10.4列方程组解应用题(2)

合集下载

10.4列方程组解应用题

10.4列方程组解应用题

10.4列方程组解应用题第一篇:10.4列方程组解应用题10.4列方程组解应用题(3)学习目标:1.培养学生利用现实情境抽象数学模型的能力;2.能够运用三元一次方程组解决实际问题。

重点:利用现实情境找出等量关系,抽象出数学模型.难点:利用现实情境找出等量关系,抽象出数学模型.教学过程:【温故知新】列二元一次方程组解应用题的一般步骤是:(1)申请题意,找出问题中的已知量和未知量,明确问题中的全部关系;(2)选设适当的,确定用以列方程的两个主要的关系;(3)用已知数或含有未知数的代数式,表示主要相等关系的有关数量;(4)根据主要的相等关系列出;(5)解这个,并写出答案。

【探索新知】例6:一个三位数,三位数字之和为12,个位数字是百位数字与十位数字之和的2倍,百位数字是十位数字的3倍,求这个三位数.(1)请小组讨论找出这个题目的等量关系,分别是:;;.(2)若设这个三位数的个位数字是x,十位数字是y,百位数字是z,则根据题意可列方程组为:(3)写出这个题目的解答过程.例7:先欣赏古代数学问题:“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。

问上、中、下禾实一秉各几何.”意为:今有上等黍3捆,中等黍2捆,下等黍1捆,共打出黍米39斗;又有上等黍2捆,中等黍3捆,下等黍1捆,共打出黍米34斗;再有上等黍2捆,中等黍2捆,下等黍3捆,共打出黍米26斗.问每捆上、中、下黍各能打出黍米多少斗?此题的等量关系是:;;.此题的解答过程为:【巩固提升】小亮、小莹和大刚每人面前各放有一堆栗子.小亮将自己面前的栗子分出一些给另外二人后,这二人的栗子数各增加1倍.接着小莹又将自己面前的栗子分一些给小亮和大刚,小亮和大刚的栗子数都增加了1倍.然后,大刚又分给另外二人一些栗子,使小亮和小莹面前的栗子数也都增加1倍.这时,他们三人面前的栗子竟然都是24颗.你知道他们三人面前原来有多少颗栗子吗?【课堂小结】尽情谈谈你这节课的收获吧!【达标检测】1.甲、乙、丙三数中,乙数是甲数的2倍,丙数是甲数2.5倍,丙数比甲数多6.甲、乙、丙三数分别是.2.三角形周长为21cm,最长边比其他两边之和少5cm,最短边比其两边之差多5cm.求它的三边长.设最短边为x,最长边为z,另一边为y,可列三元一次方程组.3.(中国古代问题)今有2匹马、3头牛和4只羊,它们各自的总价都不满10000文钱(古时的货币单位)。

10.4.2列方程组解应用题(青岛版)

10.4.2列方程组解应用题(青岛版)
知识回顾 列二元一次方程组解应用题的一般步骤: 设 列 解 用两个字母表示问题中的两个未知数 列出方程组 分析题意,找出两个等量关系
归纳
根据等量关系列出方程组 解方程组,求出未知数的值
验 检验求得的值是否正确和符合实际情形 答 写出答案
2010年4月份中国民航国内和国际航线运送旅客 总人数共2300万人,其中,国内和国际航线运送 旅客人数比2009年4月份分别增长10%和30%, 2009年4月份国内航班和国际航班运送旅客总人 数为2000万人。那么2009年4月份国内和国际航 班运送旅客分别有多少万人?(结果精确到万人)
时代中学师生共100人到甲 乙两公司参加社会实践活动,到 甲公司的人数比到乙公司的2倍 少8人,到两公司参加社会实践 的人各多少?
山青林场有一块面积为 58公顷的土地,现计 1 划将其中的 4 开辟为果园,其余的土地种粮食 和蔬菜,并且种蔬菜的土地面积是种粮食土 1 地面积的 4 。该林场计划种蔬菜和粮食各 多少公顷?
学习了本节课你有 哪些……收获?
作 业
习题10.4
3题(只列方程不求解) 4题 5题
国内 2009 国际
x
y
2000
2010 (1+10%)x (1+30%)y 2300
果园要将一批水果运往某地,打算租用某汽车运 输公司的甲、乙两种货车。过去两次租用这两种 货车的信息如下表所示:
第一次 第二次
甲种货车车辆数/辆 乙种货车车辆数/辆 累计运货量/吨
2 3 15.5
5 6 35
现打吨运费为30元,果园应付运费多少元?

10.4列方程组解应用题(2)

10.4列方程组解应用题(2)

10.4列方程组解应用题(2)学习目标:1.继续探讨如何用二元一次方程组解决一些实际问题,体验二元一次方程组与现实生活的联系和作用;2.对较复杂的问题可以通过列表格的方法理清题中的未知量、已知量以及等量关系,做到条理清楚;3.通过实践、自主探究、互相交流,培养并提高分析、抽象、求解和检验等多方面的能力。

重点:借助二元一次方程组解决实际问题难点:分析、寻找等量关系,构建数学模型学习过程:一、温故知新1.列二元一次方程组解应用题的一般步骤有哪些?2.学校举办足球比赛,比赛的计分规则为:胜一场得3分,负一场得0分,平一场得1分。

七年级一班足球队共参加了7场比赛,而且各场比赛均未负于对手,共积17分。

你能算出七年级一班胜、平各几场吗?二、探索新知探究一:1、解决温故知新第2题中的问题:(1)“各场比赛均未负于对手”,你理解为什么意思?(没有输,只有胜与平的情况)(2)对于“共参加了7场比赛”结合题意,你能想到什么?(胜的场数+平的场数=7场)(3)“共积17分”,这17分是怎样得来的?(胜的得分+平的得分=17分)(4)结合现在对题意的理解,我们应设计怎样的表格?怎样填写表格?怎样设未知(设计好表格后,我们应填写相应的内容,看看哪些内容已知了,我们先得填好。

(胜一场得3分,平一场得1分,负一场得0分。

)现在,我们只填好了每场的得分,那还有每种情况的场数与最后得分还是未知的,我们决定设:胜了x场,平了y场。

再填好,然后,最后的得分就能被表示出来了。

)2、你自己能将完整的解题过程写出来吗?试试好吧?探究二:完成探究一后,针对某实际问题你会设计表格,填写表格了吗?总结出来。

设计表格:看题目中有几种情况,那这几种情况就作为上面横栏中的几个项目;再想这类题目中的几个数量,作为竖排中的几个小栏目。

填写表格:我们先应将题目中的已知量找找填在相应的表格中,然后再看哪些量是未知的,选择设恰当的未知数,填好,把另外的那些没填写的空再用设的未知数表示上就好了。

10.4列方程组解应用题(3)

10.4列方程组解应用题(3)

诸城市初中数学导学稿(七下)10.4列方程组解应用题(3)林家村初中学校备课组编写学习目标:1.培养学生利用现实情境抽象数学模型的能力;2.能够运用三元一次方程组解决实际问题。

重点:利用现实情境找出等量关系,抽象出数学模型.难点:利用现实情境找出等量关系,抽象出数学模型.教学过程:【温故知新】列二元一次方程组解应用题的一般步骤是:(1)申请题意,找出问题中的已知量和未知量,明确问题中的全部关系;(2)选设适当的,确定用以列方程的两个主要的关系;(3)用已知数或含有未知数的代数式,表示主要相等关系的有关数量;(4)根据主要的相等关系列出;(5)解这个,并写出答案。

【探索新知】例6:一个三位数,三位数字之和为12,个位数字是百位数字与十位数字之和的2倍,百位数字是十位数字的3倍,求这个三位数.(1)请小组讨论找出这个题目的等量关系,分别是:;;.(2)若设这个三位数的个位数字是x,十位数字是y,百位数字是z,则根据题意可列方程组为:(3)写出这个题目的解答过程.例7:先欣赏古代数学问题:“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。

问上、中、下禾实一秉各几何.”意为:今有上等黍3捆,中等黍2捆,下等黍1捆,共打出黍米39斗;又有上等黍2捆,中等黍3捆,下等黍1捆,共打出黍米34斗;再有上等黍2捆,中等黍2捆,下等黍3捆,共打出黍米26斗.问每捆上、中、下黍各能打出黍米多少斗?此题的等量关系是:;;.此题的解答过程为:【巩固提升】小亮、小莹和大刚每人面前各放有一堆栗子.小亮将自己面前的栗子分出一些给另外二人后,这二人的栗子数各增加1倍.接着小莹又将自己面前的栗子分一些给小亮和大刚,小亮和大刚的栗子数都增加了1倍.然后,大刚又分给另外二人一些栗子,使小亮和小莹面前的栗子数也都增加1倍.这时,他们三人面前的栗子竟然都是24颗.你知道他们三人面前原来有多少颗栗子吗?【课堂小结】尽情谈谈你这节课的收获吧!【达标检测】1.甲、乙、丙三数中,乙数是甲数的2倍,丙数是甲数2.5倍,丙数比甲数多6. 甲、乙、丙三数分别是 .2.三角形周长为21cm,最长边比其他两边之和少5cm,最短边比其两边之差多5cm.求它的三边长.设最短边为x,最长边为z,另一边为y,可列三元一次方程组 .3.(中国古代问题)今有2匹马、3头牛和4只羊,它们各自的总价都不满10000文钱(古时的货币单位) 。

列方程组解应用题的常见题型

列方程组解应用题的常见题型

列方程组解应用题的常见题型.1和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量 2产品配套问题:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么ba 乙产品数甲产品数= (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:cb a 丙产品数乙产品数甲产品数===原量×(1+减少率)=减少后的量7浓度问题:溶液×浓度=溶质8经济类问题:利息=本金×利率×期数本息和=本金+利息=本金+本金×利率×期数利润=售价-进价利润=进价×利润率打x 折: 原价×0.1x9盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量10数字问题:当n 为整数时,奇数可表示为2n +1(或2n -1),偶数可表示为2n . 有关两位数的基本等量关系式为:两位数=十位数字×10+个位数字.有关三位数的基本等量关系式为:三位数=百位数字×100+十位数字×10+个位数字.被减数=减数+差 减数=被减数—差 差=被减数—减数 加数=和—另一个加数因数=积÷另一个因数被除数=除数×商+余数12年龄问题:一个人的年龄变化(增大、减小)了,其他人也一样增大或减小,并且增大(或减小)的岁数是相同的(相同的时间内)。

.13、等积类问题:“等积变形”是以形状改变而体积不变为前提。

常用等量关系为: ①形状面积变了,周长没变。

②变形前后的质量(或体积)不变.14.优化方案问题:在解决问题时,常常需合理安排。

需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。

四.解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.第六章 数据的分析1.平均数:(1)算术平均数:一组数据中,有n 个数据n x x x ,,, 21,则它们的算术平均数为n x x x x n +++= 21. (2)加权平均数:若在一组数字中,出现次,出现次,…,出现次,那么叫做、、…、的加权平均数。

第十章一次方程组 学案

第十章一次方程组 学案
总结:列方程解应用题的一般步骤是什么呢? 二、自主探究、合作学习: 长江上一艘游船从沙市港出发,船速为 17 千米/时,经过若干小时到达宜昌港。如果船速增 加 1 千米/时,那么用同样多的时间,游船可到达宜昌上游 9 千米处的葛洲坝。提速前游船 由沙市港航行到宜昌港所用的时间是多少?沙市港到宜昌港的航程时多少? 在这个问题中, 1、已知量是什么?未知量是什么? 2、等量关系是什么? 3、如果设游船航行所用的时间为 x 时,沙市港到宜昌刚的航程为 y 千米,你能根据问题中 的两个等量关系列出方程组吗? 4、你会解所列的方程组吗?
10.1 认识二元一次方程组
学习目标 1、通过对实际问题的分析,使学生进一步体会方程及方程 组是刻画现实世界的
有效数学模型。
2、了解二元一次方程组、二元一次方程组及其解的概念,并会判定一个数是不
是已给出的二元一次方程组的解。
预习要求 预习教材 P48-P50 的内容。 1. 掌握二元一次方程 、二元一次方程的解、二元一次方程组及二元一次方程
交流:列二元一次方程组解应用题的一般步骤是什么呢?
[来源:Z§xx§]
三、精讲点拨 例 1:小亮和小莹练习赛跑。如果小亮让小莹先跑 10 米,那么小亮跑五秒就追上就追上小 莹;如果小亮让小莹先跑 2 秒,那么小亮跑 4 秒就追上小莹。两人每秒各跑多少米? 1、题中的未知量是什么。 2、题目中的等量关系是什么?
2、引入:怎样求本章情境导航中得到的二元一次方程组 [来源:Z|xx|]
x+y=7300 ①
y-x=6100 ②的解呢?
今天这一节课我们就来探究一下二元一次方程组的解法。
(二) 自主探究 、合作学习:
1、阅 读课本 51-52 页,自主探究代入消元法的含义。

10.4列方程组解应用题刘玲(例2)

答:有鸡23只,兔12只.
可以简写为以下步骤:

解:设笼子里有x只鸡、y只兔.根据题意,得

x+y=35列ຫໍສະໝຸດ 2x+4 y=94
x=23
解这个方程组,得

y=12

经检验,方程组的解符合题意.
答:笼子里有23只鸡、12只兔.

练一练
今有牛五、羊二,直金十两.牛二、羊五, 直金八两.牛、羊各直金几何?
②每人分7匹的总布匹数=总布匹数+8匹 设盗贼有人,布有Y匹,你能列一个方 程组,解决这个问题吗?相信你能行。
解:设盗贼有x人、有y匹布.根据题意,得
6x+5=Y
解这个方程组,得
7x-8=Y
x=13
y=83
经检验,方程组的解符合题意. 答:盗贼有13人、布有83匹.
你能用四则运算的方法和一元一次方程的方 法求解吗?课后自己试一试。
题中有哪些等量关系?
例题赏析
等量关系:
1 3
绳长

井深

5

1 4
绳长

井深

1
解:设绳长x尺,井深y尺,由题意,得
x

3 x
4

y y
5 1
① ②
解得:
x

y
48 11
答:绳长48尺,井深11尺.
解题思路
实际问题 找等量关系
解 决 问 题
教师寄语:
刻苦、勤奋、自律就是你生 命的密码,能译出一部关于 你的壮丽史篇。
准备好数学课本,练习本,笔记 本,打草本,笔。
青岛出版社初中数学七年级下学期第十章第四节

10、4(1)列方程组解应用题

【学习难点】正确找出问题中的两个等量关系
教学用具:多媒体
【学习过程】一、复习导入:
为绿化校园,时代中学买了杨树苗和柳树苗共100棵,杨树苗每棵3元,柳树苗每棵7元,买树苗共用了460元,两种树苗各买了多少棵?
总结:列方程解应用题的一般步骤是什么呢?
二、自主探究、合作学习:
学校举办足球比赛,比赛记分规则为:胜一场得3分,负一场得0分,平一场得1分,七年级一班足球队共参加了7场比赛,而且各场均未负于对手,共积17分,你能算出七年级一班胜平各几场吗?
黄岗中学7年级_数学_学科教(导)学案
主备人__杨娥__执教人_______周次________授课时间_________
课题
10.4列方程组解应用题(1)
课时
1
课型
新授课
【学习目标】1.掌握列二元一次方程组解应用题的步骤。
2.能够列出二元一次方程组解简单的应用题。
【学习重点】会根据简单应用题的提议列车二元一次方程组。
2、题目中的等量关系是什么?
四、系列训练:
1.某校课外小组的学生分组外出活动,若每组7人,则余下3人;若每组8人,则少5人,求课外小组的人数x应分成的组数y依题意可得方程组______
2、用白铁皮做水桶,每张铁皮能做1个桶身或做8个桶底,而1个桶身1个桶底正好配套做1个水桶,现在又63张这样的铁皮,需要多少张做桶身、多少张做桶底正好配套?
4、某中学同学用280元买了每只1元的铅笔和每只5元的钢笔一共200只,寄给灾区的小朋友,请你计算他们买的铅笔和钢笔数。
六、课堂小结:
列二元一次方程组解应用题的一般步骤是什么?
作业:习题10.4 A组:第1、2题选作第7题B组:第1、2题
学生活动

曹县博宇中学导学案10.4第二课时

主备人:备课组:初一数学组审核人:初一数学组
课题:10.4列方程解应用题第二课时
《一》1、回顾解应用题的解题步骤
2 、预习思考:某次知识竞赛共出了25道题,评分标准如下:答对1题加4分,答错1题扣1分,不答记0分,已知李刚不答的题比答错的题多2题,他的总分为74分,则他答对了几道题?
找出问题中的已知量和未知量,找出等量关系,会设未知数,列出方程组并解答
《二》例题讲解
例一:有若干个鸡和兔同在一个笼子里,从上面看有35个头,从下面看有94只脚,问笼子里有几只鸡?有几只兔?
例二:一张桌子由一个桌面和四个桌腿组成,如果1方木材可制作桌面50个,或制作桌腿300条,现有5方木材,请你设计一下,用多少木材做桌面,用多少木材做桌腿,恰好配成方桌多少张?
三 自测达标(节节练) 1、某农场有一块面积为58公顷的土地,现计划将其中的
2
1开辟为果园,其余的土地种粮食和蔬菜,并且种蔬菜的土地面积是种粮食的土地面积的4
1。

该农场计划种蔬菜和粮食各多少公顷?
2、有两种合金,第一种含金46%,第二种含70%,现在要用它们加工含金64%的合金。

如果加工后合金的质量为90克,那么分别取第一种合金和第二种合金各多少克?
3
到该酒店入住,住了一些三人普通间和双人间客房。

若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人间和双人普通间客房各多少间?
学后反思:。

五年级奥数:列方程解应用题(二套)

五年级奥数:列方程解应用题(二套)目录:五年级奥数:列方程解应用题一五年级小数乘法计算与应用题二五年级奥数:列方程解应用题一列方程解应用题是小学数学的一项重要内容,是一种不同于算术解法的新的解题方法.传统的算术方法,要求用应用题里给出的已知条件,通过四则运算,逐步求出未知量.而列方程解应用题是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值.它的优点在于可以使未知数直接参加运算.列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程.而找出等量关系,又在于熟练运用数量之间的各种已知条件.掌握了这两点,就能正确地列出方程.列方程解应用题的一般步骤是:1.弄清题材意,找出未知数,并用x表示;2.找出应用题中数量之间的相等关系,列方程;3.解方程;4.检验,写出答案.例题与方法:例1.一个数的5倍加上10等于它的7倍减去6,求这个数.例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷.这两块地各有多少公顷?例3.琅琊路小学少年数学爱好者俱乐部五年级有三个班,一班人数是三班人数的1.12倍,二班比三班少3人,三个班共有153人.三个班各有多少人?例4.被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍.求原来的被除数和除数.练习与思考:1.列方程解应用题,有时要求的未知数有两个或两个以上,我们必须视具体情况,设对解题有利的未知数为x,根据数量关系用含有x的式子来表示另一个未知数.2.篮球、足球、排球各1个,平均每个36元.篮球比排球贵10元,足球比排球贵8元.每个排球多少元?3.一次数学竞赛有10道题,评分规定对一道题得10分,错一题倒扣2分.小明回答了全部10道题,结果只得了76分,他答对了几道题?4.将自然数1—100排列如下表:在这个表里,用长方形框出的二行六个数(图中长方形框仅为示意),如果框起来的六个数的和为432,问:这六个数中最小的数是几?5.拉萨路小学图书馆一个书架上有上、下两层,一共有245本书.上层每天借出15本,下层每天借出10本,3天后,上、下两层剩下图书的本数一样多.上、下两层原来各有图书多少本?6.甲、乙、丙三个数的和是166,已知甲数除以乙数,乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?7.玲玲今年11岁,爷爷今年74岁.再过几年,爷爷的年龄是玲玲年龄的4倍?8.甲、乙两个养鸡专业户,一共养鸡3000只.乙养鸡专业户卖掉800只鸡后,甲养鸡专业户养鸡的只数正好是乙养鸡专业户剩下的3倍.甲、乙两个养鸡专业户原来各养鸡多少只?列方程解应用题(二)这一讲我们继续学习列方程解应用题.列方程解应用题,关键是掌握分析问题的方法,对应用题中数量关系分析得越深刻,所列的方程就越优化,解答起来就越方便.例题与方法:例1.六(1)班同学合买一件礼物送给母校留作纪念.如果每人出6元,则多48元;如果每人出4.5元,则少27元.求六(1)班学生人数.例2.五老村小学体育器材室里的足球个数是排球的2倍.体育活动课上,每班借7个足球,5个排球,排球借完时,还有足球72个.体育器材室里原有足球、排球各多少个?例3.甲、乙、丙、丁四人共做零件325个.如果甲多做10个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么,四个人做的零件数恰好相等.问:丁做了多少个?例4.如右图,长方的长为12厘米,宽为5厘米.阴影部分甲的面积比乙的面积大15平方厘米.求ED的长.练习与思考:1.妈妈买回一箱库尔勒香梨,按计划天数,如果每天吃4个,则多出24个香梨;如果每天吃6个,则又少4个香梨.问:计划吃多少天?妈妈买回香梨多2.一架飞机所带的燃料最多可以用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可以飞1200千米.这架飞机最多飞出多少千米,就需要往回飞?3.某商店库存的花布比白布的2倍多20米每天卖出30米白布和40米花布,几天以后,白布全部卖完,而花布还剩下140米.原来库存这两种布共多少米?4.一条大鲨鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半.这条大鲨鱼全长是多少米?5.甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,途中丙与乙相遇2分后又遇到甲.如果每分甲行50米,乙行60米,丙行70米,问:乙比甲早多少分到西镇?6.供销社张叔叔买回一批酒精,放在甲、乙两个桶里,两个桶都未装满.如果把甲酒精倒入乙桶,乙桶装满后,甲桶还剩下10升;如果把乙桶酒精全部倒入甲桶,甲桶还能再盛20升.已知甲桶容量是乙桶的2.5倍,张叔叔一共买回多少7.一个两位数十位止的数字比个位上的数字扩大4倍,个位上的数字减去2,那么,所得的两位数比原来大58.求原来的两位数.8.如右图,正方形ABCD的边长是8厘米,三角形ADF的面积比三角形CEF的面积小6平方厘米.求CE的长.五年级小数乘法计算与应用题二*知识点*小数乘法计算原则:①先按整数乘法算出积②看因数一共有几位小数,再在积上点上小数点.③在乘法中,因数的小数点移动的位数会等量作用在积上.一、积的变化规律:1、根据29×36=1044,很快写出下列各题的积.(1)29×0.36= (2)2.9×36= (3)0.29×360= (4)290X0.036=2、根据1.2×3.5=4.2写出四道不同的算式.( )×( )=4.2 ( )×( )=4.2 ( )×( )=4.2 ( )×( )=4.2 3、计算(1)60000.0530000.0020012个个⋅⋅⋅⋅⋅⋅⨯⋅⋅⋅⋅⋅⋅= (2)1301500002240000.0个个⋅⋅⋅⋅⋅⋅⨯⋅⋅⋅⋅⋅⋅ =二、分段计算:1、做一批零件,师傅每小时可以做12个,单独完成需要2.5小时,这批零件共有多少个?如果由徒弟单独做,每小时完成3个,用4.5小时能完成任务吗?2、五(1)班45人合影,每4张照片收费28.5元,另外再加印是每张1.6元,全班每人要1张,一共需要多少钱?3、某市打固定电话每次前3分钟收费0.16元,超过3分钟每分钟收费0.08元(不足1分钟按1分钟计算).张老师一次通话时间是7分52秒,她这一次通话的费用是多少?4、李叔叔要去18千米外的城里办事,他所乘坐的出租车4千米以内收费10元,超过4千米后,每千米加收1.5元,请你计算李叔叔往返所花的租车费.三、行程问题:1、小恒和小丽在同一所学校上学.小恒早上骑自行车以每小时4.5千米的速度去学校,经过0.25小时到达;小丽乘坐公共汽车以每小时60千米的速度去学校,经过0.03小时到达,小恒和小丽谁的家离学校近些?2、AB两城市相距400千米,小李、小王两人分别从A、B两城市同时相向驾车出发,小李开的车每小时行52.4千米,小王开的车每小时行46.8千米,3.5小时后两车相距多少千米?3、两辆车同时从甲乙两地相对开出,4.5小时后相遇.慢车每小时行60千米,快车的速度是慢车的1.4倍.甲乙两地相距多少千米?4、市政府修一条公路,原计划每天修0.55千米,但实际每天比原计划多修0.08千米,15天后还剩4.6千米,这条路长多少千米?5、两辆客车从东西湖同时出发,甲车每小时行65.9千米,乙车每小时行58.7千米,出发5.5小时后,两车相距多远?*家庭作业*1、根据203×24=4872在括号里填上适当的数.()×()=48.72 ()×()=487.2()×()=4.872 ()×()=0.48722、五(2)班26人合影,每3张照片收费12.5元,另外再加印是每张1.5元,全班每人要1张,一共需要多少钱?3、金银湖区打固定电话每次前5分钟收费0.85元,超过5分钟每分钟收费0.12元(不足1分钟按1分钟计算).彭老师一次通话时间是6分12秒,他这一次通话的费用是多少?4、凌云小学修校外的公路,原计划每天修0.48米,但实际每天比原计划少修0.03米,80天后还剩20.7米,这条路长多少米?5、小战和小胜比赛游泳,两人同时开始,小战每秒游2.6米,小胜每秒游2.4米,出发13秒后,两人相距多远?6、甲乙两城市相距320千米,小樱、小轩两人分别从甲乙两城市同时相向驾车出发,小樱开的车每小时行24.4千米,小轩开的车每小时行26.8千米,4.5小时后两车相距多少千米?判断题(1)小数乘法的意义与整数乘法的意义完全相同.(2)1.25×0.4的积是三位小数.(3)一个数乘小数,所得的积比这个数小.(4)两个小数相乘,积比1小.(5)两个小数的乘积一定比这两个数的和大.(6)0.5×6和6×0.5的结果相同,但意义不同.(7)积大于第一个因数,第二个因数一定大于1.(8)一个自然数与1.01相乘,结果比这个数要大.(9)一个因数扩大10倍,另一个因数扩大100倍,积就扩大110倍.(10)A×00.1=A÷100.(11)积的小数位数是4位,那么两个因数小数位数加起来一定也是4位.(12)50乘0.7的积与50个0.7的和相等.(13)3.56×1.01>3.56×0.999.(14)把一个数乘0.1,也就是把这个数缩小到它的101. (15)两个数的积不是小数,所以这两个数一定都不是小数.(16)一个小数的16.5倍一定大于这个小数.(1)取近似数是5.35的三位小数有10个.(2)保留一位小数,是精确到个位.(3)凡是小数都比1小.(4)在表示近似数时,10.0可以写成10.(5)6.995用四舍五入法精确到百分位是7.00.(6)一个数乘9.9,所得的积一定比这个数大.(7)用四舍五入法取近似数,当得数精确到十位时,表示保留一位小数.(8)2.8和2.80的大小相等,精确度也一样.(9)近似数是两位的小数一定比近似数是一位的小数大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

诸城市初中数学导学稿(七下)
10.4列方程组解应用题(2)
林家村初中备课组编写
学习目标:
1.继续探讨如何用二元一次方程组解决一些实际问题,体验二元一次方程组与现实生活的联系和作用;
2.对较复杂的问题可以通过列表格的方法理清题中的未知量、已知量以及等量关系,做到条理清楚;
3.通过实践、自主探究、互相交流,培养并提高分析、抽象、求解和检验等多方面的能力。

重点:借助二元一次方程组解决实际问题
难点:分析、寻找等量关系,构建数学模型
学习过程:
一、温故知新
1.列二元一次方程组解应用题的一般步骤有哪些?
2.学校举办足球比赛,比赛的计分规则为:胜一场得3分,负一场得0分,平一场得1分。

七年级一班足球队共参加了7场比赛,而且各场比赛均未负于对手,共积17分。

你能算出七年级一班胜、平各几场吗?
二、探索新知
探究一:
1、解决温故知新第2题中的问题:
(1)“各场比赛均未负于对手”,你理解为什么意思?(没有输,只有胜与平的情况)
(2)对于“共参加了7场比赛”结合题意,你能想到什么?(胜的场数+平的场数=7场)
(3)“共积17分”,这17分是怎样得来的?(胜的得分+平的得分=17分)(4)结合现在对题意的理解,我们应设计怎样的表格?怎样填写表格?怎样设
(我们先得填好。

(胜一场得3分,平一场得1分,负一场得0分。

)现在,我们只填好了每场的得分,那还有每种情况的场数与最后得分还是未知的,我们决定设:胜了x场,平了y场。

再填好,然后,最后的得分就能被表示出来了。

)
2、你自己能将完整的解题过程写出来吗?试试好吧?
探究二:
完成探究一后,针对某实际问题你会设计表格,填写表格了吗?总结出来。

设计表格:看题目中有几种情况,那这几种情况就作为上面横栏中的几个项目;
再想这类题目中的几个数量,作为竖排中的几个小栏目。

填写表格:我们先应将题目中的已知量找找填在相应的表格中,然后再看哪些量是未知的,选择设恰当的未知数,填好,把另外的那些没填写的空再
用设的未知数表示上就好了。

探究三:
学习课本63-64页例3例4学会题目的解答方法,正确书写解题过程
让学生自己学习,对有困难的同学,教师加以引导。

三、巩固提升
1、中国八一队的李楠是中国男篮的主力前锋.在一场洲际杯比赛中,他一人独得23分(不含罚球得分).已知他投进3分球比2分球少4个,他一共投进了几个3分球和几个2分球?
2、某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定甲乙两种商品分别按期折和九折销售。

某顾客购买甲、乙两种商品,共付款399元,这两种商品原销售价之和为490元,问这两种商品的进价分别为多少元?
四、课堂小结
五、达标检测
1.为绿化校园,时代中学买了杨树苗和柳树苗共100棵,杨树苗每棵3元,柳树苗每棵7元,买树苗共用460元。

两种树苗各买了多少棵?
2.某文艺团为“希望工程”组织了一场义演,成人票每张8元,学生票每3张5元,共售出1000张票,得票款6950元,求成长票与学生票各售出多少张?
六、我的反思。

相关文档
最新文档