2019年高考数学常用公式:指数函数与对数函数公式
2019高考数学复习:对数与对数函数

第6节对数与对数函数最新考纲 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象;3.体会对数函数是一类重要的函数模型;4.了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.知识梳理1.对数的概念如果a x=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N=N;②log a a b=b(a>0,且a≠1).(2)对数的运算法则如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R);④log a m M n=nm log a M(m,n∈R,且m≠0).(3)换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1).3.对数函数及其性质(1)概念:函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称. [常用结论与微点提醒] 1.换底公式的两个重要结论 (1)log a b =1log ba ;(2)log a mb n =nm log a b .其中a >0,且a ≠1,b >0,且b ≠1,m ,n ∈R .2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限.诊 断 自 测1.思考辨析(在括号内打“√”或“×”) (1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( )(3)函数y =ln 1+x1-x 与y =ln(1+x )-ln(1-x )的定义域相同.( )(4)当x >1时,若log a x >log b x ,则a <b .( ) 解析 (1)log 2x 2=2log 2|x |,故(1)错.(2)形如y =log a x (a >0,且a ≠1)为对数函数,故(2)错. (4)当x >1时,log a x >log b x ,但a 与b 的大小不确定,故(4)错. 答案 (1)× (2)× (3)√ (4)×2.(必修1P73T3改编)已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b解析 ∵0<a <1,b <0,c =log 1213=log 23>1. ∴c >a >b . 答案 D3.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1解析 由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1. 答案 D4.(2017·全国Ⅰ卷)已知函数f (x )=ln x +ln(2-x ),则( ) A.f (x )在(0,2)上单调递增 B.f (x )在(0,2)上单调递减C.y =f (x )的图象关于直线x =1对称D.y =f (x )的图象关于点(1,0)对称解析 由题意知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]= ln[-(x -1)2+1],由复合函数的单调性知,函数f (x )在(0,1)上单调递增,在(1,2)上单调递减,所以排除A ,B ;又f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,D 错误. 答案 C5.计算:log 222=________;2log 23+log 43=________.解析 log 222=log 22-log 22=12-1=-12; 2log 23+log 43=2log 23·2log 43=3×2log 43=3×2log 23=3 3.答案 -12 3 3考点一 对数的运算【例1】 (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________.(2)(2017·全国Ⅰ卷)设x ,y ,z 为正数,且2x =3y =5z ,则( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2xD.3y <2x <5z解析 (1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)令t =2x =3y =5z , ∵x ,y ,z 为正数,∴t >1.则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg tlg 5. ∴2x -3y =2lg t lg 2-3lg t lg 3=lg t (2lg 3-3lg 2)lg 2×lg 3=lg t (lg 9-lg 8)lg 2×lg 3>0,∴2x >3y .又∵2x -5z =2lg t lg 2-5lg t lg 5=lg t (2lg 5-5lg 2)lg 2×lg 5=lg t (lg 25-lg 32)lg 2×lg 5<0,∴2x <5z ,∴3y <2x <5z . 答案 (1)-20 (2)D规律方法 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【训练1】 (1)(2016·浙江卷)已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b =________.(2)(2018·日照调研)已知函数f (x )=⎩⎨⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.8解析 (1)设log b a =t ,则t >1,因为t +1t =52, 所以t =2,则a =b 2. 又a b=b a,所以b 2b=b b2, 即2b =b 2,解得b =2,a =4.(2)因为3<2+log 23<4,所以f (2+log 23)=f (3+log 23)=23+log 23=8×2log 23=24. 答案 (1)4 2 (2)A考点二 对数函数的图象及应用【例2】 (1)(2018·郑州一模)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )(2)(2018·衡水调研)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 解析 (1)由于y =a |x |的值域为{y |y ≥1}, ∴a >1,则y =log a x 在(0,+∞)上是增函数, 又函数y =log a |x |的图象关于y 轴对称. 因此y =log a |x |的图象应大致为选项B.(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上截距.由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.答案(1)B(2)(1,+∞)规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.【训练2】(1)(2018·湛江模拟)已知函数f(x)=log a(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是()A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<1(2)函数f(x)=2ln x的图象与函数g(x)=x2-4x+5的图象的交点个数为()A.3B.2C.1D.0解析(1)由函数图象可知,f(x)在R上单调递增,又y=2x+b-1在R上单调递增,故a>1.函数图象与y轴的交点坐标为(0,log a b),由函数图象可知-1<log a b<0,即log a a-1<log a b<log a1,所以,a-1<b<1.综上有0<a-1<b<1.(2)在同一直角坐标系下画出函数f(x)=2ln x与函数g(x)=x2-4x+5=(x-2)2+1的图象,如图所示.∵f(2)=2ln 2>g(2)=1,∴f(x)与g(x)的图象的交点个数为2.答案(1)A(2)B考点三对数函数的性质及应用(多维探究)命题角度1比较对数值的大小【例3-1】(2016·全国Ⅰ卷)若a>b>0,0<c<1,则()A.log a c<log b cB.log c a<log c bC.a c <b cD.c a >c b解析 由y =x c 与y =c x 的单调性知,C ,D 不正确; ∵y =log c x 是减函数,得log c a <log c b ,B 正确; log a c =lg c lg a ,log b c =lg clg b ,∵0<c <1,∴lg c <0.又a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负, ∴log a c 与log b c 的大小不能确定. 答案 B命题角度2 解对数不等式【例3-2】 若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫12,1D.(0,1)∪(1,+∞)解析 由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,∴a >12.综上,a ∈⎝ ⎛⎭⎪⎫12,1.答案 C命题角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32.(2)t (x )=3-ax ,∵a >0, ∴函数t (x )为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴⎩⎨⎧3-2a >0,log a (3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.规律方法 1.确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.2.如果需将函数解析式变形,一定要保证其等价性,否则结论错误.3.在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.【训练3】 (1)设a =log 32,b =log 52,c =log 23,则( ) A.a >c >b B.b >c >a C.c >b >aD.c >a >b(2)(2018·长春模拟)若函数f (x )=log a (x 2-26x +a )有最小值12,则实数a 的值等于________.解析 (1)a =log 32<log 33=1,b =log 52<log 55=1, 又c =log 23>log 22=1, 所以c 最大.由1<log 23<log 25,得1log 23>1log 25,即a >b ,所以c >a >b .(2)令g (x )=x 2-26x +a ,则f (x )=log a [g (x )]. ①若a >1,由于函数f (x )有最小值12, 则g (x )应有最小值a ,而g (x )=x 2-26x +a =(x -6)2+a -6, 当x =6时,取最小值a -6, 因此有⎩⎨⎧a >1,a =a -6,解得a =9.②若0<a <1,由于函数f (x )有最小值12, 则g (x )应有最大值a ,而g (x )不存在最大值,不符合题意,综上,实数a =9. 答案 (1)D (2)9基础巩固题组 (建议用时:40分钟)一、选择题1.(2018·濮阳检测)“log 2(2x -3)<1”是“4x >8”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 log 2(2x -3)<1⇔32<x <52. 又4x >8⇔x >32, 所以⎝ ⎛⎭⎪⎫32,52⎝ ⎛⎭⎪⎫32,+∞, 故“log 2(2x -3)<1”是“4x >8”的充分不必要条件. 答案 A2.设2a =5b =m ,且1a +1b =2,则m 等于( )A.10B.10C.20D.100解析 由已知,得a =log 2m ,b =log 5m , 则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2.解得m =10.答案 A3.(2018·成都诊断)函数f(x)=x a满足f(2)=4,那么函数g(x)=|log a(x+1)|的图象大致为()解析由f(2)=2a=4,得a=2.所以g(x)=|log2(x+1)|,则g(x)的图象由y=|log2x|的图象向左平移一个单位得到,C满足.答案 C4.(2018·广东省际名校联考)已知f(x)满足对∀x∈R,f(-x)+f(x)=0,且当x≤0时,f(x)=1e x+k(k为常数),则f(ln 5)的值为()A.4B.-4C.6D.-6解析易知函数f(x)是奇函数,故f(0)=e0+k=1+k=0,即k=-1,所以f(ln 5)=-f(-ln 5)=-(e ln 5-1)=-4.答案 B5.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a-1)(b-1)<0B.(a-1)(a-b)>0C.(b-1)(b-a)<0D.(b-1)(b-a)>0解析∵a>0,b>0且a≠1,b≠1.由log a b>1得log a b a>0.∴a>1,且ba>1或0<a<1且0<ba<1,则b>a>1或0<b<a<1.故(b-a)(b-1)>0.答案 D二、填空题6.lg 52+2lg 2-⎝⎛⎭⎪⎫12-1=________.解析lg 52+2lg 2-⎝⎛⎭⎪⎫12-1=lg52+lg 22-2=lg ⎝ ⎛⎭⎪⎫52×4-2=1-2=-1. 答案 -17.(2018·山西康杰中学联考)设函数f (x )=lg(x 2-x )-lg(x -1),且f (x 0)=2,则x 0=________.解析 易知x >1,且f (x )=lg(x 2-x )-lg(x -1)=lg x ,∴f (x 0)=lg x 0=2,则x 0=100. 答案 1008.若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析 令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝ ⎛⎭⎪⎫x +342-916,因此M 的单调递增区间为⎝ ⎛⎭⎪⎫-34,+∞. 又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).答案 (0,+∞)三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎨⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x . (1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.解 (1)当x <0时,-x >0,则f (-x )=log 12(-x ). 因为函数f (x )是偶函数,所以f (-x )=f (x )=log 12(-x ), 所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数, 所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4).又因为函数f (x )在(0,+∞)上是减函数,所以|x 2-1|<4,解得-5<x <5,即不等式的解集为(-5,5).能力提升题组(建议用时:20分钟)11.(2018·合肥调研)已知函数f (x )=ln(a x +b )(a >0且a ≠1)是R 上的奇函数,则不等式f (x )>a ln a 的解集是( )A.(a ,+∞)B.(-∞,a )C.当a >1时,解集是(a ,+∞),当0<a <1时,解集是(-∞,a )D.当a >1时,解集是(-∞,a ),当0<a <1时,解集是(a ,+∞)解析 依题意,f (0)=ln(1+b )=0,解得b =0,于是f (x )=ln a x =x ln a .∴f (x )>a ln a ⇔x ln a >a ln a .当a >1时,x >a ;当0<a <1时,x <a .答案 C12.(2018·九江七校联考)若函数f (x )=log 2(x 2-ax -3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是________.解析 由题意得x 2-ax -3a >0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上递减,则a 2≥-2且(-2)2-(-2)a -3a >0,解得实数a 的取值范围是[-4,4).答案 [-4,4)13.已知函数f (x )=ln x +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性;(2)对于x ∈[2,6],f (x )=ln x +1x -1>ln m (x -1)(7-x )恒成立,求实数m 的取值范围.解 (1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞),当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln -x +1-x -1=ln x -1x +1=ln ⎝ ⎛⎭⎪⎫x +1x -1-1 =-ln x +1x -1=-f (x ). ∴f (x )=lnx +1x -1是奇函数. (2)由于x ∈[2,6]时,f (x )=ln x +1x -1>ln m (x -1)(7-x )恒成立, ∴x +1x -1>m (x -1)(7-x )>0,∵x∈[2,6],∴0<m<(x+1)(7-x)在x∈[2,6]上恒成立.令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],由二次函数的性质可知,x∈[2,3]时函数g(x)单调递增,x∈[3,6]时函数g(x)单调递减,即x∈[2,6]时,g(x)min=g(6)=7,∴0<m<7.故实数m的取值范围为(0,7).。
对数函数公式大全

对数函数公式大全对数函数是高中数学中的重要内容,它在数学和物理等领域有着广泛的应用。
在本文中,我们将为大家详细介绍对数函数的相关公式,希望能够帮助大家更好地理解和掌握对数函数的知识。
一、对数函数的定义。
对数函数是指以某个正数为底数,另一个数为真数,求得的幂等于这个数的函数。
通常用log表示,其中底数为e时称为自然对数函数,用ln表示。
对数函数的定义域为正实数,值域为实数。
二、对数函数的基本性质。
1.对数函数的定义域为正实数,值域为实数。
2.对数函数的图像是一条曲线,其特点是经过点(1,0),且在x轴的正半轴上单调递增。
3.对数函数的反函数是指数函数,即y=loga(x)的反函数是x=a^y。
三、常见对数函数的公式。
1.常用对数函数的公式为y=logx,其中底数为10。
2.自然对数函数的公式为y=ln(x),其中底数为e。
3.对数函数的性质公式为logab=logac/logcb。
4.对数函数的换底公式为logab=lnb/lna。
四、对数函数的运算公式。
1.对数函数的加法公式为loga(mn)=logam+logan。
2.对数函数的减法公式为loga(m/n)=logam-logan。
3.对数函数的乘法公式为loga(m^n)=nlogam。
4.对数函数的除法公式为loga(m^n)=nlogam。
五、对数函数的应用。
对数函数在科学、工程、经济等领域有着广泛的应用。
其中,常见的应用包括:1.在物理学中,对数函数常用于描述震级、声音强度等。
2.在生物学中,对数函数常用于描述生长速率、种群增长等。
3.在经济学中,对数函数常用于描述复利计算、通货膨胀等。
4.在工程学中,对数函数常用于描述信号衰减、材料强度等。
六、对数函数的图像。
对数函数的图像特点是经过点(1,0),在x轴的正半轴上单调递增。
当底数大于1时,对数函数的图像在(0,1)处是递增的,当底数在0和1之间时,对数函数的图像在(0,1)处是递减的。
高中对数函数公式

高中对数函数公式高中数学中,对数函数是一个重要的函数概念,它在数学和科学中有广泛的应用。
对数函数的基本概念是以一些常数为底的对数函数,通常用符号 log 表示。
一、基本概念对数函数可以统一表示为 f(x) = log_a(x),其中 a 是一个大于 0 且不等于 1 的常数,x 是函数的自变量。
a 被称为底数,x 是函数的取值范围。
以 10 为底的对数函数被称为常用对数函数,通常用符号 log 表示;以 e (自然对数的底) 为底的对数函数被称为自然对数函数,通常用符号 ln 表示。
对数函数与指数函数是密切相关的,它们互为逆运算。
也就是说,如果 a^b = c,那么 log_a(c) = b。
1.基本性质对数函数的一些基本性质如下:(1)log_a(1) = 0(2)log_a(a) = 1(3)log_a(b * c) = log_a(b) + log_a(c)(4)log_a(b / c) = log_a(b) - log_a(c)(5)log_a(b^c) = c * log_a(b)(6)log_a(a^x) = x(7)log_a(b) = log_c(b) / log_c(a)二、对数函数的图像和性质对数函数的图像特点与底数a的大小有关。
当底数a大于1时,对数函数的图像呈现上升的形状,叫做增函数;当底数a在0到1之间时,对数函数的图像呈现下降的形状,叫做减函数。
1.常用对数函数(底数为10)常用对数函数 f(x) = log(x) 的图像特点如下:(1)定义域:x>0(2)值域:(-∞,+∞)(3)单调性:增函数(4)对称轴:y轴(5)零点:x=1(6)满足关系:log(1) = 02.自然对数函数(底数为e)自然对数函数 f(x) = ln(x) 的图像特点如下:(1)定义域:x>0(2)值域:(-∞,+∞)(3)单调性:增函数(4)对称轴:y轴(5)零点:x=1(6)满足关系:ln(1) = 0三、对数函数的应用对数函数在科学和工程中有广泛的应用,例如:1.测量:pH值用对数函数来衡量酸碱度,声音的强度用分贝来表示也是对数函数的应用。
高考数学必备公式、结论、方法汇总

(3)巧用“1”的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=sin2θ 1+tan12θ =tanπ; 4
2.值域:
④ 转换范围法 :针对由已知区间求未知区间的表达
①二次函数求值域用:配方法;
②分式函数求值域,若分子与分母同次用:分离常数法,若分子与分母不同次用:上下同除法.
③二次根式函数求值域用:换元法.当然还有单调性法和导数法。
3.大小比较
(1)指数幂比较大小
①同底幂比较,构造指数函数,用单调性比较;
②换底推广:logab=log1ba, logab·logbc·logcd=logad.
3.二次函数公式
①一般式顶点式:y=ax2+bx+c=a
x+ b 2a
2+4ac-b2.
4a
②顶点是
- b ,4ac-b2 2a 4a
,对称轴是:x=-
b
.
2a
③方程 ax2+bx+c=0(a≠0)求根公式:x=-b± b2-4ac 2a 二、必备结论
(3)伸缩变换
①y=f(x)=y=f(ax)
②y=f(x) 0<a>― a<1,1―,纵―纵坐坐―标标―伸缩长―短为―为原原―来来―的的―aa倍―倍,―,横横―坐坐―标标不→不变变y=af(x)
三、必备方法
1.解析式:
① 待定系数法 :针对已知函数类型;
② 换元法或配凑法 :针对复合函数;
③ 方程组法 :针对 f(x)与 f(1)或 f(-x)形成的表达式 x
(3)周期公式:①y=Asin(ωx+φ)(或 y=Acos(ωx+φ))的最小正周期 T=2π ②y=|Asin(ωx+φ)|的周期 T= π .
|ω|
指数与对数的运算公式

指数与对数的运算公式一个数的指数代表把多少个这个数乘在一起。
例子: 23= 2 × 2 × 2 = 8(3个 2 乘在一起得到 8)什么是对数?对数与指数相反。
它是这个问题的答案:"什么指数会得到这个结果?":这问题的答案是:用以上的例子:•指数用 2 和 3 来得到 8(2乘3次为8)•对数用 2 和 8 来得到 3(2 成为 8,当把3个2乘在一起时)对数的意思是:用几个数与自己乘在一起会得到另一个数所以对数的答案是指数:(去这里看看指数、根和对数的关系。
)一起用指数与对数时常用在一起,因为它们的效果是"相反"的(但底"a"要相同):指数与对数互为"反函数"先做一个,然后做另一个,就还原了:但光看名字不能猜到它们是相反的……你可以这样想:a x"向上",log a(x) "向下":•向上走,然后向下走,你回到原处:向下(向上p(x)) = x,•向下走,然后向上走,你回到原处:向上(向下(x)) = x 无论如何,重点是:指数函数可以"还原"对数函数的效果。
.(反过来也一样)看这个例子:举例: log3(x) = 5,x 是什么?我们可以用以3为底的指数来"还原"对数:再来一个:对数的特性对数的其中一个强大功能是把乘变成加。
log a( m × n ) = log a m + log a n"乘的对数是对数的和"为什么是这样?看附注。
用这特性和指数定律,我们得到以下有用的特性:log a(m × n) = log a m + log a n乘的对数是对数的和log a(m/n) = log a m - log a n除乘的对数是对数的差log a(1/n) = -log a n 这是以上"除"特性的结果,因为 log a(1) = 0log a(m r) = r ( log a m )m的r次幂的对数是r 和m的对数的积记着:底 "a" 一定要相同!历史:以前没有计算器时,对数非常有用……例如,要乘两个很大的数,你可以用对数来把乘变为加(容易得多!)以前甚至有专门为此而设的对数表书。
指数与对数的转换公式

指数与对数的转换公式一、指数的基本概念指数是数学中用来表示一个数的乘方的次数的概念。
指数有一些基本的性质,如指数的加法和乘法法则。
假设a和b都是实数,m和n都是整数,则指数运算的基本规则如下:1.a^m*a^n=a^(m+n)。
这表示,将底数a的指数m和n分别相加,得到的结果再用底数a的指数表示,等于将底数a的指数m和n相加后得到的指数表示的值。
2.(a^m)^n=a^(m*n)。
这表示,将底数a的指数m和n分别相乘,得到的结果再用底数a的指数表示,等于将底数a的指数m和n相乘后得到的指数表示的值。
3.(a*b)^m=a^m*b^m。
这表示,将若干个底数a和b连乘,并用底数a和b的共同指数表示,等于将底数a和b分别用指数表示后连乘得到的值。
基于指数运算的基本规则,可以推导出一些常见的指数运算公式,如指数函数的乘法公式、指数函数的除法公式和零次方的值等。
二、对数的基本概念对数是指数的逆运算。
如果a^x = b,则称x为以a为底,b为真数的对数,记作x=log_a(b)。
其中,a被称为底数,b被称为真数。
对数函数以及它的性质在实际问题中有广泛的应用。
对数函数的图像是一条过点(1,0)的递增曲线,与指数函数的图像相互对称。
对数函数具有一些特殊的性质,如对数函数的加法和乘法法则。
假设a为任意正数,b和c都是正数并且不等于1,则对数运算的基本规则如下:1. log_a(b * c) = log_a(b) + log_a(c)。
这表示,将底数a的两个正数相乘,并用底数a的对数表示,等于将底数a的这两个正数分别用对数表示后相加得到的值。
2. log_a(b / c) = log_a(b) - log_a(c)。
这表示,将底数a的两个正数相除,并用底数a的对数表示,等于将底数a的这两个正数分别用对数表示后相减得到的值。
3. log_a(b^m) = m * log_a(b)。
这表示,将底数a的正数b以及底数a的对数表示的值相乘,并用底数a的对数表示,等于将底数a的正数b分别用对数表示后乘以底数a的对数表示的值。
对数函数运算公式大全

对数函数运算公式大全对数函数是数学中的一种重要函数。
它主要由幂函数的逆运算演变而来,可以描述幂函数的指数部分。
对数函数的定义如下:对于任意的正实数 a 和正实数 x,我们将 b 称为以 a 为底 x 的对数,记作 logₐ(x) = b,如果且仅如果 a^b = x。
在实际问题中,对数函数常被用于解决各种指数增长和指数衰减的问题。
我们先来看一下对数函数的基本特性。
1.对数函数的定义域是正实数集,即x∈(0,+∞)。
2.对数函数的值域是全部实数集,即y∈(-∞,+∞)。
3. 对数函数的图像是由直线 y = x 和平行于 x 轴的直线 y =logₐx 组成。
当a>1时,对数函数是增函数;当0<a<1时,对数函数是减函数。
4.对数函数的性质:(a) logₐ(xy) = logₐx + logₐy(b) logₐ(x/y) = logₐx - logₐy(c) logₐ(x^n) = nlogₐx(d) logₐ(1/x) = -logₐx(e) logₐ1 = 0(f) logₐa = 1(g) log₁₀x = loga(x)/loga(10)下面我们来看一些常见的对数函数运算公式。
1. 换底公式:logₐb = logc(b) / logc(a),其中 c 是任意的正实数。
2. 对数的乘法运算公式:logₐ(xy) = logₐx + logₐy3. 对数的除法运算公式:logₐ(x/y) = logₐx - logₐy4. 对数的幂运算公式:logₐ(x^n) = nlogₐx5. 对数的倒数运算公式:logₐ(1/x) = -logₐx6. 底数为 10 的对数与底数为 a 的对数的转换关系:log₁₀x = loga(x) / loga(10)7. 自然对数和常用对数的转换关系:logₑx = ln(x) / ln(ₑ10)8. 对数函数与指数函数的逆运算关系:a^logₐx = x有了以上的对数函数运算公式,在解决实际问题中,我们可以更方便地进行计算和分析。
指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数:1.基本概念:指数函数是形如y=a^x(a>0,且a≠1)的函数,其中a称为底数,x 称为指数,a^x称为底数a的x次幂。
2.基本性质:(1)a^0=1,任何数的0次幂等于1;(2)a^x*a^y=a^(x+y),相同底数的指数幂相乘,底数不变,指数相加;(3)a^x÷a^y=a^(x-y),相同底数的指数幂相除,底数不变,指数相减;(4)(a^x)^y=a^(x*y),指数幂的乘积再乘方,指数相乘;(5)a^(-x)=1/(a^x),任何数的负指数满足倒数规律。
3.常见指数函数:(1)指数函数y=2^x:以2为底的指数函数,可以用来描述2的x 次幂关系,是一种常见的指数型增长函数,图像逐渐向上凸起。
二、对数函数:1.基本概念:对数函数是指y=loga(x),其中a>0,且a≠1,a称为底数,x称为真数,y称为以a为底x的对数。
2.基本性质:(1)loga(1)=0,底数为任何正数时,1的对数都是0;(2)loga(a)=1,底数为任何正数时,底数的对数都是1;(3)loga (x*y) = loga(x) + loga(y),对数相乘,真数取乘积,对数相加;(4)loga (x/y) = loga(x) - loga(y),对数相除,真数取商,对数相减;(5)loga(x^k) = k * loga(x),对数乘方,真数取底数的k次方,对数乘以指数。
3.常见对数函数:(1)常用对数函数:y=log10(x),其中底数为10,对数函数可以简写为y=log(x)。
常用对数函数是以10为底的对数函数,输入一个正实数x,输出满足10^y=x的y值。
(2)自然对数函数:y=ln(x),其中底数为e。
自然对数函数是以e 为底的对数函数,输入一个正实数x,输出满足e^y=x的y值。
三、指数函数与对数函数的关系:四、指数函数与对数函数的应用:1.科学中的指数增长:指数函数常常用于描述原子衰变、细胞分裂和放射性物质的衰变等过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学常用公式:指数函数与对数函数公式指数函数与对数函数公式汇总
(1)定义域、值域、对应法则
(2)单调性
对于任意x1,x2∈D
若x1
若x1f(x2),称f(x)在D上是减函数
(3)奇偶性
对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数
若f(-x)=-f(x),称f(x)是奇函数
(4)周期性
对于函数f(x)的定义域内的任一x,若存有常数T,使得
f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂
正分数指数幂的意义是
负分数指数幂的意义是
(2)对数的性质和运算法则
loga(MN)=logaM+logaN
logaMn=nlogaM(n∈R)
指数函数对数函数
(1)y=ax(a>0,a≠1)叫指数函数
(2)x∈R,y>0
图象经过(0,1)
a>1时,x>0,y>1;x
a> 1时,y=ax是增函数
(2)x>0,y∈R
图象经过(1,0)
a>1时,x>1,y>0;0
a>1时,y=logax是增函数
指数方程和对数方程
基本型
logaf(x)=b f(x)=ab(a>0,a≠1)
同底型
logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)换元型 f(ax)=0或f (logax)=0。