高中数学立体几何单元测试卷(精选)
高一数学必修2立体几何单元测试题

高一数学必修2立体几何单元测试题试卷满分:150分 考试时间:120分钟第Ⅰ卷一、选择题(每小题5分,共60分) 2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 5、若直线l 平面α,直线a α⊂,则l 与a 的位置关系是A 、l aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有A 、1B 、2C 、3D 、4 7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取EFGH 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有A 、0个B 、1个C 、2个D 、3个10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是A 、23 B 、76 C 、45 D 、56二、填空题(每小题4分,共16分)14、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为 15、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 .第Ⅱ卷三、解答题(共74分,要求写出主要的证明、解答过程)17、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.(10分)19、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(12分)20、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)1C O 面11AB D ;(2 )1AC ⊥面11AB D . (14分)21、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AFAC AD λλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ; (Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14分)SDCBAD 1ODB AC 1B 1A 1CFEDBAC参考答案一、选择题(每小题5分,共60分)ACDDD BCBDD DB二、填空题(每小题4分,共16分)13、小于 14、平行 15、菱形 16、1111AC B D 对角线与互相垂直 三、解答题(共74分,要求写出主要的证明、解答过程)17、解:设圆台的母线长为l ,则 1分圆台的上底面面积为224S ππ=⋅=上3分圆台的上底面面积为2525S ππ=⋅=下 5分所以圆台的底面面积为29S S S π=+=下上 6分又圆台的侧面积(25)7S l l ππ=+=侧8分于是725l ππ= 9分即297l =为所求. 10分 18、证明:,EH FG EH ⊄面BCD ,FG ⊂面BCDEH∴面BCD 6分又EH ⊂面BCD ,面BCD 面ABD BD =,EH BD ∴ 12分19、证明:90ACB ∠= BC AC ∴⊥ 1分又SA ⊥面ABC SA BC ∴⊥ 4分BC ∴⊥面SAC 7分 BC AD ∴⊥ 10分又,SCAD SC BC C ⊥=AD ∴⊥面SBC 12分依题意函数的定义域为{|010}x x << 12分 20、证明:(1)连结11A C ,设11111AC B D O =连结1AO ,1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形11A C AC ∴且 11A C AC = 2分又1,O O 分别是11,A C AC 的中点,11O C AO ∴且11O C AO =11AOC O ∴是平行四边形 4分 111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D ∴1C O面11AB D 6分(2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 7分 又1111A C B D ⊥, 1111B D AC C ∴⊥面 9分 111AC B D ⊥即 11分 同理可证11A C AB ⊥, 12分 又1111D B AB B =∴1AC ⊥面11AB D 14分 21、证明:(Ⅰ)∵AB ⊥平面BCD , ∴AB ⊥CD , ∵CD ⊥BC 且AB ∩BC=B , ∴CD ⊥平面ABC. 3分 又),10(<<==λλADAF AC AE∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC ,EF ⊂平面BEF,∴不论λ为何值恒有平面BEF ⊥平面ABC. 6分 (Ⅱ)由(Ⅰ)知,BE ⊥EF ,又平面BEF ⊥平面ACD ,∴BE ⊥平面ACD ,∴BE ⊥AC. 9分 ∵BC=CD=1,∠BCD=90°,∠ADB=60°, ∴,660tan 2,2=== AB BD11分,722=+=∴BC AB AC 由AB 2=AE ·AC 得,76,76==∴=ACAE AE λ 13分故当76=λ时,平面BEF ⊥平面ACD. 14分。
高中数学立体几何初步单元测

第八章 立体几何初步 (单元测)第八章 立体几何初步(单元测试)_一、单选题1.已知圆锥的底面半径为1,侧面展开图的圆心角为,则该圆锥的高为( )A.B.C.D.42.若水平放置的四边形按“斜二测画法”得到如图所示的直观图,其中,,,,则原四边形中的长度为( )A.B.C.2D.3.如图,古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.相传这个图形表达了阿基米德最引以为豪的发现.记图中圆柱的体积为,表面积为,球的体积为,表面积为,则下列说法正确的是( )A.B.C.D.4.已知,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①如果,,,,那么;②如果,,那么;③如果,,,那么;④如果,,,那么.其中正确命题的个数有( )A.4 个B.3 个C.2 个D.1 个5.梯形ABCD中,,∠ABC=90°,AD=1,BC=2,∠DCB=60°,在平面ABCD内过点C作l⊥CB以l所在直线为轴旋转一周,则该旋转体的表面积为( )A.B.C.D.6.如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,G分别为所在棱的中点,则下列结论中正确的序号是( )①三棱锥D1﹣EFG的体积为;②BD1∥平面EFG;③BD1∥EG;④AB1⊥EG. A.③④B.①②④C.②③④D.①③7.直三棱柱中,,,则与平面所成的角为( )A.B.C.D.8.在棱长为1的正方体ABCD﹣A1B1C1D1中,点M,N分别是棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动.若平面AMN,则P A1的最小值是( )A.1B.C.D.二、多选题9.如图是一个正方体的展开图,如果将它还原为正方体,则下列说法中正确的是( )A .直线与直线共面B.直线与直线异面C .直线与直线共面D.直线与直线异面10.高空走钢丝是杂技的一种,渊源于古代百戏的走索,演员手拿一根平衡杆,在一根两头拴住的钢丝上来回走动,并表演各种动作.在表演时,假定演员手中的平衡杆是笔直的,水平地面内一定存在直线与演员手中的平衡杆所在直线( )A.垂直B.相交C.异面D.平行11.在长方体中,O为与的交点,若,则( )A.B.C.三棱锥的体积为D.二面角的大小为12.攒尖是我国古代建筑中屋顶的一种结构形式,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,多见于亭阁式建筑、园林建筑下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30°,侧棱长为米,则该正四棱锥的( )A.底面边长为6米B.侧棱与底面所成角的余弦值为C.侧面积为平方米D.体积为立方米三、填空题13.如图,某几何体由共底面的圆锥和圆柱组合而成,且圆柱的两个底面圆周和圆锥的顶点均在体积为的球面上,若圆柱的高为2,则圆锥的侧面积为______.14.《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,平面,,,三棱锥的四个顶点都在球O的球面上,则球O的体积为___________15.在正四面体ABCD中,E为BC的中点,则异面直线AE与CD所成角的余弦值为_ __________.16.如图,在正方体中,E为的中点,F为正方体棱的中点,则满足条件直线平面的点F的个数是___________.四、解答题17.如图,四棱锥中,底面为边长为2的菱形且对角线与交于点O,底面,点E是的中点.(1)求证:∥平面;(2)若三棱锥的体积为,求的长.18.如图,已知四棱锥的底面是直角梯形,,,,,.(1)若为侧棱的中点,求证:平面;(2)求三棱锥的体积.19.如图,在棱长为的正方体中,、分别为棱、的中点.(1)证明:平面平面;(2)求异面直线与所成角的余弦值.20.如图,直三棱柱的体积为4,的面积为.(1)求到平面的距离;(2)设D为的中点,,平面平面,求线段BC的长度.21.在等腰梯形(图1)中,,是底边上的两个点,且.将和分别沿折起,使点重合于点,得到四棱锥(图2).已知分别是的中点.(1)证明:平面.(2)证明:平面.(3)求二面角的正切值.22.如图,垂直于⊙所在的平面,为⊙的直径,,,,,点为线段上一动点.(1)证明:平面AEF⊥平面PBC;(2)当点F与C点重合,求 PB与平面AEF所成角的正弦值.一、单选题23.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )A.B.C.D.24.已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )A.B.C.D.25.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )A.B.C.D.26.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )A.B.C.D.二、多选题27.如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )A.B.C.D.28.已知正方体,则( )A.直线与所成的角为B.直线与所成的角为C.直线与平面所成的角为D.直线与平面ABCD所成的角为三、填空题29.已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________. 30.已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.31.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是 ____ cm3.四、解答题32.如图,四面体中,,E为AC的中点.(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.参考答案:1.C【分析】由扇形弧长公式求圆锥的母线长,再根据圆锥的母线、高和底面半径的关系求高.【详解】因为底面半径,所以母线长,所以圆锥的高.故选:C2.B【分析】过点作,垂足为,求出直观图中的长度即得解.【详解】解:过点作,垂足为.因为,,,;,所以原四边形中的长度为2.故选:B3.B【分析】根据已知条件得出球的直径恰好与圆柱的高相等,设球的半径为r,进而分别表示出圆柱的体积为,表面积为,球的体积为,表面积为,进而求出.【详解】由已知条件,设球的半径为r,可知圆柱的底面半径为r,圆柱的高为2r,则圆柱的表面积,体积,球表面积,答案第1页,共2页体积,.故选:B.4.D【分析】根据空间中线线、线面、面面的位置关系一一判断即可.【详解】解:对于①如果,,,,那么或与相交,故①错误;对于②如果,,由线面垂直的性质可知,故②正确;对于③如果,,,那么或或与相交(不垂直)或与异面(不垂直),故③错误;对于④如果,,,那么或与相交(不垂直),当且仅当,,,,那么,故④错误.故选:D5.B【分析】旋转体为圆柱去去掉一个圆锥,计算圆柱的高和圆锥的底面半径和母线长,分别计算各面的面积,得出表面积.【详解】解:旋转体为圆柱去去掉一个圆锥,过作于,则,,,,圆锥的底面半径为,圆柱的底面半径为,圆柱和圆锥的高均为,圆锥的母线为,几何体的表面积为.故选:B.6.B【分析】利用等积法处理①,用面面平行得到线面平行处理②,用平行的传递性处理③,利用线面垂直得到线线垂直处理④.【详解】对于①,由等体积法可得:,故正确;对于②,连接,由面面平行的判定易得平面平面,由平面与平面平行的性质可得平面,故正确;对于③,如下图,连接,取的中点,连接,则,若,则,矛盾,故错误;对于④,由题意,,,可得平面,又平面,可得,故正确.故选:B.7.A【分析】将直三棱柱补全为正方体,根据正方体性质、线面垂直的判定可得面,由线面角的定义找到与平面所成角的平面角,进而求其大小.【详解】由题意,将直三棱柱补全为如下图示的正方体,为上底面对角线交点,所以,而面,面,故,又,面,故面,则与平面所成角为,若,所以,,则,故.故选:A8.C【分析】由平面,可以找到点在右侧面的运动轨迹,从而求出的最小值【详解】如图所示,取的中点,的中点,连接,因为分别是棱 的中点,所以,,又因为,,,所以平面平面,平面,且点在右侧面,所以点的轨迹是,且,,所以当点位于中点处时,最小,此时,.故选:C9.ACD【分析】作出正方体的直观图,逐项判断可得出合适的选项.【详解】如图,点与点重合,则与相交,故A正确;在正方体中,且,故四边形为平行四边形,,则、共面,故B错误;因为,故、共面,故C正确;由图可知,、不在同一个平面,且、既不平行也不相交,、为异面直线,故D正确.故选:ACD.10.AC【分析】对直线l与平面的任何位置关系,平面内均存在直线与直线l垂直;平衡杆所在直线与水平地面的位置关系:平行或相交,根据线面关系可知:若直线与平面平行,则该直线与平面内的直线的位置关系:平行或异面若直线与平面相交,则该直线与平面内的直线的位置关系:相交或异面;理解判断.【详解】根据题意可得:对直线l与平面的任何位置关系,平面内均存在直线与直线l垂直,A正确;平衡杆所在直线与水平地面的位置关系:平行或相交根据线面关系可知:若直线与平面平行,则该直线与平面内的直线的位置关系:平行或异面若直线与平面相交,则该直线与平面内的直线的位置关系:相交或异面C正确;B、D错误;故选:AC.11.BCD【分析】由题意,根据长方体的结合性质,结合线面垂直判定定理以及二面角的平面角定义和三棱锥的体积公式,可得答案.【详解】连接.因为,所以,又易证平面,所以,所以,所以为二面角的一个平面角.在中,,因为在中,,,所以,所以二面角的大小为..故选:BCD.12.AD【分析】画出几何体的直观图,结合已知条件求得棱锥的底面边长,逐项求解,即可得到答案.【详解】对A,如图所示,在正四棱锥中,为正方形的中心,且,设底面边长为,正四棱锥的侧面与底面所成的二面角为,所以,则,在直角中,可得,即,解得,所以正四棱锥的底面边长为,所以A正确;对B,因为平面,所以为侧棱与底面所成的角,在直角中,可得,所以B错误;对C,正四棱锥的侧面积为平方米,所以C错误;对D,正四棱锥的体积为立方米,所以D正确.故选:AD.13.【分析】根据题意画出该几何体的轴截面,如图,设是球心,是圆锥的顶点,是圆锥的母线,求出球的半径,从而可求出,进而可求得圆锥的侧面积.【详解】其中,是球心,是圆锥的顶点,是圆锥的母线,由题意可知,解得,由于圆柱的高为2,,,,母线,∴圆锥的侧面积为.故答案为:14.【分析】根据题意,得到为球的直径,求得的长,得到球的半径,进而求得球的体积,得到答案.【详解】如图所示,取的中点,根据直角三角形的性质,可得,所以为球的直径,且,可得球的半径为,所以球的体积为.故答案为:.15.##【分析】取BD的中点F,作出异面直线AE与CD所成的角,再利用三角形计算作答.【详解】在正四面体ABCD中,取BD的中点F,连接,如图,设,因E为BC的中点,则,,即有是异面直线AE与CD所成的角或其补角,而,在等腰中,,所以异面直线AE与CD所成角的余弦值为.故答案为:16.【分析】为了得到直线平面,只需求得平面平面,即平面内的任意一条直线都与平面平行,进而求得点的个数.【详解】分别取的中点,连接,,在正方体中,,,四边形是平行四边形,,,又平面,平面,平面,同理平面,又,平面,平面,平面平面,平面内的任意一条直线都与平面平行,则满足条件直线平面的点可以是的任何一个,点F的个数是个.故答案为:.17.(1)证明见解析(2)【分析】(1)由中位线证得,即可证得∥平面;(2)取中点F,证得平面,再由结合棱锥的体积公式即可求解.【详解】(1)证明:连接.∵点O,E分别为的中点,∴,∵平面平面,∴∥平面;(2)取中点F,连接.∵E为中点,∴为的中位线,∴,且.由菱形的性质知,为边长为2的等边三角形.又平面,∴平面,,点E是的中点,∴,∴.18.(1)证明见解析(2)【分析】(1)取的中点,通过,即可证明平面;(2)利用等积法,即求解即可【详解】(1)取的中点,连接,,在中,,在梯形中,,∴,,∴四边形是平行四边形,∴,而平面,平面,∴平面;(2)∵,,而∴平面,即为三棱锥的高,因为,,所以,又,所以19.(1)证明见解析(2)【分析】(1)证明出平面,平面,再利用面面平行的判定定理可证得结论成立;(2)分析可知异面直线与所成角为或其补角,计算出的三边边长,利用余弦定理可求得结果.【详解】(1)证明:连接,因为四边形为平行四边形,则且,、分别为、的中点,则且,所以,四边形为平行四边形,则且,因为且,且,故四边形为平行四边形,所以,,平面,平面,平面,同理可证且,所以,四边形为平行四边形,所以,,平面,平面,平面,,所以,平面平面.(2)解:,所以,异面直线与所成角为或其补角,在中,,,由余弦定理可得,所以,异面直线与所成角的余弦值为.20.(1)到平面的距离为(2)线段BC的长为2【分析】(1)利用体积法可求点到平面的距离;(2)利用面面垂直,线面垂直得线线垂直,最后利用的面积为即可求得线段BC的长.【详解】(1)解:由直三棱柱的体积为4,可得,设到平面的距离为,由,,,解得.即到平面的距离为;(2)解:连接交于点由直三棱柱,故四边形为正方形,,又平面平面,平面平面,平面,,由直三棱柱知平面,,又,平面,,,,又,解得,则线段BC的长为2.21.(1)证明见解析;(2)证明见解析;(3).【分析】(1)由题可得四边形是平行四边形,然后利用线面平行的判定定理即得;(2)利用线面垂直的判定定理可得平面,进而即得;(3)过点作,由题可得是二面角的平面角,结合条件即得.【详解】(1)由题意可得,在等腰梯形中,,在中,因为,所以,四边形为正方形.在四棱锥中,连接,因为分别是的中点,所以,且,在正方形中,因为是的中点,所以,且,所以,且,∴四边形是平行四边形,,因为平面,平面,所以平面;(2)由(1)知,在中,,因为为的中点,所以,在等腰梯形中,,所以在四棱锥中,,因为, 平面,平面,所以平面,因为平面,所以,又因为,,平面,平面,所以平面;(3)在中,过点作,垂足为,连接,由(2)知平面,平面,所以,因为,平面,平面,所以平面,平面,∴,故是二面角的平面角,由(1)知,在四棱锥中,,设,则,在中,,所以,在中,,故二面角的正切值为.22.(1)证明见解析(2)【分析】(1)由垂直于⊙所在的平面,可得,再由圆的性质可得,则由线面垂直的判定可得平面,则,从而平面,进而由面面垂直的判定可证得结论,(2)过点作∥交于点,则,设点到平面的距离为,利用可求出,然后由可求得结果.【详解】(1)证明:因为垂直于⊙所在的平面,即平面,平面,所以,又为⊙的直径,所以,因为,所以平面,又平面,所以,因为,所以平面,又平面,所以平面平面.(2)因为,,所以,又,所以,由,得,如图,过点作∥交于点,则,可得,又,所以,所以,设点到平面的距离为,由,可得,所以解得,所以当点移动到点时,与平面所成角的正弦值为.23.C【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.24.A【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A.25.C【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,所以,又,则,所以,所以甲圆锥的高,乙圆锥的高,所以.故选:C.26.C【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,[方法一]:导数法设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.[方法二]:基本不等式法由方法一故所以当且仅当取到,当时,得,则当时,球心在正四棱锥高线上,此时,,正四棱锥体积,故该正四棱锥体积的取值范围是27.CD【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.【详解】设,因为平面,,则,,连接交于点,连接,易得,又平面,平面,则,又,平面,则平面,又,过作于,易得四边形为矩形,则,则,,,则,,,则,则,,,故A、B错误;C、D正确.故选:CD.28.ABD【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,因为四边形为正方形,则,故直线与所成的角为,A正确;连接,因为平面,平面,则,因为,,所以平面,又平面,所以,故B正确;连接,设,连接,因为平面,平面,则,因为,,所以平面,所以为直线与平面所成的角,设正方体棱长为,则,,,所以,直线与平面所成的角为,故C错误;因为平面,所以为直线与平面所成的角,易得,故D正确.故选:ABD29.【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵∴∴∴.故答案为:.30..【分析】根据已知条件易得,侧面,可得侧面与球面的交线上的点到的距离为,可得侧面与球面的交线是扇形的弧,再根据弧长公式可求得结果.【详解】如图:取的中点为,的中点为,的中点为,因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为:.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.31.【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为圆柱体积为所求几何体体积为故答案为:【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题. 32.(1)证明详见解析(2)【分析】(1)通过证明平面来证得平面平面.(2)首先判断出三角形的面积最小时点的位置,然后求得到平面的距离,从而求得三棱锥的体积.【详解】(1)由于,是的中点,所以.由于,所以,所以,故,由于,平面,所以平面,由于平面,所以平面平面.(2)[方法一]:判别几何关系依题意,,三角形是等边三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以当最短时,三角形的面积最小过作,垂足为,在中,,解得,所以,所以过作,垂足为,则,所以平面,且,所以,所以.[方法二]:等体积转换,,是边长为2的等边三角形,连接。
高中数学必修2立体几何模块测试卷(含参考答案)

高中数学立体几何测试题(理科)一、选择题:1.下列说法不正确的是A 圆柱的侧面展开图是一个矩形B 圆锥中过轴的截面是一个等腰三角形C 直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥D 圆台平行于底面的截面是圆面2、下面表述正确的是A、空间任意三点确定一个平面B、分别在不同的三条直线上的三点确定一个平面C、直线上的两点和直线外的一点确定一个平面D、不共线的四点确定一个平面3、“a、b是异面直线”是指①a∩b=∅,且a和b不平行;②a⊂平面α,b⊂平面β,且α∩β=∅;③a⊂平面α,b⊂平面β,且a∩b=∅;④a⊂平面α,b ⊄平面α;⑤不存在平面α,使得a⊂平面α,且b⊂平面α都成立。
上述说法正确的是A ①④⑤B ①③④C ②④D ①⑤4、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是A、垂直B、平行C、相交不垂直D、不确定5、下列命题中正确命题的个数是①一条直线和另一条直线平行,那么它和经过另一条直线的任何平面平行;②一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;③若直线与平面不平行,则直线与平面内任一直线都不平行;④与一平面内无数条直线都平行的直线必与此平面平行。
A 、0B 、1C 、2D 、36、一条直线若同时平行于两个相交平面,则这条直线与这两个平面交线的位置关系是A 、异面B 、相交C 、平行D 、不确定 7、直线a 与b 垂直,b 又垂直于平面α,则a 与α的位置关系是A 、a α⊥B 、//a αC 、a α⊆D 、a α⊆或//a α 8、如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是A 、平行B 、相交C 、平行或相交D 、无法确定 9.已知二面角α-AB -β为︒30,P 是平面α内的一点,P 到β的距离为1.则P 在β内的射影到AB 的距离为( ). A .23B .3C .43 D .2110、若,m n 表示直线,α表示平面,则下列命题中,正确命题的个数为 ①//m n n m αα⎫⇒⊥⎬⊥⎭;②//m m n n αα⊥⎫⇒⎬⊥⎭;③//m m n n αα⊥⎫⇒⊥⎬⎭;④//m n m n αα⎫⇒⊥⎬⊥⎭A 、1个B 、2个C 、3个D 、4个 二、填空题:11、三条两两相交的直线可确定12.水平放置的△ABC 的斜二测直观图如图所示,已知A′C′=3,B′C′=2。
高中数学立体几何测试题(10套)

∴ BD ∥平面 PMN ,
位置关系为
平行
。
∴ O 到平面 PMN 的距离即为 BD 到平面 PMN 的距离。
11 、a,b 为异面直线,且 a,b 所成角为 40 °,直线 c 与 a,b 均异面,且所成角均为
∵ BD ⊥ AC , MN ∥ BD
∵ PA⊥面 ABCD
θ,若这样的 c 共有四条,则 θ的范围为 (70 °, 90° ) 。
D
C
A
B
D1 A1
C1 B1
17 、 已知异面直线 a, b 的公垂线段 AB 的中点为 O,平面 满足 a∥ , b∥ , 且 O , M 、 N 是 a, b 上的任意两点, MN ∩ = P,求证: P 是 MN 的中
点
A aM
O
P
BN b
.
立几面测试 001
参考答 案
一、 1- 8 ACDDBDBA
2、已知 m, n 为异面直线, m∥平面 , n∥平面 , ∩ =l ,则 l( ) ( A)与 m, n 都相交 ( B)与 m,n 中至少一条相交 ( C)与 m, n 都不相交 ( D )与 m, n 中一条相交
3、已知 a, b 是两条相交直线, a∥ ,则 b 与 的位置关系是 ( )
A 、 b∥
PAM
∵ AB=2 , BM=1 , CM=1
∴ AM= 5 ,
P
A H
O
.
B
F M
B
D N C
立几面测试 003
一、选择题
1.异面直线是指
(A) 在空间内不能相交的两条直线
(B) 分别位于两个不同平面的两条直线
(C) 某一个平面内的一条直线和这个平面外的一条直线
必修第8章 立体几何初步单元测试(考试版)

…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前第八单元 立体几何初步单元测试卷高一数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教必修二2019第八单元 立体几何初步。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2022·辽宁朝阳·高二开学考试)若m ,n ,l 为空间三条不同的直线,,,αβγ为空间三个不同的平面,则下列为真命题的是( ) A .若,m l n l ⊥⊥,则m n ∥ B .若,m m αβ∥∥,则αβ∥C .若,αγβγ⊥⊥,则αβ∥D .若,,m n m n αβ⊥⊥∥,则αβ∥2.(2022·河北张家口·一模)下图是战国时期的一个铜镞,其由两部分组成,前段是高为2cm 、底面边长为1cm 的正三棱锥,后段是高为0.6cm 的圆柱,圆柱底面圆与正三棱锥底面的正三角形内切,则此铜镞的体积约为( )A .30.25cmB .30.65cmC .30.15cmD .30.45cm3.(2021·陕西·西安市远东一中高一期末)如图,在正四棱柱1111ABCD A B C D -中,122AA AD ==,点E 为棱1BB 的中点,过A ,E ,1C 三点的平面截正四棱柱1111ABCD A B C D -所得的截面面积为( )A .2B .22C .23D 34.(2022·北京市第一六一中学高三阶段练习)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则该球的半径为( )A .5cmB .6cmC .7cmD .8cm5.(2021·江苏苏州·高三阶段练习)用一平面截圆柱,得到如图所示的几何体,截面椭圆的长轴两端点到底面的距离分别为3和5,圆柱的底面直径为4,则该几何体的体积为( )A .16πB .32πC .8πD .64π6.(2022·云南昭通·高三阶段练习(文))如图所示,在正方体1111-ABCD A B C D 中,点F 是棱1AA 上的一个…○………………内………………○………………装………………○………………订………………○………………线………………○……………○………………外………………○………………装………………○………………订………………○………………线………………○…………… 学校:______________姓名:_____________班级:_______________考号:______________________动点,平面1BFD 交棱1CC 于点E ,则下列命题中假命题是( )A .存在点F ,使得11A C ∥平面1BED FB .存在点F ,使得1B D ∥平面1BED FC .对于任意的点F ,四边形1BED F 均为平行四边形 D .对于任意的点F ,三棱锥11F BB D -的体积均不变7.(2022·云南师大附中高三阶段练习(理))如图,在矩形ABCD 中,2,2AB BC ==,E 为BC 中点,把ABE △和CDE △分别沿,AE DE 折起,使点B 与点C 重合于点P ,若三棱锥P ADE -的四个顶点都在球O的球面上,则球O 的表面积为( )A .3πB .4πC .5πD .9π8.(2022·河南·模拟预测(理))已知球面被平面所截得的部分叫做球冠,垂直于截面的直径被截得的一段叫做球冠的高,若球的半径是R ,球冠的高是h ,则球冠的面积为2πRh .某机械零件的结构是在一个圆台的底部嵌入一颗小球,其正视图和侧视图均如图所示,已知圆台的任意母线均与小球的表面相切,则小球突出圆台部分的球冠面积为( )A .25πB .253πC 253D .1003π 二、多项选择题:(本题共4小题,每小题5分,共20分。
高中数学单元测试卷集精选---立体几何10

立几面测试010一、选择题(本题每小题5分,共60分)1.空间三条直线互相平行,由每两条平行线确定一个平面,则可确定平面的个数为( ) A .3 B .1或2 C .1或3 D .2或32如果a 和b 是异面直线,直线a ∥c ,那么直线b 与c 的位置关系是 A .相交 B .异面 C .平行D .相交或异面3.下列命题中正确的是 ( )A .若平面M 外的两条直线在平面M 内的射影为一条直线及此直线外的一个点,则这两条直线互为异面直线B .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线相交C .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线平行D .若平面M 外的两条直线在平面M 内的射影为两条互相垂直的直线,则这两条直线垂直4.在正方体A 1B 1C 1D 1—ABCD 中,AC 与B 1D 所成的角的大小为 ( )A .6πC .3πD .2π5.相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的射影所成的角是 ( )A . 90°B .45°C .60°D .30°6.如图:正四面体S -ABC 中,如果E ,F 分别是SC,AB 的中点, 那么异面直线EF 与SA 所成的角等于 ( )A .60°B . 90°C .45°D .30 7.PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°, 那么直线PC 与平面PAB 所成角的余弦值是 ( )SE F CABA .33B .22 C .36D .218.Rt △ABC 中,∠B =90°,∠C =30°,D 是BC 的中点,AC=2,DE ⊥平面ABC ,且DE =1,则点E 到斜边AC 的距离是 ( ) A .25B .211 C .27 D .419 9.如图,PA ⊥矩形ABCD,下列结论中不正确的是( )A . PD ⊥BDB .PD ⊥CDC .PB ⊥BCD .PA ⊥BD10.若a , b 表示两条直线,α表示平面,下面命题中正确的是 ( ) A .若a ⊥α, a ⊥b ,则b //α B .若a //α, a ⊥b ,则b ⊥α C .若a ⊥α,b ⊂α,则a ⊥bD .若a //α, b //α,则a //b10.如图,是一个无盖正方体盒子的表面展开图,A 、B 、C 为其上的三个点,则在正方体盒子中,∠ABC 等于( )A .45°B .60°C .90°D .120° 12.如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为21θθ和,则 ( ) A .1sin sin 2212≥+θθ B .1sin sin 2212≤+θθ C .1sin sin 2212>+θθ D .1sin sin 2212<+θθAP D BCO二、填空题(本题每小题4分,共16分) 13.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =3,AA 1=4,则异面直线AB 1与 A 1D 所成的角的余弦值为 .14.已知△ABC ,点P 是平面ABC 外一点,点O 是点P 在平面ABC 上的射影,(1)若点P 到△ABC 的三个顶点的距离相等,那么O 点一定是△ABC 的 ;(2)若点P 到△ABC 的三边所在直线的距离相等且O 点在△ABC 内,那么O 点一定是△ABC 的 .15.如果平面α外的一条直线a 与α内的两条直线垂直,那么a 与α位置关系是16.A ,B 两点到平面α的距离分别是3cm ,5cm ,M 点是AB 的中点,则M 点到平面的距离是 三、解答题:(本大题满分74).18、(12分)如图,在正方体1111ABCD A B C D -中,E是1AA 的中点,求证:1//A C 平面BDE .19.(12分)AB 是⊙O 的直径,C 为圆上一点,AB =2,AC =1,P 为⊙O 所在平面外一点,且PA ⊥⊙O , PB 与平面所成角为45(1)证明:BC ⊥平面PAC ;A 1ED 1C 1B 1DCBAB(2)求点A 到平面PBC 的距离.20。
高一数学立体几何单元测试及答案

立体几何综合测评(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题,其中是真命题的为()(1)若两个平面平行,那么其中一个平面内的直线一定平行于另一个平面;(2)若两个平面平行,那么垂直于其中一个平面的直线一定垂直于另一个平面;(3)若两个平面垂直,那么垂直于其中一个平面的直线一定平行于另一个平面;(4)若两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面.A.(1)(2)B.(1)(3)C.(2)(4) D.(3)(4)A[(1)因为两个平面平行,所以两个平面没有公共点,即其中一个平面内的直线与另一个平面也没有公共点,所以(1)正确.(2)因为该直线与其中一个平面垂直,那么该直线必与其中两条相交直线垂直,又两个平面平行,故另一个平面也必定存在两条相交直线与该直线垂直,所以该直线与另一个平面也垂直,故(2)正确.(3)错,反例:该直线可以在另一个平面内.(4)错,反例:其中一个平面内也存在直线与另一个平面平行.综上:(1)(2)为真命题.]2.给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是()A.0 B.1C.2 D.3B[①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确;②如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;③显然不正确;④不正确.因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.]3.在正方体ABCD-A1B1C1D1中,棱所在直线与直线BA1是异面直线的条数为()A.4 B.5C.6 D.7C[如图,在正方体ABCD-A1B1C1D1中,与直线BA1异面的直线有CD,C1D1,C1C,D1D,B1C1,AD,共6条,故选C.]4.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥βB[对于A,若l∥α,l∥β,则α和β可能平行也可能相交,故错误;对于B,若l⊥α,l⊥β,则α∥β,故正确;对于C,若l⊥α,l∥β,则α⊥β,故错误;对于D,若α⊥β,l∥α,则l与β的位置关系有三种可能:l⊥β,l∥β,lβ,故错误.故选B.] 5.如图,已知P A⊥矩形ABCD所在的平面,则图中互相垂直的平面有()A.1对B.2对C.3对D.5对D[∵DA⊥AB,DA⊥P A,∴DA⊥平面P AB.同理BC⊥平面P AB,又AB⊥平面P AD,∴DC⊥平面P AD,∴平面P AD⊥平面AC,平面P AB⊥平面AC,平面PBC⊥平面P AB,平面P AB⊥平面P AD,平面PDC⊥平面P AD,共5对.]6.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是()A.异面B.平行C.垂直D.不确定C[∵BA⊥α,α∩β=l,lα,∴BA⊥l.同理BC⊥l.又BA∩BC=B,∴l⊥平面ABC.∵AC平面ABC,∴l⊥AC.]7.下列命题中正确的是()A.将正方形旋转不可能形成圆柱B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.通过圆台侧面上一点,有无数条母线C[将正方形绕其一边所在直线旋转可以形成圆柱,所以A错误;B中必须以垂直于底边的腰为轴旋转才能得到圆台,所以B错误;通过圆台侧面上一点,只有一条母线,所以D错误,故选C.] 8.如图所示的组合体,其构成形式是()A.左边是三棱台,右边是圆柱B.左边是三棱柱,右边是圆柱C.左边是三棱台,右边是长方体D.左边是三棱柱,右边是长方体D[根据三棱柱和长方体的结构特征,可知此组合体左边是三棱柱,右边是长方体.]9.设长方体的长,宽,高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为() A.3πa2B.6πa2C.12πa2D.24πa2B[由题可知,球的直径等于长方体的体对角线的长度,故2R=4a2+a2+a2,解得R=62a,所求球的表面积S=4πR2=6πa2.]10.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2 B.73πa2C.113πa2D.5πa2B[由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a.如图,P为三棱柱上底面的中心,O为球心,易知AP=23×32a=33a,OP=12a,所以球的半径R=OA满足R2=⎝⎛⎭⎪⎫33a2+⎝⎛⎭⎪⎫12a2=7 12a 2,故S球=4πR2=73πa2.]11.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310C[如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径为R =OA =62+⎝ ⎛⎭⎪⎫522=132.]12.已知l ,m 表示两条不同的直线,α表示平面,则下列说法正确的是( ) A .若l ⊥α,m α,则l ⊥mB .若l ⊥m ,m α,则l ⊥αC .若l ∥m ,m α,则l ∥αD .若l ∥α,m α,则l ∥m A [对于A ,若l ⊥α,m α,则根据直线与平面垂直的性质,知l ⊥m ,故A 正确;对于B ,若l ⊥m ,m α,则l 可能在α内,故B 不正确;对于C ,若l ∥m ,m α,则l ∥α或l α,故C 不正确;对于D ,若l ∥α,m α,则l 与m 可能平行,也可能异面,故D 不正确.故选A.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知正六棱柱的侧面积为72 cm 2,高为6 cm ,那么它的体积为__________cm 3. 363 [设正六棱柱的底面边长为x cm ,由题意得6x ·6=72,所以x =2 cm , 于是其体积V =34×22×6×6=36 3 cm 3.]14.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角的度数为________. 180° [S 底+S 侧=3S 底,2S 底=S 侧,即2πr 2=πrl ,得2r =l . 设侧面展开图的圆心角为θ,则θπl 180°=2πr ,∴θ=180°.]15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C1MN等于________.90°[∵B1C1⊥平面A1ABB1,MN平面A1ABB1,∴B1C1⊥MN.又∠B1MN为直角,∴B1M⊥MN.而B1M∩B1C1=B1,∴MN⊥平面MB1C1.又MC1平面MB1C1,∴MN⊥MC1,∴∠C1MN=90°.]16.棱长为1的正四面体内有一点P,由点P向各个面引垂线,垂线段分别为d1,d2,d3,d4,则d 1+d 2+d 3+d 4的值为________.63 [设四面体的高为h ,则h =12-⎝ ⎛⎭⎪⎫23×32×12=63,13Sh =13S (d 1+d 2+d 3+d 4),∴d 1+d 2+d 3+d 4=h =63.]B三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连结A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′BC ′D 的体积.[解] (1)∵ABCD -A ′B ′C ′D ′是正方体, ∴六个面是互相全等的正方形,∴A ′C ′=A ′B =A ′D =BC ′=BD =C ′D =2a ,∴S 三棱锥=4×34×(2a )2=23a 2,S 正方体=6a 2, ∴S 三棱锥S 正方体=33. (2)显然,三棱锥A ′ABD ,C ′BCD ,D A ′D ′C ′, B A ′B ′C ′是完全一样的, ∴V 三棱锥A ′BC ′D =V 正方体-4V 三棱锥A ′ABD =a 3-4×13×12a 2×a =13a 3.18.(本小题满分12分)如图,在三棱锥A -BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 所以EF ∥AB .又因为EF 平面ABC ,AB 平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD , 平面ABD ∩平面BCD =BD , BC 平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD 平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB 平面ABC ,BC 平面ABC , 所以AD ⊥平面ABC . 又因为AC 平面ABC , 所以AD ⊥AC .19.(本小题满分12分)如图,圆锥的轴截面SAB 为等腰直角三角形,Q 为底面圆周上一点.(1)若QB的中点为C,求证:平面SOC⊥平面SBQ;(2)若∠AOQ=120°,QB=3,求圆锥的表面积.[解](1)证明:∵SQ=SB,OQ=OB,C为QB的中点,∴QB⊥SC,QB⊥OC.∵SC∩OC=C,∴QB⊥平面SOC.又∵QB平面SBQ,∴平面SOC⊥平面SBQ.(2)∵∠AOQ=120°,QB=3,∴∠BOQ=60°,即△OBQ为等边三角形,∴OB= 3.∵△SAB为等腰直角三角形,∴SB=6,∴S侧=3·6π=32π,∴S表=S侧+S底=32π+3π=(3+32)π.20.(本小题满分12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥平面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.[解](1)证明:连结OE,如图所示.∵O,E分别为AC,PC的中点,∴OE∥P A.∵OE平面BDE,P A平面BDE,∴P A∥平面BDE. (2)证明:∵PO⊥平面ABCD,∴PO⊥BD.在正方形ABCD中,BD⊥AC.又∵PO∩AC=O,∴BD⊥平面P AC.又∵BD平面BDE,∴平面P AC⊥平面BDE.(3)取OC 中点F ,连结EF .∵E 为PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO .又∵PO ⊥平面ABCD ,∴EF ⊥平面ABCD ,∴EF ⊥BD .∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥平面EFO ,∴OE ⊥BD ,∴∠EOF 为二面角E -BD -C 的平面角,∴∠EOF =30°.在Rt △OEF 中,OF =12OC =14AC =24a ,∴EF =OF ·tan 30°=612a ,∴OP =2EF =66a .∴V P ABCD =13×a 2×66a =618a 3.21.(本小题满分12分)如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PM MC 的值.[解] (1)由题设AB =1,AC =2,∠BAC =60°,可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高.又P A =1,所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明:在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM . 由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN .又BM 平面MBN ,所以AC ⊥BM . 在直角△BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32.由MN ∥P A ,得PM MC =AN NC =13.22.(本小题满分12分)如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1) (2)(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ.说明理由.这样的设问该怎么回答?[解](1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE平面A1CB,BC平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC,而A1F平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,∵BE平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,连接PQ,QE,则PQ∥BC.又∵DE∥BC,∴DE∥PQ,∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(A1B的中点),使得A1C⊥平面DEQ.。
立体几何单元测试卷

立体几何单元测试卷一、单选题1.设α,β为不重合的平面,m,n 为不重合的直线,则下列命题正确的是( ) A .若,,则B .若,则C .若,则D .若,则2.如图,在四面体中,若直线和相交,则它们的交点一定( )A .在直线上B .在直线上C .在直线上D .都不对3.在矩形ABCD 中,若AB =3,BC =4,P A ⊥平面AC ,且P A =1,则点P 到对角线BD 的距离为( )A B .135C .175D .54.四面体中,棱两两互相垂直,则顶点在底面上的正投影为的( )A .垂心B .重心C .外心D .内心5.如图,长方体ABCD—A1B1C1D1中,∠DAD1=,∠CDC1=,那么异面直线AD1与DC1所成角的余弦值是()A.B.C.D.6.在三棱锥中,平面,已知,则二面角的平面角是()A.B.C.D.7.如图,在三棱柱ABC-A′B′C′中,点E、F、H、K分别为AC′、CB′、A′B、B′C′的中点,G为△ABC的重心,从K、H、G、B′中取一点作为P,使得该三棱柱恰有2条棱与平面PEF平行,则点P为( )A.K B.H C.G D.B′8.如图,α⊥β,α∩β=l,A∈α,B∈β,A、B到l的距离分别是a和b,AB与α、β所成的角分别是θ和φ,AB在α、β内的射影长分别是m和n,若a>b,则( )A.θ>φ,m>n B.θ>φ,m<nC .θ<φ,m <nD .θ<φ,m >n9.点P 在正方体侧面BCC 1B 1及其边界上运动,并且保持AP ⊥BD 1,则点P 的轨迹为 ( )A .线段B 1CB .BB 1的中点与CC 1的中点连成的线段 C .线段BC 1D .BC 的中点与B 1C 1的中点连成的线段 10.设是异面直线,则以下四个命题:①存在分别经过直线和的两个互相垂直的平面;②存在分别经过直线和的两个平行平面;③经过直线有且只有一个平面垂直于直线;④经过直线有且只有一个平面平行于直线,其中正确的个数有( ) A . B . C . D .二、填空题11.如图所示,在直三棱柱11A B C A BC -中,底面是ABC ∠ 为直角的等腰直角三角形, 12,3,AC a BB a D == 是11A C 的中点,点F 在线段1AA 上,当AF = ________时, CF ⊥ 平面1B DF .12.如图,在四面体A -BCD 中,已知棱AC ,其余各棱长都为1,则二面角A -CD -B 的平面角的余弦值为________.13.已知四棱锥P ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的序号)14.如图所示,在正方体1111ABCD A B C D -中,M N ,分别是棱1AA 和AB 上的点,若1B MN ∠是直角,则1C MN ∠=________.15.在正四面体中,分别是和的中点,则异面直线和所成角为__________.16.平行六面体ABCD -A 1B 1C 1D 1中,已知底面四边形ABCD 为矩形,∠A 1AB =∠A 1AD =3π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一2011-2012学年度单元测试题数 学 立体几何部分本试卷分为第Ⅰ卷(选择题)与第Ⅱ卷(必考题和选考题两部分),考生作答时请将答案答在答题纸上,答在试卷或草纸上无效,考试时间120分钟,满分150分。
参考公式:柱体体积V Sh =,其中S 为柱体底面积,h 为柱体的高。
球体体积343V R π=,其中π为圆周率,R 为球体半径。
椎体体积13V Sh =,其中S 为锥体底面积,h 为锥体的高。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列说法正确的是A.两两相交的三条直线共面B.两条异面直线在同一平面上的射影可以是一条直线C.一条直线上有两点到平面的距离相等,则这条直线和该平面平行D.不共面的四点中,任何三点不共线2.设平面α∥平面β,A ∈α,B ∈β,C 是AB 的中点,当A ,B 分别在α,β内运动时,那么所有的动点C A.不共面B.当且仅当A ,B 在两条相交直线上移动时才共面C.当且仅当A ,B 在两条给定的平行直线上移动时才共面D.不论A ,B 如何移动都共面3.若某空间几何体的三视图如图所示,则该几何体的体积是 A.2 B.1 C.23 D. 13第3题图 第4题图 4.如图所示,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 中点。
将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合于点P ,则三棱锥P -DCE 的外接球的体积为 A.43πB. 6πC. 6πD. 6π5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是A.若l ⊥m ,m ⊂α,则l ⊥αB.若l ⊥α,l ∥m ,则m ⊥αC.若l ∥α,m ⊂α,则l ∥mD.若l ∥α,m ∥α,则l ∥m 第6题图 6.如图所示,在斜三棱柱ABC -A 1B 1C 1中,∠BAC=90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在 A.直线AB 上 B.直线BC 上 C.直线AC 上 D.△ABC 内部 7.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F , 且EF=12,则下列结论中错误的是 A. AC ⊥BE B.EF ∥平面ABCDC.三棱锥A-BEF 的体积为定值D.△AEF 的面积与△BEF 的面积相等 第7题图8.已知有三个命题:①长方体中,必存在到各点距离相等的点;②长方体中,必存在到各棱距离相等的点;③长方体中,必存在到各面距离相等的点。
以上三个命题中正确的有A.0个B.1个C.2个D.3个 9.如果底面直径和高相等的圆柱的侧面积是S ,那么圆柱的体积等于 A.2S S B. 2S S π C. 4SS D. 4S S π 10.如图所示,若Ω是长方体ABCD -A 1B 1C 1D 1被平面EFGH 截去几何体B 1EF -C 1HG 后得到的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH ∥A 1D 1,则下列结论中 不正确的是A.EH ∥FGB.四边形EFGH 是矩形C.Ω是棱柱D.Ω是棱台 第10题图11.如图所示,定点A 、B 都在平面α内,定点P ∉α,PB ⊥α,C 是α内异于A 和B 的动点,且PC ⊥AC 。
那么,动点C 在平面α内的轨迹是A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点第11题图 第12题图12.如图所示,在单位正方体ABCD -A 1B 1C 1D 1的面对角线A 1B 上存在一点P ,使得AP+D 1P 最短,则AP+D 1P 的最小值为22+ B.262C.22D.2第Ⅱ卷本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须作答。
第22题~第24题为平行选考题,考生根据要求作答。
二、填空题(本大题共4小题,每小题5分)13.如图所示,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 为正方形,侧棱与底面边长均为2a , ∠A 1AD=∠A 1AB=60°,则侧棱AA 1和截面B 1D 1DB 的距离是_________14.一个几何体的三视图如图所示,已知这个几何体的体积为103h=______ 第13题图ABCA 1B 1C 1BDA 11B 1C PE第14题图 第15题图15.如图所示,在正三角形ABC 中,E 、F 分别是AB 、AC 的中点,AD ⊥BC ,EH ⊥BC ,FG ⊥BC ,D 、H 、G 为垂足,若将正三角形ABC 绕AD 旋转一周所得的圆锥的体积为V ,则其中有阴影部分所产生的旋转体的体积与V 的比是_________16.判断下列命题的正确性,并把所有正确命题的序号都填在横线上__________ ①若直线a ∥直线b ,b ⊂平面α,则直线a ∥平面α②在正方体内任意画一条线段l ,则该正方体的一个面上总存在直线与线段l 垂直 ③若平面β⊥平面α,平面γ⊥α,则平面β∥平面γ④若直线a ⊥平面α,直线b ∥平面α,则直线b ⊥直线a 三、解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)在直三棱柱ABC -A 1B 1C 1中,AB 1⊥BC 1,AB=CC 1=1,BC=2. (1)求证:A 1C 1⊥AB ;(2)求点B 1到平面ABC 1的距离.18.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD//BC ,∠ADC=90°, BC=12AD ,PA=PD ,Q 为AD 的中点. (1)求证:AD ⊥平面PBQ ;(2)若点M 在棱PC 上,设PM=tMC ,试确定t 的值,使得PA//平面BMQ .19.(本小题满分12分)如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA=AB=12PD . (1)证明:PQ ⊥平面DCQ ;(2)求棱锥Q -ABCD 的的体积与棱锥P —DCQ 的体积的比值.20.(本小题满分12分)在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD=1,底边AB 上有且只有一点M 使 得平面D 1DM ⊥平面D 1MC.(1)求异面直线CC 1与D 1M 的距离;(2)求二面角M -D 1C -D 的大小.21.(本小题满分12分)已知正四棱锥P -ABCD 的底面边长和侧棱长均为13,E 、F 分别是PA 、BD 上的点, 且85==FD BF EA PE . (1)求证:直线EF ∥平面PBC ;(2)求直线EF 与平面ABCD 所成的角;AA 1CC 1B B 1在22、23、24题中任选一题作答,如果多做,则按所做的第一题所得的分计分。
22.(本小题满分12分)已知斜三棱柱ABC -A 1B 1C 1的侧面BB 1C 1C 是边长为2的菱形, ∠B 1BC=60°, 侧面BB 1C 1C ⊥底面ABC ,∠ACB=90°,二面角A-B 1B-C 为30°. (1)求证:AC ⊥BB 1C 1C ;(2)求AB 1与平面BB 1C 1C 所成角的正切值;(3)在平面AA 1B 1B 内找一点P ,使三棱锥P-BB 1C 为正三棱锥,并求 该棱锥底面BB 1C 上的高.23.(本小题满分12分)如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;(3)求平面PMD 与平面ABCD 所成的二面角(锐角)的大小。
24.(本小题满分12分)如图,已知正三棱柱ABC —A 1B 1C 1的各棱长都为a ,P 为A 1B 上的点。
(1)试确定PB P A 1的值,使得PC ⊥AB ;(2)若321 PB P A ,求二面角P —AB —C 的大小; (3)在(2)条件下,求C 1到平面PAC 的距离高一2011-2012学年度单元测试卷数学试卷答题纸姓 名:__________ 班 级:__________ 考 场:__________ 座位号:准考证号请在各题目的答题区域内作答,超出黑色矩形边框18.(本小题满分12分)请在各题目的答题区域内作答,超出黑色矩形边框19.(本小题满分12分)用2B 铅笔填涂题号 22 23 24AA 1CC 1B B 1请在各题目的答题区域内作答,超出黑色矩形边框高一2011-2012单元检测题参考答案及评分标准一、选择题,每小题5分,选错或不选不得分二、填空题,每小题5分,第16题选错或少选都不得分 13.a 14.3 15.5816.②④ 三、解答题,考生必须写出解题步骤或证明步骤,只写答案不得分,答题前不写“解”或“证明”字样的扣一分,写了不给分,答题纸上未标注选择哪一道题选做题的不得分,答案答错区域的不得分,超出答题区域的答案不予以审批。
17.(本小题满分10分)证明:(1)连结B A 1,则11AB B A ⊥又∵11BC B A ⊥∴⊥1B A 平面11BC A ∴ 111C A AB ⊥………4分又∵111BB C A ⊥ ∴⊥11C A 平面1ABB∴AB C A ⊥11 …………………4分 (2)由(1)知AC AB ⊥ ∵1AC AB ⊥ ∵1=AB 2=BC∴3=AC 21=AC∴11=∆ABC S …………………6分 设所求距离为d ∵1111ABB C ABC B V V --=∴11113131C A S d S ABB ABC ⋅=⋅∆∆ ∴32131131⋅⋅=⋅⋅d ∴23=d …………10分 18.(本小题满分12分)证明:(Ⅰ)AD // BC ,BC =12AD ,Q 为AD 的中点, ∴ 四边形BCDQ 为平行四边形, ∴CD // BQ . ∵ ∠ADC =90° ∴∠AQB =90° 即QB ⊥AD . ∵ P A =PD ,Q 为AD 的中点, ∴PQ ⊥AD . ∵ PQ ∩BQ =Q ,∴AD ⊥平面PBQ . ……………………6分 (Ⅱ)当t=1时,P A //平面BMQ . 连接AC ,交BQ 于N ,连接MN . ∵BC12DQ , ∴四边形 BCQA 为平行四边形,且N 为AC 中点,题号 1 2 3 4 5 6 答案 D D B C B A 题号 7 8 9 10 11 12 答案DBDDBACA 1B 1C 1∵点M 是线段PC 的中点, ∴ MN // P A .∵ MN 平面BMQ ,P A 平面BMQ ,∴ P A // 平面BMQ . ……………………12分 19.(本小题满分12分)解:(I )由条件知PDAQ 为直角梯形因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD.又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC.在直角梯形PDAQ 中可得DQ=PQ=PD ,则PQ ⊥QD 所以PQ ⊥平面DCQ. ………………6分 (II )设AB=a .由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积 由(I )知PQ 为棱锥P —DCQ 的高,而PQ=,△DCQ 的面积为,所以棱锥P —DCQ 的体积为故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.…………12分 20.(本小题满分12分)证明:(1)过D 作M D DH 1⊥于H∵平面⊥DM D 1平面MC D 1且平面 DM D 1平面M D MC D 11= ∴⊥DH 平面MC D 1 ∴MC DH ⊥又∵1DD MC ⊥ ∴⊥MC 平面DM D 1 ∴DM MC ⊥…………………2分 又∵满足条件的M 只有一个∴以CD 为直径的圆必与AB 相切, 切点为M ,M 为的AB 中点 ∴AD CD =21∴2=CD ………4分 ∵⊥MC 平面DM D 1,∴M D MC 1⊥又∵MC CC ⊥1,所以MC 为异面直线1CC 与M D 1的公垂线段 CM 的长度为所求距离 2=CM …………………6分(2)取CD 中点E ,连结ME ,则⊥ME 平面CD D 1 过M 作C D MF 1⊥于F ,连结EF ,则1CD EF ⊥∴MFE ∠为二面角D C D M --1的平面角…………………9分 又∵1=ME ,530=MF 在MEF Rt ∆中630sin ==∠MF ME MFE∴630arcsin=∠MFE …………………12分BDA 11B 1C EFH21.(本小题满分12分) 证明:(1)连结AF 并延长与BC 交于G ∵ADF ∆∽GBF ∆∴85==FA GF FD BF ∴FAGFEA PE =∴EF ∥PG ………………5分 又∵⊄EF 平面PBC∴EF ∥平面PBC ……………6分(2)∵EF ∥PG∴EF 、PG 与平面ABCD 所成的角相等…………………8分 设AC 、BD 交于O ,连结PO 、OG∵ABCD PO 平面⊥,∴PGO ∠为所求的角……………9分 ∵85==AD BG FD BF ∴8513⨯=BG 在OBG ∆中17813228513221328513221322=⨯⨯⨯⨯-⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛=OG …………10分 又∵13=PA 2213=OA ∴2213=OP 在POG Rt ∆中 34174178132213tan ===∠OG PO PGO∴34174arctan =∠PGO …………………12分22.(本小题满分12分)证明:(1)∵平面⊥C C BB 11平面ABC平面 C C BB 11平面BC ABC = 又∵BC AC ⊥ ⊂AC 平面ABC ∴⊥AC 平面C C BB 11…………………4分(2)取1BB 的中点D ,则1BB CD ⊥ ∵⊥AC 平面C C BB 11 ∴1BB AD ⊥∴CDA ∠为二面角C BB A --1的平面角 ∴︒=∠30CDA ∵3=CD ∴1=AC …………………6分CA 1连结C B 1,则C AB 1∠为1AB 与平面C C BB 11所成的角 在1ACB Rt ∆中 21tan 11==∠C B AC C AB …………………8分 (3)在CD 上取一点O 使21=OC DO ,过O 作AC 的平行线与AD 交于P ,则点P 为所求 …………………10分 ∵AC ∥OP ∴⊥OP 平面C BB 1且O 是正C BB 1∆的中心 ∴C BB P 1-为正三棱锥 ∴所求高为3131==AC OP …………………12分 23.(本小题满分12分)(Ⅰ)证明:如图1,取PD 的中点E ,连EO ,EM 。