内,2T 内,3T 内……位移之比为:x 1∶x 2∶x 3∶…∶x n =1∶22∶32∶…∶n 2.(3)第一个T 内,第二个T 内,第三个T 内……位移之比为:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1).(4)通过连续相等的位移所用时间之比为:t 1∶t 2∶t 3∶…∶t n三、自由落体运动和竖直上抛运动的规律 1.自由落体运动规律 (1)速度公式:v =gt . (2)位移公式:h =12gt 2.(3)速度—位移关系式:v 2=2gh . 2.竖直上抛运动规律 (1)速度公式:v =v 0-gt . (2)位移公式:h =v 0t -12gt 2.(3)速度—位移关系式:v 2-v 20=-2gh . (4)上升的最大高度:h =v 202g.(5)上升到最大高度用时:t =v 0g.考点一 匀变速直线运动基本公式的应用1.速度时间公式v =v 0+at 、位移时间公式x =v 0t +12at 2、位移速度公式v 2-v 20=2ax ,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.2.匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v 0=0时,一般以a 的方向为正方向.3.求解匀变速直线运动的一般步骤 画过程分析图→判断运动性质→选取正方向→选用公式列方程→解方程并讨论4.应注意的问题①如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.②对于刹车类问题,当车速度为零时,停止运动,其加速度也突变为零.求解此类问题应先判断车停下所用时间,再选择合适公式求解.③物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,可以将全程看做匀减速直线运动,应用基本公式求解.考点二 匀变速直线运动推论的应用 1.推论公式主要是指:①v =v t 2=v 0+v t2,②Δx =aT 2,①②式都是矢量式,在应用时要注意v 0与v t 、Δx 与a 的方向关系.2.①式常与x =v ·t 结合使用,而②式中T 表示等时间隔,而不是运动时间. 考点三 自由落体运动和竖直上抛运动1.自由落体运动为初速度为零、加速度为g 的匀加速直线运动. 2.竖直上抛运动的重要特性 (1)对称性 ①时间对称物体上升过程中从A →C 所用时间t AC 和下降过程中从C →A 所用时间t CA 相等,同理t AB =t BA .②速度对称物体上升过程经过A 点的速度与下降过程经过A 点的速度大小相等.(2)多解性当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成双解,在解决问题时要注意这个特点.3.竖直上抛运动的研究方法在涉及多体问题和不能视为质点的研究对象问题时,应用“转化”的思想方法转换研究对象、研究角度,就会使问题清晰、简捷.通常主要涉及以下两种转化形式:(1)将多体转化为单体:研究多物体在时间或空间上重复同样运动问题时,可用一个物体的运动取代多个物体的运动.(2)将线状物体的运动转化为质点运动:长度较大的物体在某些问题的研究中可转化为质点的运动问题.如求列车通过某个路标的时间,可转化为车尾(质点)通过与列车等长的位移所经历的时间.第三节运动图象追及、相遇问题一、匀变速直线运动的图象1.直线运动的x-t图象(1)物理意义:反映了物体做直线运动的位移随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体速度的大小,斜率正负表示物体速度的方向.2.直线运动的v-t图象(1)物理意义:反映了物体做直线运动的速度随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体加速度的大小,斜率正负表示物体加速度的方向.(3)“面积”的意义①图线与时间轴围成的面积表示相应时间内的位移大小.②若面积在时间轴的上方,表示位移方向为正方向;若面积在时间轴的下方,表示位移方向为负方向.(4).相同的图线在不同性质的运动图象中含义截然不同,下面我们做一全面比较(见下表).二、追及和相遇问题1.两类追及问题(1)若后者能追上前者,追上时,两者处于同一位置,且后者速度一定不小于前者速度.(2)若追不上前者,则当后者速度与前者相等时,两者相距最近.2.两类相遇问题(1)同向运动的两物体追及即相遇.(2)相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇.考点一运动图象的理解及应用1.对运动图象的理解(1)无论是x-t图象还是v-t图象都只能描述直线运动.(2)x-t图象和v-t图象都不表示物体运动的轨迹.(3)x-t图象和v-t图象的形状由x与t、v与t的函数关系决定.1.分析追及问题的方法技巧可概括为“一个临界条件”、“两个等量关系”.(1)一个临界条件:速度相等.它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断问题的切入点.(2)两个等量关系:时间关系和位移关系,通过画草图找出两物体的时间关系和位移关系是解题的突破口.2.能否追上的判断方法(1)做匀速直线运动的物体B追赶从静止开始做匀加速直线运动的物体A:开始时,两个物体相距x0.若v A=v B时,x A+x0<x B,则能追上;若v A=v B时,x A+x0=x B,则恰好不相撞;若v A=v B时,x A+x0>x B,则不能追上.(2)数学判别式法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相遇.3.注意三类追及相遇情况(1)若被追赶的物体做匀减速运动,一定要判断是运动中被追上还是停止运动后被追上.(2)若追赶者先做加速运动后做匀速运动,一定要判断是在加速过程中追上还是匀速过程中追上.(3)判断是否追尾,是比较后面减速运动的物体与前面物体的速度相等的位置关系,而不是比较减速到0时的位置关系.4.解题思路分析物体运动过程→画运动示意图→找两物体位移关系→列位移方程(2)解题技巧①紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式. ②审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,它们往往对应一个临界状态,满足相应的临界条件.方法技巧——用图象法解决追及相遇问题(1)两个做匀减速直线运动物体的追及相遇问题,过程较为复杂.如果两物体的加速度没有给出具体的数值,并且两个加速度的大小也不相同,如果用公式法,运算量比较大,且过程不够直观,若应用v -t 图象进行讨论,则会使问题简化.(2)根据物体在不同阶段的运动过程,利用图象的斜率、面积、交点等含义分别画出相应图象,以便直观地得到结论.巧解直线运动六法在解决直线运动的某些问题时,如果用常规解法——一般公式法,解答繁琐且易出错,如果从另外角度入手,能够使问题得到快速、简捷解答.下面便介绍几种处理直线运动的巧法.一、平均速度法在匀变速直线运动中,物体在时间t 内的平均速度等于物体在这段时间内的初速度v 0与末速度v 的平均值,也等于物体在t 时间内中间时刻的瞬时速度,即v =x t=v 0+v 2=v t2.如果将这两个推论加以利用,可以使某些问题的求解更为简捷.二、逐差法匀变速直线运动中,在连续相等的时间T 内的位移之差为一恒量,即Δx =x n +1-x n =aT 2,一般的匀变速直线运动问题,若出现相等的时间间隔,应优先考虑用Δx =aT 2求解.三、比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的相关比例关系求解.四、逆向思维法把运动过程的末态作为初态的反向研究问题的方法.一般用于末态已知的情况. 五、相对运动法以系统中的一个物体为参考系研究另一个物体运动情况的方法. 六、图象法应用v -t 图象,可把较复杂的问题转变为较简单的数学问题解决.尤其是用图象定性分析,可避开繁杂的计算,快速找出答案.实验一研究匀变速直线运动一、实验目的1.练习使用打点计时器,学会用打上点的纸带研究物体的运动情况.2.会利用纸带求匀变速直线运动的速度、加速度.3.利用打点纸带探究小车速度随时间变化的规律,并能画出小车运动的v-t图象,根据图象求加速度.二、实验器材电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.三、实验步骤1.把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路.2.把一条细绳拴在小车上,细绳跨过滑轮,下边挂上合适的钩码,把纸带穿过打点计时器,并把它的一端固定在小车的后面.实验装置见上图,放手后,看小车能否在木板上平稳地加速滑行.3.把小车停在靠近打点计时器处,先接通电源,后放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次.4.从几条纸带中选择一条比较理想的纸带,舍掉开始一些比较密集的点,在后面便于测量的地方找一个开始点,以后依次每五个点取一个计数点,确定好计数始点,并标明0、1、2、3、4位置编号01234 5t/sx/mv/(m·s-1)5.1236.利用一段时间内的平均速度等于这段时间中间时刻的瞬时速度求得各计数点1、2、3、4、5的瞬时速度,填入上面的表格中.7.增减所挂钩码数,再做两次实验.四、注意事项1.纸带、细绳要和长木板平行.2.释放小车前,应使小车停在靠近打点计时器的位置.3.实验时应先接通电源,后释放小车;实验后先断开电源,后取下纸带.一、数据处理1.匀变速直线运动的判断:(1)沿直线运动的物体在连续相等时间T 内的位移分别为x 1、x 2、x 3、x 4、…,若Δx =x 2-x 1=x 3-x 2=x 4-x 3=…则说明物体在做匀变速直线运动,且Δx =aT 2.(2)利用“平均速度法”确定多个点的瞬时速度,作出物体运动的v -t 图象.若v -t 图线是一条倾斜的直线,则说明物体的速度随时间均匀变化,即做匀变速直线运动.2.求速度的方法:根据匀变速直线运动某段时间中间时刻的瞬时速度等于这段时间内的平均速度v n =x n +x n +12T.3.求加速度的两种方法:(1)逐差法:即根据x 4-x 1=x 5-x 2=x 6-x 3=3aT 2(T 为相邻两计数点之间的时间间隔),求出a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,再算出a 1、a 2、a 3的平均值a =a 1+a 2+a 33=13×⎝⎛⎭⎪⎫x 4-x 13T 2+x 5-x 23T 2+x 6-x 33T 2 =x 4+x 5+x 6-x 1+x 2+x 39T 2,即为物体的加速度.(2)图象法:以打某计数点时为计时起点,利用v n =x n +x n +12T求出打各点时的瞬时速度,描点得v -t 图象,图象的斜率即为物体做匀变速直线运动的加速度.二、误差分析1.纸带上计数点间距测量有偶然误差,故要多测几组数据,以尽量减小误差. 2.纸带运动时摩擦不均匀,打点不稳定引起测量误差,所以安装时纸带、细绳要与长木板平行,同时选择符合要求的交流电源的电压及频率.3.用作图法作出的v -t 图象并不是一条直线.为此在描点时最好用坐标纸,在纵、横轴上选取合适的单位,用细铅笔认真描点.4.在到达长木板末端前应让小车停止运动,防止钩码落地,小车与滑轮碰撞. 5.选择一条点迹清晰的纸带,舍弃点密集部分,适当选取计数点.6.在坐标纸上,纵、横轴选取合适的单位(避免所描点过密或过疏,而导致误差过大),仔细描点连线,不能连成折线,应作一条平滑曲线,让各点尽量落到这条曲线上,落不到曲线上的各点应均匀分布在曲线的两侧.第二章相互作用第一节重力弹力摩擦力一、重力1.产生:由于地球的吸引而使物体受到的力.2.大小:G=mg.3.方向:总是竖直向下.4.重心:因为物体各部分都受重力的作用,从效果上看,可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心.二、弹力1.定义:发生弹性形变的物体由于要恢复原状,对与它接触的物体产生力的作用.2.产生的条件(1)两物体相互接触;(2)发生弹性形变.3.方向:与物体形变方向相反.三、胡克定律1.内容:弹簧发生弹性形变时,弹簧的弹力的大小F跟弹簧伸长(或缩短)的长度x成正比.2.表达式:F=kx.(1)k是弹簧的劲度系数,单位为N/m;k的大小由弹簧自身性质决定.(2)x是弹簧长度的变化量,不是弹簧形变以后的长度.四、摩擦力1.产生:相互接触且发生形变的粗糙物体间,有相对运动或相对运动趋势时,在接触面上所受的阻碍相对运动或相对运动趋势的力.2.产生条件:接触面粗糙;接触面间有弹力;物体间有相对运动或相对运动趋势.3.大小:滑动摩擦力F f=μF N,静摩擦力:0≤F f≤F fmax.4.方向:与相对运动或相对运动趋势方向相反.5.作用效果:阻碍物体间的相对运动或相对运动趋势.考点一弹力的分析与计算1.弹力有无的判断方法(1)条件法:根据物体是否直接接触并发生弹性形变来判断是否存在弹力.此方法多用来判断形变较明显的情况.(2)假设法:对形变不明显的情况,可假设两个物体间弹力不存在,看物体能否保持原有的状态,若运动状态不变,则此处不存在弹力;若运动状态改变,则此处一定有弹力.(3)状态法:根据物体的运动状态,利用牛顿第二定律或共点力平衡条件判断弹力是否存在.2.弹力方向的判断方法(1)根据物体所受弹力方向与施力物体形变的方向相反判断.(2)根据共点力的平衡条件或牛顿第二定律确定弹力的方向.3.计算弹力大小的三种方法(1)根据胡克定律进行求解.(2)根据力的平衡条件进行求解.(3)根据牛顿第二定律进行求解.考点二摩擦力的分析与计算1.静摩擦力的有无和方向的判断方法(1)假设法:利用假设法判断的思维程序如下:(2)状态法:先判明物体的运动状态(即加速度的方向),再利用牛顿第二定律(F=ma)确定合力,然后通过受力分析确定静摩擦力的大小及方向.(3)牛顿第三定律法:先确定受力较少的物体受到的静摩擦力的方向,再根据“力的相互性”确定另一物体受到的静摩擦力方向.2.静摩擦力大小的计算(1)物体处于平衡状态(静止或匀速运动),利用力的平衡条件来判断其大小.(2)物体有加速度时,若只有静摩擦力,则F f=ma.若除静摩擦力外,物体还受其他力,则F合=ma,先求合力再求静摩擦力.3.滑动摩擦力的计算滑动摩擦力的大小用公式F f=μF N来计算,应用此公式时要注意以下几点:(1)μ为动摩擦因数,其大小与接触面的材料、表面的粗糙程度有关;F N为两接触面间的正压力,其大小不一定等于物体的重力.(2)滑动摩擦力的大小与物体的运动速度和接触面的大小均无关.方法技巧:(1)在分析两个或两个以上物体间的相互作用时,一般采用整体法与隔离法进行分析.(2)受静摩擦力作用的物体不一定是静止的,受滑动摩擦力作用的物体不一定是运动的.(3)摩擦力阻碍的是物体间的相对运动或相对运动趋势,但摩擦力不一定阻碍物体的运动,即摩擦力不一定是阻力.考点三摩擦力突变问题的分析1.当物体受力或运动发生变化时,摩擦力常发生突变,摩擦力的突变,又会导致物体的受力情况和运动性质的突变,其突变点(时刻或位置)往往具有很深的隐蔽性.对其突变点的分析与判断是物理问题的切入点.2.常见类型(1)静摩擦力因其他外力的突变而突变.(2)静摩擦力突变为滑动摩擦力.(3)滑动摩擦力突变为静摩擦力.轻杆轻绳轻弹簧柔软,只能发生微小形既可伸长,也可压缩,各弹簧与橡皮筋的弹力特点:(1)弹簧与橡皮筋产生的弹力遵循胡克定律F=kx.(2)橡皮筋、弹簧的两端及中间各点的弹力大小相等.(3)弹簧既能受拉力,也能受压力(沿弹簧轴线),而橡皮筋只能受拉力作用.(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧或橡皮筋剪断时,其弹力立即消失.第二节力的合成与分解一、力的合成1.合力与分力(1)定义:如果一个力产生的效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力.(2)关系:合力和分力是一种等效替代关系. 2.力的合成:求几个力的合力的过程. 3.力的运算法则(1)三角形定则:把两个矢量首尾相连从而求出合矢量的方法.(如图所示)(2)平行四边形定则:求互成角度的两个力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.二、力的分解1.概念:求一个力的分力的过程.2.遵循的法则:平行四边形定则或三角形定则. 3.分解的方法(1)按力产生的实际效果进行分解. (2)正交分解. 三、矢量和标量 1.矢量既有大小又有方向的物理量,相加时遵循平行四边形定则. 2.标量只有大小没有方向的物理量,求和时按算术法则相加.考点一 共点力的合成 1.共点力合成的方法 (1)作图法(2)计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力,是解题的常用方法.2.重要结论(1)二个分力一定时,夹角θ越大,合力越小. (2)合力一定,二等大分力的夹角越大,二分力越大. (3)合力可以大于分力,等于分力,也可以小于分力. 3.几种特殊情况下力的合成(1)两分力F 1、F 2互相垂直时(如图甲所示):F 合=F 21+F 22,tanθ=F 2F 1.甲 乙(2)两分力大小相等时,即F 1=F 2=F 时(如图乙所示):F 合=2F cos θ2.(3)两分力大小相等,夹角为120°时,可得F 合=F .解答共点力的合成时应注意的问题(1)合成力时,要正确理解合力与分力的大小关系:合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势.(2)三个共点力合成时,其合力的最小值不一定等于两个较小力的和与第三个较大的力之差.考点二 力的两种分解方法 1.力的效果分解法(1)根据力的实际作用效果确定两个实际分力的方向; (2)再根据两个实际分力的方向画出平行四边形; (3)最后由平行四边形和数学知识求出两分力的大小. 2.正交分解法(1)定义:将已知力按互相垂直的两个方向进行分解的方法.(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(即尽量多的力在坐标轴上);在动力学中,以加速度方向和垂直加速度方向为坐标轴建立坐标系.(3)方法:物体受到多个力作用F 1、F 2、F 3…,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解.x 轴上的合力: F x =F x 1+F x 2+F x 3+… y 轴上的合力: F y =F y 1+F y 2+F y 3+…合力大小:F =F 2x +F 2y合力方向:与x 轴夹角为θ,则 tan θ=F y F x.一般情况下,应用正交分解法建立坐标系时,应尽量使所求量(或未知量)“落”在坐标轴上,这样解方程较简单,但在本题中,由于两个未知量F AC 和F BC 与竖直方向夹角已知,所以坐标轴选取了沿水平和竖直两个方向.方法技巧——辅助图法巧解力的合成和分解问题对力分解的唯一性判断、分力最小值的计算以及合力与分力夹角最大值的计算,当力的大小不变方向改变时,通常采取作图法,优点是直观、简捷.第三节 受力分析 共点力的平衡一、受力分析 1.概念把研究对象(指定物体)在指定的物理环境中受到的所有力都分析出来,并画出物体所受力的示意图,这个过程就是受力分析.2.受力分析的一般顺序先分析场力(重力、电场力、磁场力等),然后按接触面分析接触力(弹力、摩擦力),最后分析已知力.二、共点力作用下物体的平衡 1.平衡状态物体处于静止或匀速直线运动的状态.2.共点力的平衡条件:F 合=0或者⎩⎪⎨⎪⎧Fx 合=0Fy 合=0三、平衡条件的几条重要推论1.二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相等,方向相反.2.三力平衡:如果物体在三个共点力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等,方向相反.3.多力平衡:如果物体受多个共点力作用处于平衡状态,其中任何一个力与其余力的合力大小相等,方向相反.考点一 物体的受力分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理最容易失分的34个知识点,分享给大家,希望同学们可以在考试中遇到,不犯错!1.受力分析,往往漏“力”百出物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法”与“隔离法”两种。
物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。
在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。
在受力分析过程中,特别是在“力、电、磁”综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。
还要说明的是,在分析某个力发生变化时,运用的方法是数学计算法、动态矢量三角形法(注意只有满足一个力大小方向都不变、第二个力的大小可变而方向不变、第三个力大小方向都改变的情形)和极限法(注意要满足力的单调变化情形)。
2.对摩擦力认识模糊摩擦力包括静摩擦力,因为它具有“隐敝性”、“不定性”特点和“相对运动或相对趋势”知识的介入而成为所有力中最难认识、最难把握的一个力,任何一个题目一旦有了摩擦力,其难度与复杂程度将会随之加大。
最典型的就是“传送带问题”,这问题可以将摩擦力各种可能情况全部包括进去,小简老师建议同学们从下面四个方面好好认识摩擦力:(1)物体所受的滑动摩擦力永远与其相对运动方向相反。
这里难就难在相对运动的认识;说明一下,滑动摩擦力的大小略小于最大静摩擦力,但往往在计算时又等于最大静摩擦力。
还有,计算滑动摩擦力时,那个正压力不一定等于重力。
(2)物体所受的静摩擦力永远与物体的相对运动趋势相反。
显然,最难认识的就是“相对运动趋势方”的判断。
可以利用假设法判断,即:假如没有摩擦,那么物体将向哪运动,这个假设下的运动方向就是相对运动趋势方向;还得说明一下,静摩擦力大小是可变的,可以通过物体平衡条件来求解。
(3)摩擦力总是成对出现的。
但它们做功却不一定成对出现。
其中一个最大的误区是,摩擦力就是阻力,摩擦力做功总是负的。
无论是静摩擦力还是滑动摩擦力,都可能是动力。
(4)关于一对同时出现的摩擦力在做功问题上要特别注意以下情况:①可能两个都不做功。
(静摩擦力情形)②可能两个都做负功。
(如子弹打击迎面过来的木块)③可能一个做正功一个做负功但其做功的数值不一定相等,两功之和可能等于零(静摩擦可不做功)、可能小于零(滑动摩擦)也可能大于零(静摩擦成为动力)。
④可能一个做负功一个不做功。
(如,子弹打固定的木块)⑤可能一个做正功一个不做功。
(如传送带带动物体情形)3.对弹簧中的弹力要有一个清醒的认识弹簧或弹性绳,由于会发生形变,就会出现其弹力随之发生有规律的变化,但要注意的是,这种形变不能发生突变(细绳或支持面的作用力可以突变),所以在利用牛顿定律求解物体瞬间加速度时要特别注意。
还有,在弹性势能与其他机械能转化时严格遵守能量守恒定律以及物体落到竖直的弹簧上时,其动态过程的分析,即有最大速度的情形。
4.对“细绳、轻杆”要有一个清醒的认识在受力分析时,细绳与轻杆是两个重要物理模型,要注意的是,细绳受力永远是沿着绳子指向它的收缩方向,而轻杆出现的情况很复杂,可以沿杆方向“拉”、“支”也可不沿杆方向,要根据具体情况具体分析。
5.关于小球“系”在细绳、轻杆上做圆周运动与在圆环内、圆管内做圆周运动的情形比较这类问题往往是讨论小球在最高点情形。
其实,用绳子系着的小球与在光滑圆环内运动情形相似,刚刚通过最高点就意味着绳子的拉力为零,圆环内壁对小球的压力为零,只有重力作为向心力;而用杆子“系”着的小球则与在圆管中的运动情形相似,刚刚通过最高点就意味着速度为零。
因为杆子与管内外壁对小球的作用力可以向上、可能向下、也可能为零。
还可以结合汽车驶过“凸”型桥与“凹”型桥情形进行讨论。
6.对物理图像要有一个清醒的认识物理图像可以说是物理考试必考的内容。
可能从图像中读取相关信息,可以用图像来快捷解题。
随着试题进一步创新,现在除常规的速度(或速率)-时间、位移(或路程)-时间等图像外,又出现了各种物理量之间图像,认识图像的最好方法就是两步:①一定要认清坐标轴的意义;②一定要将图像所描述的情形与实际情况结合起来。
(关于图像各种情况我们已经做了专项训练。
)7.对牛顿第二定律F=ma要有一个清醒的认识(1)这是一个矢量式,也就意味着a的方向永远与产生它的那个力的方向一致。
(F可以是合力也可以是某一个分力)(2)F与a是关于“m”一一对应的,千万不能张冠李戴,这在解题中经常出错。
主要表现在求解连接体加速度情形。
(3)将“F=ma”变形成F=m△v/△t,其中,a=△v/△t得出△v=a△t这在“力、电、磁”综合题的“微元法”有着广泛的应用(近几年连续考到)。
(4)验证牛顿第二定律实验,是一个必须掌握的重点实验,特别要注意:①注意实验方法用的是控制变量法;②注意实验装置和改进后的装置(光电门),平衡摩擦力,沙桶或小盘与小车质量的关系等;③注意数据处理时,对纸带匀加速运动的判断,利用“逐差法”求加速度。
(用“平均速度法”求速度)④会从“a-F”“a-1/m”图像中出现的误差进行正确的误差原因分析。
8.对“机车启动的两种情形”要有一个清醒的认识机车以恒定功率启动与恒定牵引力启动,是动力学中的一个典型问题。
这里要注意两点:①以恒定功率启动,机车总是做的变加速运动(加速度越来越小,速度越来越大);以恒定牵引力启动,机车先做的匀加速运动,当达到额定功率时,再做变加速运动。
最终最大速度即“收尾速度”就是vm=P额/f。
②要认清这两种情况下的速度-时间图像。
曲线的“渐近线”对应的最大速度还要说明的,当物体变力作用下做变加运动时,有一个重要情形就是:当物体所受的合外力平衡时,速度有一个最值。
即有一个“收尾速度”,这在电学中经常出现,如“串”在绝缘杆子上的带电小球在电场和磁场的共同作用下作变加速运动,就会出现这一情形,在电磁感应中,这一现象就更为典型了,即导体棒在重力与随速度变化的安培力的作用下,会有一个平衡时刻,这一时刻就是加速度为零速度达到极值的时刻。
凡有“力、电、磁”综合题目都会有这样的情形。
9.对物理的“变化量”、“增量”、“改变量”和“减少量”、“损失量”等要有一个清醒的认识研究物理问题时,经常遇到一个物理量随时间的变化,最典型的是动能定理的表达(所有外力做的功总等于物体动能的增量)。
这时就会出现两个物理量前后时刻相减问题,同学们往往会随意性地将数值大的减去数值小的,而出现严重错误。
其实物理学规定,任何一个物理量(无论是标量还是矢量)的变化量、增量还是改变量都是将后来的减去前面的。
(矢量满足矢量三角形法则,标量可以直接用数值相减)结果正的就是正的,负的就是负的。
而不是错误地将“增量”理解增加的量。
显然,减少量与损失量(如能量)就是后来的减去前面的值。
10.两物体运动过程中的“追遇”问题两物体运动过程中出现的追击类问题,在高考中很常见,但考生在这类问题则经常失分。
常见的“追遇类”无非分为这样的九种组合:一个做匀速、匀加速或匀减速运动的物体去追击另一个可能也做匀速、匀加速或匀减速运动的物体。
显然,两个变速运动特别是其中一个做减速运动的情形比较复杂。
虽然,“追遇”存在临界条件即距离等值的或速度等值关系,但一定要考虑到做减速运动的物体在“追遇”前停止的情形。
另外解决这类问题的方法除利用数学方法外,往往通过相对运动(即以一个物体作参照物)和作“V-t”图能就得到快捷、明了地解决,从而既赢得考试时间也拓展了思维。
值得说明的是,最难的传送带问题也可列为“追遇类”。
还有在处理物体在做圆周运动追击问题时,用相对运动方法最好。
如,两处于不同轨道上的人造卫星,某一时刻相距最近,当问到何时它们第一次相距最远时,最好的方法就将一个高轨道的卫星认为静止,则低轨道卫星就以它们两角速度之差的那个角速度运动。
第一次相距最远时间就等于低轨道卫星以两角速度之差的那个角速度做半个周运动的时间。
11.万有引力中公式的使用中会出现张冠李戴的错误万有引力部分是高考必考内容,这部分内容的特点是公式繁杂,主要以比例的形式出现。
其实,只要掌握其中的规律与特点,就会迎刃而解的。
最主要的是在解决问题时公式的选择。
最好的方法是,首先将相关公式一一列来,即:mg=GMm/R2=mv2/R=mω2R=m4π2/T2,再由此对照题目的要求正确的选择公式。
其中要注意的是:①地球上的物体所受的万有引力就认为是其重力(不考虑地球自转)。
②卫星的轨道高度要考虑到地球的半径。
③地球的同步卫星一定有固定轨道平面(与赤道共面且距离地面高度为3.6×107m)、固定周期(24小时)。
④要注意卫星变轨问题。
要知道,所有绕地球运行的卫星,随着轨道高度的增加,只有其运行的周期随之增加,其它的如速度、向心加速度、角速度等都减小。
12.有关“小船过河”的两种情形“小船过河”类问题是一个典型的运动学问题,一般过河有两种情形:即最短时间(船头对准对岸行驶)与最短位移问题(船头斜向上游,合速度与岸边垂直)。
这里特别的是,过河位移最短情形中有一种船速小于水速情况,这时船头航向不可能与岸边垂直,须要利用速度矢量三角形进行讨论。
另外,还有在岸边以恒定速度拉小船情形,要注意速度的正确分解。
13.有关“功与功率”的易错点功与功率,贯穿着力学、电磁学始终。
特别是变力做功,慎用力的平均值处理,往往利用动能定理。
某一个力做功的功率,要正确认清P=F?v的含意,这个公式可能是即时功率也可能是平均功率,这完全取决于速度。
但不管怎样,公式只是适用力的方向与速度一致情形。
如果力与速度垂直则该力做功的功率一定为零(如单摆在最低点小球重力的功率,物体沿斜面下滑时斜面支持力的功率都等于零),如果力与速度成一角度,那么就要进一步进行修正。
在计算电路中功率问题时,要注意电路中的总功率、输出功率与电源内阻上的发热功率之间的关系。
特别是电源的最大输出功率的情形(即外电路的电阻小于等效内阻情形)。
还有必要掌握会利用图像来描述各功率变化规律。
14.有关“机械能守恒定律运用”的注意点机械能守恒定律成立的条件是只有重力或弹簧的弹力做功。
题目中能否用机械能守恒定律最显著的标志是“光滑”二字。
机械能守恒定律的表达式有多种,要认真区别开来。
如果用E表示总的机械能,用EK表示动能,EP表示势能,在字母前面加上“△”表示各种能量的增量,则机械能守恒定律的数学表达式除一般表达式外,还有如下几种:E1=E2;EP1+EK1=EP2+EK2;△E=0;△E1+△E2=0;△EP=-△EK;△EP+△EK=0等。
需要注意的,凡能利用机械能守恒解决的问题,动能定理一定也能解决,而且动能定理不需要设定零势能,更表现其简明、快捷的优越性。