四相移相键控调制解调

合集下载

四相移相键控(QPSK)调制及解调实验

四相移相键控(QPSK)调制及解调实验

通信对抗原理实验报告实验名称:四相移相键控(QPSK)调制及解调实验学生姓名:学生学号:学生班级:所学专业:实验日期:1. 实验目的1. 掌握QPSK 调制解调原理及特性.2。

. 熟悉Matlab 仿真软件的使用。

2. 实验内容1、 编写Matlab 程序仿真QPSK 调制及相干解调。

2、 观察IQ 两路基带信号的特征及与输入NRZ 码的关系。

3、 观察IQ 调制解调过程中各信号变化。

4、 观察功率谱的变化。

5、 分析仿真中观察的数据,撰写实验报告。

3. 实验原理1、QPSK 调制原理QPSK 又叫四相绝对相移调制,它是一种正交相移键控。

QPSK 利用载波的四种不同相位来表征数字信息。

由于每一种载波相位代表两个比特信息,因此,对于输入的二进制数字序列应该先进行分组,将每两个比特编为一组,然后用四种不同的载波相位来表征。

我们把组成双比特码元的前一信息比特用a 代表,后一信息比特用b 代表。

双比特码元中两个信息比特ab 通常是按格雷码排列的,它与载波相位的关系如表1-1所示,矢量关系如图1—1所示。

图1-1(a)表示A 方式时QPSK 信号矢量图,图1—1(b)表示B 方式时QPSK 信号的矢量图。

由于正弦和余弦的互补特性,对于载波相位的四种取值,在A 方式中:45°、135°、225°、315°,则数据k I、k Q 通过处理后输出的成形波形幅度有两种取值±2/2;B 方式中:0°、90°、180°、270°,则数据k I、k Q 通过处理后输出的成形波形幅度有三种取值±1、0。

表(0,1)(1,1)(0,0)参考相位参考相位(a)(b)图1-1 QPSK 信号的矢量图下面以A 方式的QPSK 为例说明QPSK 信号相位的合成方法。

串/并变换器将输入的二进制序列依次分为两个并行序列,然后通过基带成形得到的双极性序列(从D/A 转换器输出,幅度为±2/2)。

四相移相键控调制解调

四相移相键控调制解调

武夷学院实验报
课程名称:移动通信原理与技术
项目名称:四相移相键控(QPSK)调制及解调实验
姓名:陈真灼专业:通信工程班级: 3班学号:20114173004
1注:1、实验预习部分包括实验环境准备和实验所需知识点准备。

2、若是单人单组实验,同组成员填无。

c、对比观测解调前后的I路信号
示波器探头分别接IQ模块的“
解调正确,若不一致可能是载波相位不对,可按下
复位。


2注:实验过程记录要包含实验目的、实验原理、实验步骤,页码不够可自行添加。


实验报告成绩(百分制)__________ 实验指导教师签字:__________。

四相移相键控(QPSK)调制及解调实验

四相移相键控(QPSK)调制及解调实验

实验二四相移相键控(QPSK )调制及解调实验一、 实验目的1、了解QPSK 调制解调原理及特性。

2、了解载波在QPSK 相干及非相干时的解调特性。

二、 实验内容1、观察I 、Q 两路基带信号的特征及与输入NRZ 码的关系。

2、观察IQ 调制解调过程中各信号变化。

3、观察解调载波相干时和非相干时各信号的区别。

三、 基本原理(说明:原理部分需简要介绍)1、QPSK 调制原理QPSK 的调制有两种产生方法相乘电路法和选择法。

相乘法:输入信号是二进制不归零的双极性码元,它通过“串并变换”电路变成了两路码元。

变成并行码元后,每个码元的持续时间是输入码元的两倍。

用两路正交载波去调制并行码元。

发射信号定义为:⎪⎩⎪⎨⎧≤≤-+=其他,00],4)12(2cos[/2)(b t T t i ft t E t S ππ其中,i =1,2,3,4;E 是发射信号的每个符号的能量,T 为符号的持续时间,载波频率f 等于nc/T ,nc 为固定整数选择法输入基带信号经过串并变换后用于控制一个相位选择电路,按照当时的输入双比特ab ,决定选择哪个相位的载波输出2、QPSK 解调原理QPSK 接收机由一对共输入地相关器组成。

这两个相关器分别提供本地产生地相干参考信号()t 1φ和()t 2φ。

四、实验步骤(说明:要详细)(1)QPSK 调制程序close all% x1是类似[1 1 -1 -1 -1 -1 1 1]的分布,作用是控制相位的180°反转。

%由于仿真中载波的频率是f=1Hz,所以1s的间隔内有一个完整周期的正弦波。

t=[-1:0.01:7-0.01]; % t共800个数据,-1~7st1=[0:0.01:8-0.01]; %t1也是800个数据点,0 ~8stt=length(t); % tt=800x1=ones(1,800);for i=1:ttif (t(i)>=-1 & t(i)<=1) | (t(i)>=5& t(i)<=7);x1(i)=1;else x1(i)=-1;endendt2 = 0:0.01:7-0.01; %t2是700个数据点,是QPSK_rc绘图的下标t3 = -1:0.01:7.1-0.01; %t3有810个数据点,是i_rc的时间变量t4 = 0:0.01:8.1-0.01; %t4有810个数据点,是q_rc的时间变量tt1=length(t1);x2=ones(1,800); %x2是类似于[1 1 -1 -1 1 1 1 1]的分布,作用是控制相位的180°反转for i=1:tt1if (t1(i)>=0 & t1(i)<=2) | (t1(i)>=4& t1(i)<=8);x2(i)=1;else x2(i)=-1;endendf=0:0.1:1;xrc=0.5+0.5*cos(pi*f); %xrc是一个低通特性的传输函数y1=conv(x1,xrc)/5.5; %y1和x1 实际上没什么区别,仅仅是上升沿、下降沿有点过渡带y2=conv(x2,xrc)/5.5; % y2和x2 实际上没什么区别,仅仅是上升沿、下降沿有点过渡带n0=randn(size(t2));f1=1;i=x1.*cos(2*pi*f1*t); % x1就是I dataq=x2.*sin(2*pi*f1*t1); %x2就是Q dataI=i(101:800);Q=q(1:700);QPSK=sqrt(1/2).*I+sqrt(1/2).*Q;QPSK_n=(sqrt(1/2).*I+sqrt(1/2).*Q)+n0;n1=randn(size(t2));i_rc=y1.*cos(2*pi*f1*t3); % y1就是I data,i_rc可能是贴近实际的波形,i则是理想波形q_rc=y2.*sin(2*pi*f1*t4); %y2就是Q data,q_rc可能是贴近实际的波形,q则是理想波形I_rc=i_rc(101:800);Q_rc=q_rc(1:700);QPSK_rc=(sqrt(1/2).*I_rc+sqrt(1/2).*Q_rc);QPSK_rc_n1=QPSK_rc+n1;subplot(3,1,1);plot(t3,i_rc);axis([-1 8 -1 1]);ylabel('a序列');subplot(3,1,2);plot(t4,q_rc);axis([-1 8 -1 1]);ylabel('b序列');subplot(3,1,3);plot(t2,QPSK_rc);axis([-1 8 -1 1]);ylabel('合成序列');(2)QPSK解调程序clear allclose allbit_in = randint(1e3, 1, [0 1]);bit_I = bit_in(1:2:1e3); %bit_I为”奇数序列”,奇数序列是同相分量,以cos为载波bit_Q = bit_in(2:2:1e3); %bit_Q是bit_in的所有偶数下标组成的”偶数序列”,以sin为载波data_I = -2*bit_I+1; % 将bit_I中的1变成-1,0变成1; 注意data_I是500点data_Q = -2*bit_Q+1; %将bit_Q中的1变成-1,0变成1data_I1=repmat(data_I',20,1); %将500行的列向量data_I的共轭转置data_I’复制为20*500的矩阵,20行数据是相同的。

qpsk原理

qpsk原理

QPSK的基本原理四相相移键控信号简称“QPSK”。

它分为绝对相移和相对相移两种。

由于绝对相移方式存在相位模糊问题,所以在实际中主要采用相对移相方式QDPSK。

它具有一系列独特的优点,目前已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。

QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。

在数字信号的调制方式中QPSK四相移键控是目前最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。

其星座图如下所示(采用格雷码编码)。

QPSK数字解调QPSK数字解调包括:模数转换、抽取或插值、匹配滤波、时钟和载波恢复等。

在实际的调谐解调电路中,采用的是非相干载波解调,本振信号与发射端的载波信号存在频率偏差和相位抖动,因而解调出来的模拟I、Q基带信号是带有载波误差的信号。

这样的模拟基带信号即使采用定时准确的时钟进行取样判决,得到的数字信号也不是原来发射端的调制信号,误差的积累将导致抽样判决后的误码率增大,因此数字QPSK解调电路要对载波误差进行补偿,减少非相干载波解调带来的影响。

此外,ADC的取样时钟也不是从信号中提取的,当取样时钟与输入的数据不同步时,取样将不在最佳取样时刻进行所得到的取样值的统计信噪比就不是最高,误码率就高,因此,在电路中还需要恢复出一个与输入符号率同步的时钟,来校正固定取样带来的样点误差,并且准确的位定时信息可为数字解调后的信道纠错解码提供正确的时钟。

校正办法是由定时恢复和载波恢复模块通过某种算法产生定时和载波误差,插值或抽取器在定时和载波误差信号的控制下,对A/D转换后的取样值进行抽取或插值滤波,得到信号在最佳取样点的值,不同芯片采用的算法不尽相同,例如可以采用据辅助法(DA)载波相位和定时相位联合估计的最大似然算法。

特性分析四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。

现代数字调制技术

现代数字调制技术
图8-18 OFDM解调原理框图
《通信原理课件》
《通信原理课件》
《通信原理课件》
《通信原理课件》
图8-19 用DFT实现OFDM的原理框图
《通信原理课件》
《通信原理课件》
图8-14 多载波传输系统原理框图
《通信原理课件》
在多载波调制方式中,子载波设置主要 有3种方案。图8-15(a)为传统的频分复 用方案,它将整个频带划分为N个互不重叠 的子信道。在接收端可以通过滤波器组进 行分离。图8-15(b)为偏置QAM方案, 它在3dB处载波频谱重叠,其复合谱是平 坦的。
进制信号将得到 MQAM 信号,其中 M L2 。
矢量端点的分布图称为星座图。通常可以用星座图来描述 QAM 信号 的信号空间分布状态。MQAM 目前研究较多,并被建议用于数字通信中的 是 十 六 进 制 的 正 交 幅 度 调 制 ( 16QAM ) 或 六 十 四 进 制 的 正 交 幅 度 调 制 (64QAM),下面重点讨论 16QAM。
现代数字调制技术
8.1 引言
在第6章中已经讨论了几种基本数字调制技术的调制和解调 原理。随着数字通信的迅速发展,各种数字调制方式也在 不断地改进和发展,现代通信系统中出现了很多性能良好 的数字调制技术。
本章我们主要介绍目前实际通信系统中常使用的几种现代 数字调制技术。首先介绍几种恒包络调制,包括偏移四相 相移键控(OQPSK)、 π/4四相相移键控( π/4 -QPSK)、 最小频移键控(MSK)和高斯型最小频移键控(GMSK); 然后介绍正交幅度调制(QAM),它是一种不恒定包络调 制。在介绍了这几种单载波调制后,再引入多载波调制, 着重介绍其中的正交频分复用(OFDM)。
但是由于方型星座QAM信号所需的平均发送功 率仅比最优的QAM星座结构的信号平均功率稍大, 而方型星座的MQAM信号的产生及解调比较容易 实现,所以方型星座的MQAM信号在实际通信中 得到了广泛的应用。当M=4, 16, 32, 64时 MQAM信号的星座图如图8-11所示。

DQPSK调制解调的研究与实现

DQPSK调制解调的研究与实现

题目:DQPSK调制解调技术的研究与实现学生姓名:学号:专业班级:指导教师:完成时间:目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 课题背景 (1)1.2 DQPSK调制技术与数字通信 (2)第二章DQPSK调制与解调原理分析 (5)2.1 DQPSK信号特点 (5)2.2 差分编码与解码原理 (10)2.3 FPGA实现方案 (12)第三章DQPSK信号调制 (14)3.1 调制器总体设计方案 (14)3.2 串并转换 (14)3.3 差分编码 (15)3.4 FIR滤波器设计 (17)3.5 数字载波 (18)第四章DQPSK信号解调 (20)4.1 解调器总体方案 (20)4.2 AD采样 (20)4.3 同步设计 (22)4.3.1 COSTAS载波跟踪环 (22)4.3.2 位定时同步 (26)4.4 差分解码 (26)4.5 并串转换 (29)总结 (30)参考文献 (31)致谢 (32)摘要QPSK(quadrature phase shift keying)是四相移键控的简称,它兼有两方面的特性;从一方面看,它采用了4种相位;从另一方面看,它采用了正交的载波。

DQPSK是差分四相移键控(differential QPSK)的简称,是结合差分编码的QPSK。

DQPSK调制解调方式以其抗干扰能力强、频带利用率高等优点,在现代数字通信系统如数字微波通信、等宽带无线通信等中得到广泛的应用。

DQPSK是在QPSK(四相正交绝对调相)的基础上作的改进,它克服了QPSK信号载波的相位模糊问题,用相邻码元之间载波相位的相对变化来表示2位二进制数字信息。

由于DQPSK 传输信息的特有方式,使得解调时不存在相位模糊问题,这是因为不论提取的载波取什么起始相位,对相邻两个四进制码元来说都是相等的,那么相邻两个四进制码元的相位差肯定与起始相位无关,也就不存在由于相干解调载波起始相位不同而引起的相位模糊问题,所以,在使用中都采用相对的四相调制。

qpsk-简介

qpsk-简介

qpsk-简介偏移四相相移键控信号简称“O-QPSK”。

全称为offset QPSK,也就是相对移相方式OQPSK。

它具有一系列独特的优点,已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。

在数字信号的调制方式中QPSK四相移键控是最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。

qpsk-原理换、抽取或插值、匹配滤波、时钟和载波恢复等。

在实际的调谐解调电路中,采用的是非相干载波解调,本振信号与发射端的载波信号存在频率偏差和相位抖动,因而解调出来的模拟工、Q基带信号是带有载波误差的信号。

这样的模拟基带信号即使采用定时准确的时钟进行取样判决,得到的数字信号也不是原来发射端的调制信号,误差的积累将导致抽样判决后的误码率增大,因此数字QPSK解调电路要对载波误差进行补偿,减少非相干载波解调带来的影响。

此外,ADC的取样时钟也不是从信号中提取的,当取样时钟与输入的数据不同步时,取样将不在最佳取样时刻进行所得到的取样值的统计信噪比就不是最高,误码率就高,因此,在电路中还需要恢复出一个与输入符号率同步的时钟,来校正固定取样带来的样点误差,并且准确的位定时信息可为数字解调后的信道纠错解码提供正确的时钟。

校正办法是由定时恢复和载波恢复模块通过某种算法产生定时和载波误差,插值或抽取器在定时和载波误差信号的控制下,对A/D转换后的取样值进行抽取或插值滤波,得到信号在最佳取样点的值,不同芯片采用的算法不尽相同,例如可以采用据辅助法(DA)载波相位和定时相位联合估计的最大似然算法。

四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。

QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,275°,调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。

eLabsim之移动通信实验指导书

eLabsim之移动通信实验指导书

目录第一章数字调制与解调技术 ....................................................... 错误!未定义书签。

实验一四相移相键控(QPSK)调制及解调实验 ................................错误!未定义书签。

实验二交织四相移相键控(OQPSK)调制及解调实验......................错误!未定义书签。

实验三基带信号预成形技术实验 ..........................................................错误!未定义书签。

实验四MSK调制及相干解调实验.........................................................错误!未定义书签。

实验五GMSK调制及相干解调实验......................................................错误!未定义书签。

实验六MSK、GMSK非相干数字解调实验 .........................................错误!未定义书签。

实验七矢量调制星座图实验 ..................................................................错误!未定义书签。

第二章同步技术 ........................................................................... 错误!未定义书签。

实验八PSK信号载波恢复......................................................................错误!未定义书签。

实验九NRZ码位同步提取实验 .............................................................错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太原理工大学现代科技学院实验报告
一、 实验目的
1、了解QPSK 调制解调原理及特性。

2、了解载波在QPSK 相干及非相干时的解调特性。

二、 实验内容
1、观察I 、Q 两路基带信号的特征及与输入NRZ 码的关系。

2、观察IQ 调制解调过程中各信号变化。

3、观察解调载波相干时和非相干时各信号的区别。

三、 基本原理
1、QPSK 调制原理 QPSK 又叫四相绝对相移调制,它是一种正交相移键控。

QPSK 利用载波的四种不同相位来表征数字信息。

由于每一种载波相位代表两个比特信息,因此,对于输入的二进制数字序列应该先进行分组,将每两个比特编为一组,然后用四种不同的载波相位来表征。

我们把组成双比特码元的前一信息比特用a 代表,后一信息比特用b 代表。

双比特码元中两个信息比特ab 通常是按格雷码排列的,它与载波相位的关系如表1-1所示,矢量关系如图1-1所示。

图1-1(a )表示A 方式时QPSK 信号矢量图,图1-1(b )表示B 方式时QPSK 信号的矢量图。

由于正弦和余弦的互补特性,对于载波相位的四种取值,在A 方式中:45°、135°、225°、315°,
则数据k I 、k Q 通过处理后输出的成形波形幅度有三种取值±1、0。

表1-1 双比特码元与载波相位关系
太原理工大学现代科技学院实验报告
(0,1)
(1,1)
(0,0)
参考相位参考相位
(a)
(b)
图1-1 QPSK 信号的矢
量图
下面以A 方式的QPSK 为例说明QPSK 信号相位的合成方法。

串/并变换器将输入的二进制序列依次分为两个并行序列,然后通过基带成形得到的双极性序列(从D/A 转
码元。

双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图1-2中虚
线矢量,将两路输出叠加,即得到QPSK 调制信号,其相位编码关系如表1-2所示。

a(1)b(1)
b(0)
a(0)
图1-2 矢量图
表1-2 QPSK 信号相位编码逻辑关系
用调相法产生QPSK 调制器框图如图1-3所示。

太原理工大学现代科技学院实验报告
框图
01010011011100图1-4 二进制码经串并变换后码型
由图1-3可以看到,QPSK 的调制器可以看作是由两个BPSK 调制器构成,输入的串行二进制信息序列经过串并变换,变成两路速率减半的序列,电平发生器分别产生双极性的二电平信号I (t )和Q (t ),然后对cos A t ω和sin A t ω进行调制,相加后即可得到QPSK 信号。

经过串并变换后形成的两个支路如图1-4所示,一路为单数码元,另外一路为偶数码元,这两个支路互为正交,一个称为同相支路,即I 支路;另外
一路称为正交支路,即Q 支路。

2、QPSK 解调原理
由于QPSK 可以看作是两个正交2PSK 信号的合成,故它可以采用与2PSK 信号类似的解调方法进行解
调,即由两个2PSK 信号相干解调器构成,其原理框图如图1-5所示。

图1-5 QPSK 解调原理框图
四、 实验原理
1、实验模块简介
太原理工大学现代科技学院实验报告
本实验需用到基带成形模块、IQ调制解调模块、码元再生模块及PSK载波恢复模块。

(1)基带成形模块:
本模块主要功能:产生PN31伪随机序列作为信源;将基带信号进行串并转换;按调制要求进行基带成形,形成两路正交基带信号。

(2)IQ调制解调模块:
本模块主要功能:产生调制及解调用的正交载波;完成射频正交调制及小功率线性放大;完成射频信号正交解调。

(3)码元再生模块:
本模块主要功能:从解调出的IQ基带信号中恢复位同步,并进行抽样判决,然后并串转换后输出。

(4)PSK载波恢复模块:
本模块主要功能:与IQ调制解调模块上的解调电路连接起来组成一个完整的科斯塔斯环恢复PSK已调信号的载波,同时可用作一个独立的载波源。

本实验只使用其载波源。

2、实验框图及电路说明
a、QPSK调制实验
图1-6 QPSK
调制实验框图
QPSK调制的实验框图如图1-6所示,基带成形模块产生的PN码(由PN31端输出,码型为111100010011010)输入到串并转换电路中(由NRZ IN端输入)进行串并转换,成为IQ两路基带信号,输出的IQ两路数字基带信号(观测点为NRZ-I,NRZ-Q),经波形预取电路判断,取出相应的模拟基带波形数据,经D/A转换后输出(观测点为I-OUT,Q-OUT,分别于NRZ-I,NRZ-Q波形反相)。

IQ两路模拟基带信号送入IQ调制解调模块中的IQ调制电路分别进行PSK调制,然后相加形成QPSK调制信号,经放大后输出。

QPSK已调信号载波为10.7MHz,是由21.4MHz本振源经正交分频产生。

b、QPSK解调实验
太原理工大学现代科技学院实验报告
图1-7 QPSK
解调实验框图
QPSK解调实验原理框图如图1-7所示,QPSK已调信号送入IQ调制解调模块中的IQ解调电路分别进行PSK相干解调,相干载波由调制端的本振源经正交分频产生。

解调输出的IQ两路模拟基带信号送入码元再生模块进行抽样判决,转换为数字信元后再进行并串转换后输出。

抽样判决前IQ信号需经整形变为二值信号,并且需恢复位同步信号。

位同步信号恢复由码元再生模块中的数字锁相环完成。

IQ解调电路的载波也可由PSK载波恢复模块上的本振源提供,此时解调变为非相干解调,从解调输出的模拟基带信号可以看出信号失真很大,无法进行码元再生。

五、实验步骤
1、在实验箱上正确安装基带成形模块(以下简称基带模块)、IQ调制解调模块(以下简称IQ模块)\元
再生模块(以下简称再生模块)和PSK载波恢复模块。

2、QPSK调制实验。

a、关闭实验箱总电源,用台阶插座线完成如下连接:
* 检查连线是否正确,检查无误后打开电源。

b、按基带成形模块上“选择”键,选择QPSK模式(QPSK指示灯亮)。

c、用示波器观察基带模块上“I-OUT”及“Q-OUT”测试点,并分别与“NRZ IN”测试点的信号进行
对比,观察串并转换情况。

d、用频谱分析仪观测调制后QPSK信号频谱(可用数字示波器上FFT功能替代观测),观测点为IQ
模块调制单元的“输出”端(TP4)
3、QPSK相干解调实验。

a、关闭实验箱总电源,保持步骤2中的连线不变,用同轴视频线完成如下连接:
* 检查连线是否正确,检查无误后打开电源。

b、示波器探头分别接IQ解调单元的“I-OUT”及“Q-OUT”端,观察解调波形。

c、对比观测解调前后的I路信号
太原理工大学现代科技学院实验报告
示波器探头分别接IQ模块的“I-OUT”端及的“I-IN”端,注意观察两者是否一致。

(若一致表示解调正确,若不一致可能是载波相位不对,可按下IQ模块复位键S1复位或重新开关该模块电源复位。


d、对比观测解调前后的Q路信号
示波器探头分别接IQ模块的“Q-OUT”端及“Q-IN”端,注意观察两者是否一致。

(若一致表示解调正确,若不一致可能是载波相位不对,可将按IQ模块复位键S1复位或重新开关该模块电源复位。

)4、QPSK再生信号观察
* 检查连线是否正确,检查无误后打开电源。

b、按再生模块上“选择”键,选择QPSK模式(QPSK指示灯亮)。

c、对比观测原始NRZ信号与再生后的NRZ信号
示波器探头分别接再生模块上“NRZ”端和基带模块上“NRZ IN”端,观察两路码元是否一致(注意解调出的NRZ码与输入的NRZ码存在延迟)。

若一致表示解调正确,若不一致可回到步骤2重新实验。

5、观测载波非相干时信号波形
断开IQ模块上载波“输出”端与该模块上载波“输入”视频线,将IQ模块上载波“输入”端与PSK 载波恢复模块上“VCO-OUT”端连接起来,此时载波不同步。

从步骤2开始再次观察各信号。

六、实验结果
太原理工大学现代科技学院实验报告
太原理工大学现代科技学院实验报告
七.实验心得
通过本次实验我了解到了QPSK的原理及其特性,了解了QPSK的相干和非相干的特性,懂并且通过用示波器观察了他的各点波形的变化,明白了原理与特点. 帮助我更好的在移动通信中对第二章中的QPSK信号有了深入的理解。

相关文档
最新文档