小学数学分数裂项

合集下载

小学数学分数裂项(20210723004735)

小学数学分数裂项(20210723004735)

分数裂差考试要求( 1)灵巧运用分数裂差计算惯例型分数裂差乞降( 2)能经过变型进行复杂型分数裂差计算乞降知识构造一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这类拆项计算称为裂项法 .裂项分为分数裂项和整数裂项,常有的裂项方法是将数字分拆成两个或多个数字单位的和或差。

碰到裂项的计算题时,要认真的察看每项的分子和分母,找出每项分子分母之间拥有的同样的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相像部分,让它们消去才是最根本的。

1、关于分母能够写作两个因数乘积的分数,即 1 形式的,这里我们把较小的数写在前面,即 a b ,ba那么有 1b 1 (11 )a b a a b2、关于分母上为 3 个或 4 个自然数乘积形式的分数,我们有:1 1 [ 1 1 ]n (n k ) ( n 2k) 2k n (n k ) ( n k)( n 2k )1(n 1 [ 12k ) (n1 ]n (n k ) ( n 2k) 3k) 3k n (n k) ( n k) ( n 2k ) (n 3k)3、关于分子不是 1k 1 1 的状况我们有:k) n n kn(nh h 1 1n n k k n n k2k1 1n n k n 2k n n k n k n 2k3k1 1n n k n 2k n 3k n n k n 2k n k n 2k n 3kh h1 1n n k n 2k2k n n k n k n 2kh h1 1n n k n 2k n 3k3k n n k n 2k n k n 2k n 3k21 1 12n2n 1 2n 1 12n 1 2n 12二、裂差型裂项的三大重点特点:( 1)分子所有同样,最简单形式为都是 1 的,复杂形式可为都是 x(x 为随意自然数 ) 的,可是只需将x 提拿出来即可转变为分子都是1 的运算。

小学数学分数裂项

小学数学分数裂项

小学数学分数裂项考试要求(1) 能熟练运算常规裂和型题目; (2) 复杂整数裂项运算; (3) 分子隐蔽的裂和型运算。

(4) 4、通项归纳知识结构一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

1、 对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- 2、 对于分母上为3个或4个自然数乘积形式的分数,我们有: 1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+3、 对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)(()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭()()()()()21122k n n k n k n n k n k n k =-+++++()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++()()()()()11222hh n n k n k kn n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h hn n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭二、裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

六年级+分数裂项

六年级+分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:分数裂项计算教学目标知识点拨(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

六年级+分数裂项

六年级+分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:分数裂项计算教学目标知识点拨(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

小学六年级数学难题:分数计算(裂项法)

小学六年级数学难题:分数计算(裂项法)

、裂项法小学数学课本在讨论分数加减法时曾指出:两个分母不同的分数相加减,自然数,公分母正好是它们的乘积.把这个例题推广到一般情况,就有一个很有用的等式:下面利用这个等式,巧妙地计算一些分数求和的问题例1 计算:分析与解此题按常规方法先通分后再求和,显然计算起来十分繁杂是 1 ,而分母又都是相邻两个自然数的积,符合上面等式的要求.如果按上面等式把题目中的前12 个加数也分别写成两个单位分数之差的形式,就得到下面12 个等式:上面12 个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法.例2 计算:分析与解这里的每一项的分子是1,分母不是相邻两个自然数的积,但都是从 1 开始的连续若干个自然数的和,这使我们联想到计算公式:1+当n分别取1,2,3,⋯,100时,就有即题目中的每一项都变成了一个分子为2、分母为相邻两个自然数乘积的形式,略加变形就得到例 1 的形式,仿照例 1 的方法便可求出解来分析与解猛一看,此题似乎无法下手,而且与裂项法也没关系.但小学数学课本上曾说过,减法是加法的逆运算.换句话说,任一加法算式都可以改为这个题的答案是否只有这一个呢?如果不只一个,怎样才能找出所有答案呢?为此,我们来讨论这类问题的一般情况.设n、x、y 都是自然数,且当t=1 时,x=7,y=42,当t=2 时,x=8,y=24,当t=3 时,x=9,y=18,当t=4 时,x=10,y=15,当t=6 时,x=12,y=12,当t=9 时,x=15,y=10,当t=12 时,x=18,y=9,当t=18 时,x=24,y=8,当t=36 时,x=42,y=7.故□和○所代表的两数和分别49、32、27、25.为例 4 已知A、B、C、D、E、F为互不相等的自然数,当A、B、C、D、E、F 各为什么数时,下面等式成立?当A=3 ,B=7,C=43,D=1807,E=3263443,F=10650056950806时,等式成立.即这方法计算量太大,我们试着找另外方便一些的解法在上面两种解法中,后面的解法明显比前面的解法简便.下面我们把后面的那种解题方法一般化.当A 有n个不同的约数a1,a2,a3,⋯,a n时练习一1.计算:2. 计算:4.当A、B、C、D、E、F各是什么不同的自然数时,下式成立?5. 计算:。

六年级分数 裂项法

六年级分数 裂项法

六年级分数 裂项法知识要点和基本方法分数计算是小学数学的重要内容,也是数学竞赛的重要内容之一。

分数计算同整数计算一样既有知识要求又有能力要求。

法则、定律、性质是进行计算的依据,要使计算快速、准确,关键是掌握运算技巧。

对算式认真观察,剖析算是的特点及个数之间的关系,巧妙、灵活的运用运算定律,合理改变运算顺序,使计算简便易行,这对启迪思维,培养综合分析、推理能力和灵活的运算能力,都有很大的帮助。

公式:(1)平方差公式:)()(22b a b a b a -⨯+=- (2)等差数列求和公式:()n a a a a a a a n n n +=++⋅⋅⋅⋅⋅⋅+++-1132121(3)分数的拆分公式:①)1(1+n n =n 1-11+n②)(1d n n +=d 1×(n 1-d n +1)例1.计算:211⨯+321⨯+431⨯+……+100991⨯例2.计算:110×11 +111×12 +……+159×60例3.计算:12 +16 +112 +120 +130 +142例4.计算:110×11 +111×12 +……+119×20例5.计算12×3 +13×4 +……+16×7 +17×8例6.计算:1+12 +16 +112 +120例7.计算:16 +112 +120 +130 +142 +156 +172例8.计算:31+151+351+631+991+1431例9.计算:11111144771010131316++++⨯⨯⨯⨯⨯例10.计算:22222315356399++++例11.计算:1111118244880120168+++++例12.计算:11+21+22+21+31+32+33+32+31+……+1001+1002+……+100100+10099+……+1001例13.计算:1+211++3211+++43211++++……+20053211+⋅⋅⋅⋅⋅⋅⋅+++例14.计算:2×(1-220051)×(1-220041)×(1-220031)×……×(1-221)例1. 计算:20042003200312005⨯例2. 计算:(751×911×116)÷(113×76×95)例3. 计算:989+9899+98999+……+43421K K 99989999个例4. 计算:(1+21)×(1+41)×(1+61)×(1+81)×(1-31)×(1-51)×(1-71)×(1-91)例5. 计算:200421-131+200221-331+200021-531+……+421-200131+221-200331例6. 计算:(971+97971+9797971+979797971)÷(861+86861+8686861+868686861)例7. 计算:⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211= .例8. 计算:222345567566345567+⨯⨯+= .例9. 计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= .例10. 计算:4513612812111511016131+++++++= .例11. 计算:()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= .例12. 计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++ ⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211= 能力训练:1、分数化成最简分数:1812= 2718= 204= 6513= 328= 82=2、小数化成最简分数:0.75= 4.8= 1.25= 0.36= 3.2= 5.4=3、计算:1) 5132÷132+7143÷143+9154÷1542)156 +172 +190 +11103)18 +124 +148 +180 +11204)212005⨯+322005⨯+432005⨯+ (200520042005)5)212+772+1652+……+16772+202126) 21+65+1211+2019+……+1101097) 1+216 +3112 +4120 +5130 +6142 +7156 +8172 +9190 8) 21+43+87+1615+3231+6463+128127+256255+512511 9) 5431⨯⨯+6541⨯⨯+7651⨯⨯+8761⨯⨯+9871⨯⨯+10981⨯⨯。

六年级第一讲分数裂项(含答案)

六年级第一讲分数裂项(含答案)
【考点】分数裂项【难度】5星【题型】计算
【解析】原式
18、计算:
【考点】分数裂项【难度】4星【题型】计算
【解析】原式
【关键词】第五届,小数报,初赛
【解析】原式
8、
【考点】分数裂项【难度】3星【题型】计算
【解析】首先分析出
原式
9、
【考点】分数裂项【难度】3星【题型】计算
【解析】原式
10、计算: .
【考点】分数裂项【难度】3星【题型】计算
【解析】如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第 个数恰好为 的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.
【解析】原式= + + + +…+
=( )+( )+( )+( )=
14、 .
【考点】分数裂项【难度】3星【题型】计算
【关键词】仁华学校
【解析】这题是利用平方差公式进行裂项: ,
原式
15、
【考点】分数裂项【难度】3星【题型】计算
【解析】
16、
【考点】分数裂项【难度】3星【题型】计算
【解析】原式
17、计算:
原式
也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为 ,所以 ,再将每一项的 与 分别加在一起进行裂项.后面的过程与前面的方法相同.
11、
【考点】分数裂项【难度】4星【题型】计算
【解析】原式
12、
【考点】分数裂项【难度】4星【题型】计算
【解析】原式
13
【考点】分数裂项【难度】3星【题型】计算

《分数裂项法总结》课件

《分数裂项法总结》课件
开发更高效的算法和工具
随着计算机技术的发展,可以开发更高效的算法和工具来支持分数裂 项法的应用,提高计算效率和精度。
拓展分数裂项法的应用领域
除了数学和物理领域,分数裂项法还可以拓展应用到其他领域,如金 融、经济、生物等,为解决实际问题提供更多有效的工具。
加强教学方法的改进
针对分数裂项法的教学,可以进一步改进教学方法,提高教学效果, 帮助学生更好地掌握这一重要的数学技能。
感谢您的观看
THANKS
02
整数裂项法是将整数拆 分成易于计算的形式, 如将2n拆分成n+n。
03
差商裂项法是将分数的 分子和分母分别拆分成 两个部分,然后进行化 简。
04
分母有理化是将分数的 分母化为有理数的形式 ,以便进行计算。
03 分数裂项法的实例解析
分数裂项法在数学题目中的应用实例
分数裂项法在数学题目中有着广泛的应 用,可以帮助我们简化复杂的分数计算 。例如,我们可以将一个分数拆分成两 个或多个分数的和或差,从而简化计算
提高解题效率。
03
分数裂项法的优点和局限性
分数裂项法的优点在于能够简化复杂问题,提高计算效率和准确性。然
而,该方法也存在一定的局限性,如对于某些特殊形式的分数,可能无
法找到合适的拆分方式。
对分数裂项法的展望和未来发展方向
继续深入研究分数裂项法
未来可以进一步深入研究分数裂项法的理论和应用,探索更多适用于 该方法的数学模型和实际应用场景。
分数裂项法的练习题
练习题1
将分数1/6进行裂项,使其变为两 个分数之和。
练习题2
将分数2/7进行裂项,使其变为三 个分数之和。
练习题3
将分数3/8进行裂项,使其变为四个 分数之和。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数裂差考试要求(1) 灵活运用分数裂差计算常规型分数裂差求和(2) 能通过变型进行复杂型分数裂差计算求和知识结构一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

1、 对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- 2、 对于分母上为3个或4个自然数乘积形式的分数,我们有:1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++ 1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 3、 对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)( ()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭()()()()()21122k n n k n k n n k n k n k =-+++++ ()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++ ()()()()()11222hhn n k n k k n n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h h n n k n k n k k n n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭二、裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

重难点(1) 分子不是1的分数的裂差变型;(2) 分母为多个自然数相乘的裂差变型。

例题精讲一、 用裂项法求1(1)n n +型分数求和 分析:1(1)n n +型(n 为自然数) 因为111n n -+=11(1)(1)(1)n n n n n n n n +-=+++(n 为自然数),所以有裂项公式:111(1)1n n n n =-++ 【例 1】 填空:(1)1-21= (2)=⨯211 (3) =-3121 (4)=⨯321 (5)=⨯60591 (6)=-601591 (7)=⨯100991 (8)=-1001991 【考点】分数裂项 【难度】☆ 【题型】填空 【解析】(1)原式=112⨯;(2)原式=1112-;(3)原式=123⨯;(4)原式=1123-;(5)原式=115960-; (6)原式=15960⨯;(7)原式=1199100-;(8)原式=199100⨯。

【答案】(1)112⨯;(2)1112-;(3)123⨯;(4)1123-;(5)115960-;(6)15960⨯;(7)1199100-;(8)199100⨯。

【巩固】111111223344556++++=⨯⨯⨯⨯⨯。

【考点】分数裂项【难度】☆☆【题型】填空【解析】原式111111115 122356166⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】56。

【例 2】计算:111...... 101111125960 +++⨯⨯⨯【考点】分数裂项【难度】☆☆【题型】解答【解析】原式111111111 ()()......()101111125960106012 =-+-++-=-=【答案】112。

【巩固】计算:11111 198519861986198719951996199619971997 +++++⨯⨯⨯⨯【考点】分数裂项【难度】☆☆【题型】解答【解析】原式1111111111 1985198619861987199519961996199719971985 =-+-++-+-+=【答案】1 1985。

【例 3】计算:1122426153577++++=____。

【考点】分数裂项【难度】☆☆【题型】填空【答案】11。

【巩固】11111111612203042567290+++++++=_______。

【考点】分数裂项 【难度】☆☆ 【题型】填空【解析】原式=11111111612203042567290+++++++ 1111111123344556677889910=+++++++⨯⨯⨯⨯⨯⨯⨯⨯ 11=210- 2=5【答案】25【例 4】 计算:1111111112612203042567290--------= 。

【考点】分数裂项 【难度】☆☆☆ 【题型】解答 【解析】原式111111111()223344556677889910=-+++++++⨯⨯⨯⨯⨯⨯⨯⨯ 1111111()22334910=--+-++- 111()2210=-- 110=【答案】110。

【巩固】计算:11111123420261220420+++++ 【考点】分数裂项 【难度】☆☆☆ 【题型】解答【解析】原式()1111112320261220420⎛⎫=++++++++++ ⎪⎝⎭ 11111210122334452021=++++++⨯⨯⨯⨯⨯ 11111112101223342021=+-+-+-++- 1210121=+-2021021=【答案】20 21021。

【例 5】计算:11111 200820092010201120121854108180270++++= 。

【考点】分数裂项【难度】☆☆☆【题型】填空【解析】原式11111 20082009201020112012366991212151518 =+++++++++⨯⨯⨯⨯⨯1111111201059122356⎛⎫=⨯+⨯-+-++-⎪⎝⎭51005054=【答案】5 1005054。

【巩固】计算:1511192997019899 2612203097029900+++++++=.【考点】分数裂项【难度】☆☆☆【题型】填空【解析】原式1111 111126129900⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11199122399100⎛⎫=-+++⎪⨯⨯⨯⎝⎭1111199122399100⎛⎫=--+-++-⎪⎝⎭1991100⎛⎫=--⎪⎝⎭198100=【答案】198100。

二、用裂项法求1()n n k+型分数求和分析:1()n n k+型。

(n,k均为自然数)因为11111()[]()()()n k nk n n k k n n k n n k n n k+-=-=++++,所以1111()()n n k k n n k=-++【例 6】1111 133******** ++++=⨯⨯⨯⨯【考点】分数裂项【难度】☆☆【题型】填空【解析】111111111150(1 13355799101233599101101 ++++=⨯-+-++-=⨯⨯⨯⨯…)【答案】50 101。

【巩固】计算:1111111 315356399143195 ++++++【考点】分数裂项【难度】☆☆【题型】解答【解析】原式11111111335577991111131315 =++++++⨯⨯⨯⨯⨯⨯⨯11111111121323521315⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1112115⎛⎫=⨯-⎪⎝⎭715=【答案】715。

【例 7】计算:1111251335572325⎛⎫⨯++++=⎪⨯⨯⨯⨯⎝⎭【考点】分数裂项【难度】☆☆【题型】填空【解析】原式11111125123352325⎛⎫=⨯⨯-+-++-⎪⎝⎭11251225⎛⎫=⨯⨯-⎪⎝⎭2524225=⨯12=【答案】12。

【巩固】计算:11111111()128 8244880120168224288+++++++⨯=【考点】分数裂项【难度】☆☆【题型】填空【解析】原式1111128 2446681618=++++⨯⨯⨯⨯⨯()1111111128 224461618=⨯-+-++-⨯()1164218=-⨯()4289=【答案】4 289。

三、用裂项法求()k n n k +型分数求和 分析:()k n n k +型(n,k 均为自然数) 因为11n n k -+=()()n k n n n k n n k +-++=()k n n k +,所以()k n n k +=11n n k -+ 【例 8】 求2222 (1335579799)++++⨯⨯⨯⨯的和 【考点】分数裂项 【难度】☆☆ 【题型】解答 【解析】原式1111111(1)()()......()335579799=-+-+-++- 1199=- 9899=【答案】9899。

【巩固】2222109985443++++=⨯⨯⨯⨯ 【考点】分数裂项 【难度】☆☆ 【题型】填空【解析】原式111111112910894534⎛⎫=⨯-+-++-+- ⎪⎝⎭112310⎛⎫=⨯- ⎪⎝⎭715= 【答案】715。

【例 9】 计算:33314477679+++⨯⨯⨯ 【考点】分数裂项 【难度】☆☆ 【题型】解答 【解析】原式=11111114477679-+-++- =1179-=7879【答案】78 79。

【巩固】3333 25588113235 ++++⨯⨯⨯⨯【考点】分数裂项【难度】☆☆【题型】解答【解析】原式=11111111 25588113235 -+-+-++-=11 235 -=33 70【答案】33 70。

【例 10】4444 21771652021 ++++【考点】分数裂项【难度】☆☆【题型】解答【解析】原式=4444 3771111154347 ++++⨯⨯⨯⨯=11111111 3771111154347 -+-+-++-=11 347 -=44 141【答案】44 141。

【巩固】2222()46 31535575++++⨯【考点】分数裂项【难度】☆☆【题型】解答【解析】原式=222246 1335572325⎛⎫++++⨯ ⎪⨯⨯⨯⨯⎝⎭=1111111146 1335572325⎛⎫-+-+-++-⨯ ⎪⎝⎭=114625⎛⎫-⨯ ⎪⎝⎭=44425 【答案】44425。

相关文档
最新文档