高三数学模拟试题-2007年教师招聘考试高三数学试卷
高三数学模拟考试卷(附答案解析)

高三数学模拟考试卷(附答案解析)一、单选题(本大题共4小题,共20分。
在每小题列出的选项中,选出符合题目的一项)1.已知p:sinx=siny,q:x=y,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件2.已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,则此双曲线的渐近线方程为()A. y=±3xB. y=±2xC. y=±2xD. y=±x3.函数y=f(x)是定义域为R的奇函数,且对于任意的x1≠x2,都有f(x1)−f(x2)x1−x2<1成立.如果f(m)>m,则实数m的取值集合是()A. {0}B. {m|m>0}C. {m|m<0}D. R4.已知数列{an}满足a1+a2+⋯+an=n(n+3),n∈N*,则an=()A. 2nB. 2n+2C. n+3D. 3n+1二、填空题(本大题共12小题,共54分)5.不等式|2x+1|+|x−1|<2的解集为______.6.函数f(x)=x+9x(x>0)的值域为______.7.函数f(x)=sinx+cosx(x∈R)的最小正周期为______.8.若an为(1+x)n的二项展开式中x2项的系数,则n→+∞lim ann2=______.9.在所有由1,2,3,4,5这五个数字组成的无重复数字的五位数中,任取一个数,则取出的数是奇数的概率为______.10.若实数x,y满足x+y≤4y≤3xy≥0,则2x+3y的取值范围是______.11.已知向量a,b满足|a|=2,|b|=1,|a+b|=3,则|a−b|=______.12.已知椭圆C:x29+y2b2=1(b>0)的左、右两个焦点分别为F1、F2,过F2的直线交椭圆C于A,B两点.若△F1AB是等边三角形,则b的值等于______.13.已知等比数列{an}的前n项和为Sn,公比q>1,且a2+1为a1与a3的等差中项,S3=14.若数列{bn}满足bn=log2an,其前n项和为Tn,则Tn=______.14.已知A,B,C是△ABC的内角,若(sinA+i⋅cosA)(sinB+i⋅cosB)=12+32i,其中i为虚数单位,则C 等于______.15.设a∈R,k∈R,三条直线l1:ax−y−2a+5=0,l2:x+ay−3a−4=0,l3:y=kx,则l1与l2的交点M到l3的距离的最大值为.16.设函数f(x)=x2−1,x≥a|x−a−1|+a,x<a,若函数f(x)存在最小值,则a的取值范围为______.三、解答题(本大题共5小题,共76分。
高三数学模拟试题(含答案)

高三数学模拟试题(含答案)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则.2.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则?U(A∪B)=.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为.4.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin(π﹣α)的值是.5.执行以下语句后,打印纸上打印出的结果应是:.6.设α、β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:①若m∥n,则m∥α;②若m?α,n?α,m∥β,n∥β,则α∥β;③若α∥β,m?α,n?β,则m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,则n⊥β;其中正确命题的序号为.7.已知函数f(x),若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是.8.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为.9.已知双曲线(a>0,b>0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为.10.记S k=1k+2k+3k+……+n k,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=.11.设函数f(x)=x|x﹣a|,若对于任意的x1,x2∈[2,+∞),x1≠x2,不等式0恒成立,则实数a的取值范围是.12.已知平面向量,,满足||=1,||=2,,的夹角等于,且()?()=0,则||的取值范围是.13.在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A(0,1)为直角顶点.若该三角形的面积的最大值为,则实数a的值为.14.设f(x)=e tx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C 过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三角形ABC中,角A,B,C所对的边分别为a,b,c,若sin A,tan(A﹣B),角C为钝角,b =5.(1)求sin B的值;(2)求边c的长.16.如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BDE;(2)求证:平面VAC⊥平面BDE.17.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(Ⅰ)求圆的方程;(Ⅱ)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.18.如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?19.设首项为1的正项数列{a n}的前n项和为S n,数列的前n项和为T n,且,其中p为常数.(1)求p的值;(2)求证:数列{a n}为等比数列;(3)证明:“数列a n,2x a n+1,2y a n+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.20.已知函数f(x)=(x﹣x1)(x﹣x2)(x﹣x3),x1,x2,x3∈R,且x1<x2<x3.(1)当x1=0,x2=1,x3=2时,求函数f(x)的减区间;(2)求证:方程f′(x)=0有两个不相等的实数根;(3)若方程f′(x)=0的两个实数根是α,β(α<β),试比较,与α,β的大小,并说明理由.本题包括A,B共1小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换]21.试求曲线y=sin x在矩阵MN变换下的函数解析式,其中M,N.[选修4-4:极坐标与参数方程]22.已知直线l的极坐标方程为,圆C的参数方程为为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.23.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.24.甲、乙、丙三名射击运动员射中目标的概率分别为(0<a<1),三人各射击一次,击中目标的次数记为ξ.(1)求ξ的分布列及数学期望;(2)在概率P(ξ=i)(i=0,1,2,3)中,若P(ξ=1)的值最大,求实数a的取值范围.参考答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上. 1.∵z=2+i,∴z2=(2+i)2=3+4i,则.故答案为:3﹣4i.2.∵集合U={1,3,5,9},A={1,3,9},B={1,9}∴A∪B={1,3,9}∴?U(A∪B)={5},故答案为{5}.3.分层抽样的抽取比例为:,∴抽取学生的人数为60030.故答案为30.4.由题意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案为:.5.程序在运行过程中各变量的取值如下所示:是否继续循环i x循环前 1 4第一圈是 4 4+2第二圈是 7 4+2+8第三圈是 10 4+2+8+14退出循环,所以打印纸上打印出的结果应是:28故答案为:28.6.对于①,当m∥n时,由直线与平面平行的定义和判定定理,不能得出m∥α,①错误;对于②,当m?α,n?α,且m∥β,n∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;对于③,当α∥β,且m?α,n?β时,由两平面平行的性质定理,不能得出m∥n,③错误;对于④,当α⊥β,且α∩β=m,n?α,m⊥n时,由两平面垂直的性质定理,能够得出n⊥β,④正确;综上知,正确命题的序号是④.故答案为:④.7.如图所示:①当x≥2时,由函数f(x)单调递减可得:0<f(x);②当0<x<2时,由函数f(x)=(x﹣1)3单调递增可得:﹣1<f(x)<1.由图象可知:由0<2k<1可得,故当时,函数y=kx与y=f(x)的图象有且只有两个交点,∴满足关于x的方程f(x)=kx有两个不同的实根的实数k的取值范围是.故答案为.8.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0,①a<0时,[x﹣(a)](x﹣4)<0,其中a0,故解集为(a,4),由于a(﹣a)≤﹣24,当且仅当﹣a,即a=﹣2时取等号,∴a的最大值为﹣4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为﹣2;②a=0时,﹣4(x﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a=0不符合条件;③a>0时,[x﹣(a)](x﹣4)>0,其中a4,∴故解集为(﹣∞,4)∪(a,+∞),整数解有无穷多,故a>0不符合条件;综上所述,a=﹣2.故答案为:﹣2.9.∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,…①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,…②①②联解,得,可得,∴双曲线的,结合,得离心率故答案为:10.根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,∴A,A1,解得B,所以A﹣B.故答案为:.11.由题意知f(x)=x|x﹣a|在[2,+∞)上单调递增.(1)当a≤2时,若x∈[2,+∞),则f(x)=x(x﹣a)=x2﹣ax,其对称轴为x,此时2,所以f(x)在[2,+∞)上是递增的;(2)当a>2时,①若x∈[a,+∞),则f(x)=x(x﹣a)=x2﹣ax,其对称轴为x,所以f(x)在[a,+∞)上是递增的;②若x∈[2,a),则f(x)=x(a﹣x)=﹣x2+ax,其对称轴为x,所以f(x)在[,a)上是递减的,因此f(x)在[2,a)上必有递减区间.综上可知a≤2.故答案为(﹣∞,2].12.由()?()=0 可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α为与的夹角.再由2?1+4+2×1×2cos7 可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0.解得||,故答案为.13.设直线AB的方程为y=kx+1则直线AC的方程可设为y x+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐标(0,1),∴B的坐标为(,k?1),即B(,)因此,AB?,同理可得:AC?∴Rt△ABC的面积为S AB?AC?令t,得S∵t2,∴S△ABC当且仅当,即t时,△ABC的面积S有最大值为解之得a=3或a∵a时,t2不符合题意,∴a=3故答案为: 314.∵PQ∥y轴,P(t,0),∴Q(t,f(t))即(t,),又f(x)=e tx(t>0)的导数f′(x)=xe tx,∴过Q的切线斜率k=t,设R(r,0),则k t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,e t),∴△PRS的面积为S,导数S′,由S′=0得t=1,当t>1时,S′>0,当0<t<1时,S′<0,∴t=1为极小值点,也为最小值点,∴△PRS的面积的最小值为.故答案为:.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(1)角C为钝角,由sin A,则cos A.那么:tan A∵tan(A﹣B),即,即,sin2B+cos2B=1,解得:sin B.(2)由(1)可知:sin B,则cos B那么:sin C=sin(A+B)=sin A cos B+cos A sin B 正弦定理:,可得:c=13.16.证明:(1)连结OE.因为底面ABCD是菱形,所以O为AC的中点,又因为E是棱VC的中点,所以VA∥OE,又因为OE?平面BDE,VA?平面BDE,所以VA∥平面BDE;(2)因为VO⊥平面ABCD,又BD?平面ABCD,所以VO⊥BD,因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC?平面VAC,所以BD⊥平面VAC.又因为BD?平面BDE,所以平面VAC⊥平面BDE.17.(本小题满分14分)解:(Ⅰ)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以,即|4m﹣29|=25.因为m为整数,故m=1.故所求圆的方程为(x﹣1)2+y2=25.…(Ⅱ)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,整理,得(a2+1)x2+2(5a﹣1)x+1=0,由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,即12a2﹣5a>0,由于a>0,解得a,所以实数a的取值范围是().(Ⅲ)设符合条件的实数a存在,则直线l的斜率为,l的方程为,即x+ay+2﹣4a=0由于l垂直平分弦AB,故圆心M(1,0)必在l上,所以1+0+2﹣4a=0,解得.由于,故存在实数使得过点P(﹣2,4)的直线l垂直平分弦AB.…18.(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,则,化简得,解之得,或(舍),答:BC的长度为;(2)设BP=t,则,,设,,令f'(t)=0,因为,得,当时,f'(t)<0,f(t)是减函数;当时,f'(t)>0,f(t)是增函数,所以,当时,f(t)取得最小值,即tan(α+β)取得最小值,因为恒成立,所以f(t)<0,所以tan(α+β)<0,,因为y=tan x在上是增函数,所以当时,α+β取得最小值.答:当BP为cm时,α+β取得最小值.19.(1)解:n=1时,由得p=0或2,若p=0时,,当n=2时,,解得a2=0或,而a n>0,所以p=0不符合题意,故p=2;(2)证明:当p=2时,①,则②,②﹣①并化简得3a n+1=4﹣S n+1﹣S n③,则3a n+2=4﹣S n+2﹣S n+1④,④﹣③得(n∈N*),又因为,所以数列{a n}是等比数列,且;(3)证明:充分性:若x=1,y=2,由知a n,2x a n+1,2y a n+2依次为,,,满足,即a n,2x a n+1,2y a n+2成等差数列;必要性:假设a n,2x a n+1,2y a n+2成等差数列,其中x、y均为整数,又,所以,化简得2x﹣2y﹣2=1显然x>y﹣2,设k=x﹣(y﹣2),因为x、y均为整数,所以当k≥2时,2x﹣2y﹣2>1或2x﹣2y﹣2<1,故当k=1,且当x=1,且y﹣2=0时上式成立,即证.20.(1)当x1=0,x2=1,x3=2时,f(x)=x(x﹣1)(x﹣2),令f′(x)=3x2﹣6x+2<0解得,x,故函数f(x)的减区间为(,);(2)证明:∵f(x)=(x﹣x1)(x﹣x2)(x﹣x3),∴f′(x)=(x﹣x2)(x﹣x3)+(x﹣x1)(x﹣x3)+(x﹣x1)(x﹣x2),又∵x1<x2<x3,∴f′(x1)=(x1﹣x2)(x1﹣x3)>0,f′(x2)=(x2﹣x1)(x2﹣x3)<0,f′(x3)=(x3﹣x2)(x3﹣x1)>0,故函数f′(x)在(x1,x2),(x2,x3)上分别有一个零点,故方程f′(x)=0有两个不相等的实数根;(3)∵方程f′(x)=0的两个实数根是α,β(α<β),∴f′(α)=f′(β)=0,而f′()=(x2)(x3)+(x1)(x3)+(x1)(x2)(x1﹣x2)2<0,f′()=(x2)(x3)+(x1)(x3)+(x1)(x2)(x3﹣x2)2<0,再结合二次函数的图象可知,αβ.本题包括A,B共1小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换]21.∵M,N,∴MN,…4分∴在矩阵MN变换下,→,…6分∴曲线y=sin x在矩阵MN变换下的函数解析式为y=2sin2x.…10分.[选修4-4:极坐标与参数方程]22.(1)由,得,∴y,即.圆的方程为x2+y2=100.(2)圆心(0,0)到直线的距离d,y=10,∴弦长l.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.23.(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四边形ABCD为矩形,∴以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,∵AD=2,AB=AF=2EF=2,P是DF的中点,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),设异面直线BE与CP所成角的平面角为θ,则cosθ,∴异面直线BE与CP所成角的余弦值为.(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),设P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),设平面APC的法向量(x,y,z),则,取x=1,得(1,﹣1,),平面ADF的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值为,∴|cos|,解得,∴P(0,,),∴PF的长度|PF|.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.24.(1)P(ξ)是“ξ个人命中,3﹣ξ个人未命中”的概率.其中ξ的可能取值为0,1,2,3.,,,.所以ξ的分布列为ξ0 1 2 3Pξ的数学期望为.(2),,.由和0<a<1,得,即a的取值范围是.。
高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题1. 已知集合A={x | x² - 1 = 0},则A的元素个数为()A. 1B. 2C. 3D. 4答案:B2. 若a > 0,b < 0,则a与b的和的符号为()A. 正B. 负C. 零D. 无法确定答案:D3. 设函数f(x) = √(x²-2x+1),则f(3)的值为()A. 0B. 1C. 2D. 3答案:B4. 在△ABC中,角A = 60°,边AC = 5cm,边BC = 4cm,则边AB 的长度为()A. 3.5cmB. 4cmC. 4.5cmD. 5cm答案:C5. 某商店对现金支付的商品提供10%的折扣,小明购买了一件原价500元的商品,他需要支付多少元?()A. 45元B. 50元C. 450元D. 500元答案:C二、计算题1. 已知函数f(x) = |x - 3| + 2,求f(5)的值。
解:当x = 5时,f(x) = |5 - 3| + 2 = 4答案:42. 解方程:3x + 5 = 2(x - 1) + 7解:展开得:3x + 5 = 2x - 2 + 7移项得:3x + 5 = 2x + 5化简得:x = 0答案:03. 已知函数f(x) = x² - 4x + 5,求f(3)的值。
解:当x = 3时,f(x) = 3² - 4 × 3 + 5 = 9 - 12 + 5 = 2答案:24. 某商品在经过两次10%的折扣后,售价为270元,求其原价。
解:设原价为x元,则经过第一次折扣后为0.9x元,经过第二次折扣后为0.9 × 0.9x元。
根据题意,0.9 × 0.9x = 270,解方程得:x = 300答案:300三、应用题1. 一辆自行车上午以每小时20公里的速度向南骑行,下午以每小时15公里的速度向北骑行。
如果来回共耗时8小时,求行程的总长度。
高三数学模拟题

高三数学模拟题数学仿真模拟试卷(一)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 1.已知直线x =k(k>0)和圆(x -1)2+y 2=4相切,那么k 的值是 ( )A .5B .4C .3D .22.函数)22cos(π+=x y 的图象的一条对称轴方程是( )A .x =2π-B .x =4π-C .x =8πD .x =π3.向量a =(1,2),b =(x ,1), u =a +2b ,u b a v 且,2-=∥v ,则x 的值是 ( ) A .21B .21-C .61D .61-4.已知x 、y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z=x+2y 的最小值为( )A .-3B .3C .-5D .5 5.椭圆5x 2+ky 2=5的一个焦点是(0,2),则k 等于 ( ) A 、-1 B 、1 C 、5 D 、5- 6.不等式0|)|1)(1(>-+x x 的解集是 ( )A 、{x|0≤x<1}B 、{x|x<0且x ≠-1}C 、{x|-1<x<1}D 、{x|x<1且x ≠-1} 7.,1010221010.....)2(x a x a x a a x ++++=-则293121020)....()....(a a a a a a +++-+++的值为 ( )A 、0B 、-1C 、1D 、10)12(-8.已知m ,l 是异面直线,给出下列四个命题:①必存在平面α,过m 且与l 都平行;②必存在平面 β,过m 且与l 垂直;③必存在平面r ,与m ,l 都垂直;④必存在平面w, 与m ,l的距离都相等。
其中正确的结论是 ( )A .①②B .①③C .②③D .①④9.过圆x y x 1022=+内一点(5,3)有k 条长度成等差数列的弦,且最小弦长为首项1a ,最大弦长为末项n a ,若公差d 满足d ]21,31[∈,则k 的取值不可能是( ) A.4 B.5 C.6 710.关于x 的函数c bx ax x y +++=23有与y 轴垂直的切线,则b a ,的关系是( )A.b a 32< B.b a 32≥ C.23b a > D.23b a ≤ 11.正六棱柱ABCDEF —A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则那个棱柱的侧面对角线E 1D 与BC 1所成的角是 ( )A 、900B 、600C 、450D 、300 12.设函数f(x)是定义在R 上的以3为周期的奇函数,若f(x)>1,f(2)=132+-a a ,则( ) A. a<32 B. a<132-≠a 且 C. a>132-<a 或 D. -1<a<32二、填空题 (本大题共4小题,每小题4分,共16分。
招聘数学教师考试试题

招聘数学教师考试试题一、选择题(每题2分,共20分)1. 如果一个函数f(x) = 3x^2 + 2x - 5,那么f(-1)的值是:A. -8B. -6C. -4D. 02. 下列哪个选项不是有理数?A. 1/2B. √2C. πD. 33. 在直角三角形中,如果一个锐角是30°,那么另一个锐角是:A. 45°B. 60°C. 90°D. 120°4. 以下哪个是二次方程的根?A. x^2 - 4x + 4 = 0 的根是2B. x^2 + 5x + 6 = 0 的根是-1和-6C. x^2 - 2x + 1 = 0 的根是1D. x^2 + 3x + 2 = 0 的根是-1和-25. 以下哪个是等差数列的通项公式?A. an = a1 + (n-1)dB. an = a1 + ndC. an = a1 - (n-1)dD. an = a1 - nd二、填空题(每题2分,共20分)6. 如果一个圆的半径是5,那么它的面积是______。
7. 一个等差数列的首项是3,公差是2,它的第10项是______。
8. 一个函数的导数是2x,那么这个函数可能是f(x) = ______。
9. 一个三角形的三边长分别是3, 4, 5,它是一个______三角形。
10. 如果一个数列的前n项和为S(n),且S(n) = n^2,那么这个数列的第n项是______。
三、简答题(每题10分,共30分)11. 解释什么是欧几里得算法,并给出一个具体的例子。
12. 描述如何使用勾股定理来解决实际问题,并给出一个例子。
13. 解释什么是圆锥曲线,并给出椭圆、双曲线和抛物线的定义。
四、证明题(每题15分,共30分)14. 证明:如果一个数列是等差数列,那么它的任意两项的平均值等于这两项的中项。
15. 证明:对于任意一个正整数n,n^3 - n 总是能被6整除。
五、应用题(每题15分,共30分)16. 一个班级有30名学生,数学考试的平均分是80分,标准差是10分。
高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B。
A. {1, 2, 3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3}3. 若sin(α) = 1/2,且α为锐角,求cos(α)的值。
A. √3/2B. -√3/2C. 1/2D. -1/24. 已知等差数列{an}的首项a1=2,公差d=3,求其第5项a5。
A. 17B. 14C. 11D. 85. 圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心坐标。
A. (3, 4)B. (-3, -4)C. (0, 0)D. (4, 3)6. 函数f(x) = x^2 - 4x + 4的最小值是多少?A. 0B. -4C. 4D. 17. 已知直线y = 2x - 3与抛物线y^2 = 4x相交于两点,求这两个点的坐标。
A. (1, -1), (3, 3)B. (1, 1), (3, -1)C. (1, 1), (3, 3)D. (1, -1), (3, -1)8. 已知向量a = (2, 3),b = (-1, 2),求a·b。
A. 4B. -1C. 1D. -49. 已知三角形ABC,∠A = 60°,a = 5,b = 7,求c的长度。
A. 3B. 4C. 6D. 810. 已知函数f(x) = x^3 - 3x^2 - 9x + 5,求f'(x)。
A. 3x^2 - 6x - 9B. x^2 - 6x - 9C. 3x^2 - 6x + 5D. x^3 - 3x^2 - 9二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1=8,公比q=2,求其第4项b4的值。
(完整版)高三数学模拟试题及答案

高三数学模拟试卷(满分150 分)一、选择题(每题 5 分,共 40 分)1.已知全集 U={1,2,3,4,5} ,会集 M ={1,2,3} , N = {3,4,5} ,则 M ∩ ( e U N)=()A. {1,2}B.{ 4,5}C.{ 3}D.{ 1,2,3,4,5} 2. 复数 z=i 2(1+i) 的虚部为()A. 1B. iC.- 1D. -i3.正项数列 { a } 成等比, a +a =3, a +a =12,则 a +a 的值是()n1 23445A. - 24B. 21C.24D. 484.一组合体三视图如右,正视图中正方形 边长为 2,俯视图为正三角形及内切圆, 则该组合体体积为()A.2 34B.3C.2 3 4 54 3 4 3+D.2735.双曲线以一正方形两极点为焦点,另两极点在双曲线上,则其离心率为( )A. 2 2B.2 +1C.2D. 1uuur uuur6. 在四边形 ABCD 中,“ AB =2 DC ”是“四边形ABCD 为梯形”的()A. 充足不用要条件B. 必要不充足条件C.充要条件D. 既不充足也不用要条件7.设 P 在 [0,5] 上随机地取值,求方程x 2+px+1=0 有实根的概率为( )A. 0.2B. 0.4C.0.5D.0.6y8. 已知函数 f(x)=Asin( ωx +φ)(x ∈ R, A>0, ω>0, |φ|<)5f(x)的解析式是(2的图象(部分)以下列图,则)A .f(x)=5sin( x+)B. f(x)=5sin(6 x-)O256 66xC. f(x)=5sin(x+)D. f(x)=5sin(3x- )366- 5二、填空题:(每题 5 分,共30 分)9. 直线 y=kx+1 与 A ( 1,0), B ( 1,1)对应线段有公共点,则 k 的取值范围是 _______. 10.记 (2x1)n 的张开式中第 m 项的系数为 b m ,若 b 32b 4 ,则 n =__________.x311 . 设 函 数 f ( x) xx 1x 1、 x 2、 x 3、 x 41 2的 四 个 零 点 分 别 为 , 则f ( x 1 +x 2 +x 3 +x 4 );12、设向量 a(1,2), b (2,3) ,若向量a b 与向量 c (4, 7)共线,则x 111. lim______ .x 1x 23x 414. 对任意实数 x 、 y ,定义运算 x* y=ax+by+cxy ,其中a、 b、c 常数,等号右的运算是平时意的加、乘运算 .已知 2*1=3 , 2*3=4 ,且有一个非零数m,使得任意数x,都有 x* m=2x, m=.三、解答:r r15.(本 10分)已知向量 a =(sin(+x), 3 cosx),b =(sin x,cosx),f(x)=⑴求 f( x)的最小正周期和增区;2⑵若是三角形 ABC 中,足 f(A)=3,求角 A 的.216.(本 10 分)如:直三棱柱(棱⊥底面)ABC — A 1B1C1中,∠ ACB =90°, AA 1=AC=1 , BC= 2,CD ⊥ AB, 垂足 D.C1⑴求: BC∥平面 AB 1C1;A1⑵求点 B 1到面 A 1CD 的距离 .PCA D r r a ·b .B 1B17.(本 10 分)旅游公司 4 个旅游供应 5 条旅游路,每个旅游任其中一条.( 1)求 4 个旅游互不一样样的路共有多少种方法;(2)求恰有 2 条路被中的概率 ;(3)求甲路旅游数的数学希望.18.(本 10 分)数列 { a n} 足 a1+2a2 +22a3+⋯+2n-1a n=4 n.⑴求通a n;⑵求数列 { a n} 的前 n 和S n.19.(本 12 分)已知函数f(x)=alnx+bx,且 f(1)= - 1, f′(1)=0 ,⑴求 f(x);⑵求 f(x)的最大;⑶若 x>0,y>0, 明: ln x+lny≤xy x y 3.220.(本 14 分) F 1, F 2 分 C :x2y 21(a b 0) 的左、右两个焦点,若 Ca 2b 2上的点 A(1,3124.)到 F , F 两点的距离之和等于2⑴写出 C 的方程和焦点坐 ;⑵ 点 P ( 1,1)的直 与 交于两点 D 、 E ,若 DP=PE ,求直 DE 的方程 ;4⑶ 点 Q ( 1,0)的直 与 交于两点 M 、N ,若△ OMN 面 获取最大,求直 MN 的方程 .21. (本 14 分) 任意正 数 a 1、 a 2、 ⋯ 、an ;求1/a 1+2/(a 1 +a 2)+⋯ +n/(a 1+a 2+⋯ +a n )<2 (1/a 1+1/a 2+⋯ +1/a n )9 高三数学模 答案一、 :. ACCD BAD A二、填空 :本 主要考 基 知 和基本运算.每小 4 分,共 16 分 .9.[-1,0] 10.5 11.19 12. 2 13.1 14. 35三、解答 :15.本 考 向量、二倍角和合成的三角函数的公式及三角函数性 ,要修业生能运用所学知 解决 .解:⑴ f(x)= sin xcosx+3 + 3 cos2x = sin(2x+ )+ 3⋯⋯⋯2 23 2 T=π, 2 k π - ≤ 2x+≤ 2 k π +, k ∈ Z,232最小正周期 π, 增区[ k π -5, k π + ], k ∈ Z.⋯⋯⋯⋯⋯⋯⋯⋯1212⑵由 sin(2A+ )=0 , <2A+ <7 ,⋯⋯⋯⋯⋯33 或533∴ 2A+ =π或 2π,∴ A=⋯⋯⋯⋯⋯⋯⋯⋯33616.、本 主要考 空 、 面的地址关系,考 空 距离角的 算,考 空 想象能力和推理、 能力, 同 也可考 学生灵便利用 形, 建立空 直角坐 系, 借助向量工具解决 的能力. ⑴ 明:直三棱柱ABC — A 1B 1C 1 中, BC ∥ B 1C 1,又 BC 平面 A B 1C 1,B 1C 1 平面 A B 1C 1,∴ B 1C 1∥平面 A B 1C 1;⋯⋯⋯⋯⋯⋯⑵(解法一)∵ CD ⊥ AB 且平面 ABB 1A 1⊥平面 AB C,C 11 1 1∴ CD ⊥平面 ABBA ,∴ CD ⊥AD 且 CD ⊥A D ,∴∠ A DA 是二面角 A 1— CD —A 的平面角,1A 1B 1在 Rt △ ABC,AC=1,BC= 2 ,PC∴ AB= 3 , 又 CD ⊥ AB ,∴ AC 2=AD × ABADB∴ AD=3, AA1131=1,∴∠ DA 1B 1=∠ A DA=60 °,∠ A 1 B 1A=30°,∴ A B 1 ⊥A D又 CD ⊥ A 1D ,∴ AB 1⊥平面 A 1CD , A 1D ∩ AB 1=P, ∴ B 1P 所求点 B 1 到面 A 1CD 的距离 . B P=A 1 B 1cos ∠ A 1 B 1A= 33cos30 =° .12即点 B 1 到面 A 1 CD 的距离 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 × 3 1 z ( 2)(解法二) 由 V B 1- A 1CD =V C - A 1B 1D =C 132×6 = 2,而 cos ∠ A 1 CD= 2 × 6 = 3 ,AB13 6 2 3 31△A 1CD1 ×2 ×6 ×6 =2,B 1 到平面CS=3 332A ByA 1CD 距离 h, 1×22, 得 h= 3所求 .Dx h=33 6 2⑶(解法三)分 以CA 、CB 、CC 1 所在直 x 、y 、z 建立空 直角坐 系(如 )A ( 1,0, 0), A 1( 1, 0, 1),C (0, 0, 0), C 1( 0, 0, 1),B (0,2 , 0), B 1( 0, 2 , 1),uuurr∴ D ( 2 , 2, 0) CB =( 0, 2 , 1), 平面 A 1CD 的法向量 n =( x , y , z ),3 31r uuur3n CD2x2y 0rruuur,取 n=( 1, -2 , - 1)n CA 1 x z 0r uuur点 B 1 到面 A 1CD 的距离d= n CB 13r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯n217.本 主要考 排列,典型的失散型随机 量的概率 算和失散型随机 量分布列及希望等基 知 和基本运算能力.解:( 1) 4 个旅游 互不一样样的 路共有:A 54=120 种方法; ⋯(2)恰有两条 路被 中的概率 :P 2 C 52 (2 42) 28=54⋯125(3) 甲 路旅游 数ξ, ξ~ B(4, 1)14⋯⋯⋯⋯⋯⋯ 5∴希望 E ξ=np=4×=5 5答 : ( 1) 路共有120 种,(2)恰有两条 路被 中的概率 0.224, ( 3)所求希望 0.8 个数 .⋯⋯⋯⋯⋯⋯⋯⋯⋯18.本 主要考 数列的基 知 ,考 分 的数学思想,考 考生 合 用所学知 造性解决 的能力.解:( 1) a 1+2 a 2+22a 3+⋯ +2n - 1a n =4n ,∴ a 1+2 a 2+22a 3+⋯ +2n a n+1=4n+1,相减得 2n a n+1=3× 4n , ∴ a n+1=3× 2n ,4(n1) 又 n=1 a 1=4,∴ 上 a n =2n 1所求;⋯⋯⋯⋯⋯⋯⋯⋯⋯3(n 2)⑵ n ≥2 , S n=4+3(2 n- 2), 又 n=1 S 1=4 也建立, ∴ S n =3× 2 n - 2⋯⋯⋯⋯⋯⋯ 12 分19.本 主要考 函数、 数的基本知 、函数性 的 理以及不等式的 合 ,同 考 考生用函数放 的方法 明不等式的能力.解:⑴由 b= f(1)= - 1, f ′(1)= a+b=0, ∴ a=1, ∴f(x)=ln x- x 所求; ⋯⋯⋯⋯⋯⑵∵ x>0,f ′(x)=1- 1=1x ,xxx 0<x<1x=1 x>1 f (′x) +0 - f(x)↗极大↘∴ f (x)在 x=1 获取极大 - 1,即所求最大 - 1; ⋯⋯⋯⋯⋯⑶由⑵得 lnx ≤x- 1 恒建立, ∴ln x+ln y=ln xy+ ln x ln y ≤ xy 1 + x 1 y 1 = xy x y 3建立⋯⋯⋯22 22220.本 考 解析几何的基本思想和方法,求曲 方程及曲 性 理的方法要求考生能正确分析 , 找 好的解 方向, 同 兼 考 算理和 推理的能力, 要求 代数式合理演 ,正确解析最 .解:⑴ C 的焦点在 x 上,由 上的点A 到 F 1、F 2 两点的距离之和是 4,得 2a= 4,即 a=2 .;3134 1.得 b 2=1,于是 c 2=3 ;又点 A(1,) 在 上,因此222b 2因此 C 的方程x 2y 2 1,焦点 F 1 ( 3,0), F 2 ( 3,0). ,⋯⋯⋯4⑵∵ P 在 内,∴直DE 与 订交,∴ D( x 1,y 1),E(x 2,y 2),代入 C 的方程得x 12+4y 12- 4=0, x 22+4y 22- 4=0,相减得 2(x 1- x 2 )+4× 2× 1 (y 1- y 2)=0 , ∴斜率 k=-11 4∴ DE 方程 y- 1= - 1(x-), 即 4x+4y=5; ⋯⋯⋯4(Ⅲ )直 MN 不与 y 垂直,∴MN 方程 my=x- 1,代入 C 的方程得( m 2+4) y 2+2my- 3=0,M( x 1,y 1 ),N( x 2 ,y 2), y 1+y 2=-2m 3 ,且△ >0 建立 .m 2 4, y 1y 2=-m 2 4又 S △ OMN = 1|y 1- y 2|= 1 ×4m212(m 24) = 2 m23, t=m 2 3 ≥ 3 ,2 2m 2 4m 24S△OMN =2,(t+1t1tt ) ′=1 - t-2>0t≥ 3 恒建立,∴t=3t+1获取最小, S△OMN最大,t此 m=0, ∴ MN 方程 x=1⋯⋯⋯⋯⋯。
高中教师招聘考试数学试卷

高中教师招聘考试数学试卷第一部分:选择题(共40题,每题2分,共计80分)请在每题的括号内选出正确的选项。
1. 200 ÷ (5 × 2) =(A) 40 (B) 10 (C) 50 (D) 202. 若x² + 2x = 12,则x的值为(A) 4 (B) -4 (C) 2 (D) -23. 已知三个数的平均数为50,且其中两个数为40和70,则另一个数为(A) 80 (B) 50 (C) 30 (D) 604. 一条直线与坐标轴的交点为(3, 0)和(0, 4),则该直线的斜率为(A) -4/3 (B) 3/4 (C) 4/3 (D) -3/45. 若log₃(p + 2) = 2,则p的值为(A) 7 (B) 9 (C) 25 (D) 5...第二部分:填空题(共20题,每题3分,共计60分)请在空格内填写合适的数值或选项。
1. 甲、乙两人同时赶路,甲的速度是乙的2倍,若甲行走6小时,乙行走的时间为______小时。
2. 若a + b = 8且a² - b² = 48,则a的值为______。
3. 设集合A = {x | x² - 4x - 5 = 0},则集合A内的元素个数为______。
4. 若f(x) = 2x² - 3x + 1,则f(1)的值为______。
5. 已知三角形ABC,若∠B = 60°,AB = 4,BC = 6,则AC的长度为______。
...第三部分:解答题(共4题,每题25分,共计100分)1. 解方程组:{ 3x + 5y = 4{ 2x - 3y = -72. 已知函数f(x) = x² - 3x + k,当x = 2时,f(x)的值为4。
求k的值。
3. 某种动物的数量每年都以30%的速率增长。
若现有该种动物100只,则经过多少年后,该种动物的数量将达到1000只?4. 某城市的公交车每10分钟一班,而地铁每15分钟一班。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年高中教师招聘考试数学试题时量:120分钟 满分:150分10小题,每小题5分,共50分。
在每小题给出的四个选 项中,只有一项是符合题目要求的.)1、设集合M={直线},P={圆},则集合M P 中的元素个数为( )A 、0B 、1C 、2D 、0或1或22、已知椭圆2214x y n +=与双曲线2218x y m-=有相同的准线,则动点(,)P n m 的轨迹 为( )A 、椭圆的一部分B 、双曲线的一部分C 、抛物线的一部分D 、直线的一部分3、已知*(32)()n x n N +∈的展开式中各项的二项式系数和为n S ,各项系数和为n T ,则limn nn n n S T S T →+∞-+的值为( )A 、1B 、0C 、12D 、-1 4.已知函数f (x )满足)1(||1)(2xf x x f =-,则f (x )的最小值是( ) A .22B .2C .322 D .225、已知函数2)(+-+-=a x ax x f 的反函数)(1x f -的图象的对称中心为)5,1(-,则实数a 的值是( )A .-3B .1C .5D .76、函数()3sin 2f x x π⎛⎫=- ⎪3⎝⎭的图象为C ,①图象C 关于直线1112x =π对称; ②函数()f x 在区间5ππ⎛⎫-⎪1212⎝⎭,内是增函数; ③由3sin 2y x =的图象向右平移π3个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( ) A .0 B .1 C .2 D .37、编号为A 、B 、C 、D 、E 的五个品种的蔬菜在如右图所示的五种试验田里种植,要求一块田种一种蔬菜,且A 品种不能种在1,2 号试验田里,B 品种必须与A 品种种在相邻(有公共边称相邻)的试验田里,则可不同的种法有( )A .36B .30C .42D .328、如左图所示,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点 在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可有是右图中的( )9、已知y =f (x )是奇函数,且满足)1()1(-=+x f x f ,当0(∈x ,1)时,xx f -=11log )(2,则y =f (x ) 在(1,2)内是( ) A .单调增函数,且f (x )<0 B .单调减函数,且f (x )>0 C .单调增函数,且f (x )>0D .单调减函数,且f (x )<010、已知函数)(x f 的定义域为),2[+∞-,部分对应值如下表.)(x f '为)(x f 的导函数,函数)(x f y '=的图象如下图所示:若两正数b a ,满足1)2(<+b a f ,则33++a b 的取值范围是( ) A .)34,76( B .)37,53( C .)56,32( D .)3,31(-请把答案填在相应的序号下面:二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11、一次单元测试由50个选择题构成,每个选择题有4个选项,其中恰有一个是正确的答案,每题选择正确得3分,不选或选错得0分,满分150分.学生甲选对任一题的概率为0.8,则该生在这次测试中成绩的标准差是_____________。
12、我们把平面内与直线垂直的非零向量称为直线的法向量. 在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A (2,1)且法向量为n=(-1,2)的直线(点法式)方程为.02,0)1(2)2(=-=-+--y x y x 化简后得类比以上求法,在空间直角坐标系中,经过点A (2,1,3),且法向量为n=(-1,2,1)的平面(点法式)方程为 。
(请写出化简后的结果)13、顶点在同一球面上的正四棱柱1111ABCD A BC D -中,AB =1,AA 1=,则A 、C 两点间的球面距离为 。
14、由一个数列中部分项按原来次序排列的数列叫做这个数列的子数列,试在无穷等比数列21,41,81,…中找出一个无穷等比的子数列,使它所有项的和为71,则此子数列的通项公式为__________.15、关于函数⎩⎨⎧>-≤-=-)()(0 120 2)(x ax x e x f x ,(a 是常数且a >0)。
对于下列命题:①函数)(x f 的最小值是 -1; ②函数)(x f 在每一点处都连续; ③函数)(x f 在R 上存在反函数;④函数)(x f 在0=x 处可导; ⑤对任意0 ,021<<x x 且21x x ≠,恒有2)()()2(2121x f x f x x f +<+。
其中正确命题的序号是 .(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤.16、(本题满分11分)已知ABC △的面积为3,且满足06AB AC ≤⋅≤ ,设AB 和AC的夹角为θ.(1)求θ的取值范围;(2)求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大值与最小值.17、(本题满分12分)设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计).(1)求方程20x bx c ++=有实根的概率; (2)求ξ的分布列和数学期望;(3)求在先后两次出现的点数中有5的条件下,方程20x bx c ++=有实根的概率. 18、(本题满分12分)如图,四边形PCBM 是直角梯形,∠PCB =90°,PM ∥BC , PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°.(1)求证:平面PAC ⊥平面ABC ; (2)求二面角B AC M --的大小; (3)求三棱锥MAC P -的体积。
19、(本题满分12分)已知函数()()()331,5f x x ax g x f x ax '=+-=--,其中()f x '是的导函数。
(Ⅰ)对满足11a -≤≤的一切a 的值,都有()0g x <,求实数x 的取值范围; (Ⅱ)设2a m =-,当实数m 在什么范围内变化时,函数()y f x =的图象与直线3y =只有一个公共点。
20、(本题满分14分)我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如下图所示,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆”与x ,y 轴的交点.(1)若012F F F △是边长为1的等边三角形,求“果圆”的方程; (2)当21A A >21B B 时,求ab的取值范围; (3)连接“果圆”上任意两点的线段称为“果圆”的弦.试研究:是否存在实数k ,使斜率为k 的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k 值;若不存在,说明理由。
21、(本题满分14分)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明存在k *∈N ,使得11n k n ka aa a ++≤对任意n *∈N 均成立.汉寿一中、龙池中学2007年高中教师招聘考试数学参考答案一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11、26 12、x -2y -z +3=0 13、2π14、n⎪⎭⎫⎝⎛81 15、①②⑤三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤.16、解:(1)设ABC △中角AB C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤, ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.------------------------4分(2)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)θθ=+πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.----------8分ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. ----------------11分17、解:(1)基本事件总数为6636⨯=,若使方程有实根,则240b c ∆=-≥,即b ≥ 当1c =时,2,3,4,5,6b =; 当2c =时,3,4,5,6b =; 当3c =时,4,5,6b =; 当4c =时,4,5,6b =; 当5c =时,5,6b =;当6c =时,5,6b =,目标事件个数为54332219,+++++= 因此方程20x bx c ++= 有实根的概率为19.36--------------------4分 (2)由题意知,0,1,2ξ=,则17(0)36P ξ==,21(1),3618P ξ===17(2)36P ξ==, 故ξ的分布列为ξ0 1 2P1736 118 1736ξ的数学期望17117012 1.361836E ξ=⨯+⨯+⨯=--------------------------------8分 (3)记“先后两次出现的点数中有5”为事件M ,“方程20ax bx c ++= 有实根” 为事件N ,则11()36P M =,7()36P MN =, ()7()()11P MN P N M P M ==. ----------------------------------------------------12分18、解法一:(Ⅰ)∵,,PC AB PC BC AB BC B ⊥⊥= ∴PC ABC ⊥平面, 又∵PC PAC ⊂平面∴PAC ABC ⊥平面平面-------------3分 (Ⅱ)取BC 的中点N ,则1CN =,连结,AN MN ,∵//PM CN =,∴//MN PC =,从而MN ABC ⊥平面作NH AC ⊥,交AC 的延长线于H ,连结MH ,则由三垂线定理知,AC NH ⊥,从而MHN ∠为二面角M AC B --的平面角 直线AM 与直线PC 所成的角为060∴060AMN ∠=在ACN ∆中,由余弦定理得AN 在AMN ∆中,cot 1MN AN AMN =⋅∠== 在CNH ∆中,sin 1NH CN NCH =⋅∠==在MNH ∆中,tan MN MN MHN NH =∠===故二面角M AC B --的平面角大小为分 (Ⅲ)由(Ⅱ)知,PCMN 为正方形∴011sin12032P MAC A PCM A MNC M ACN V V V V AC CN MN ----====⨯⋅⋅⋅=分 解法二:(Ⅰ)同解法一(Ⅱ)在平面ABC 内,过C 作CD CB ⊥,建立空间直角坐标系C xyz -(如图)由题意有1,02A ⎫-⎪⎪⎝⎭,设()()000,0,0P z z >, 则()()00010,1,,,,0,0,2M z AM z CP z ⎫=-=⎪⎪⎝⎭由直线AM 与直线PC 所成的解为060,得0cos60AM CP AM CP ⋅=⋅⋅,即200z z =,解得01z =∴()10,0,1,,02CM CA ⎫==-⎪⎪⎝⎭ ,设平面MAC 的一个法向量为{}111,,n x y z = ,则11110102y z y z +=⎧-=,取11x =,得{n = 平面ABC 的法向量取为()0,0,1m =设m 与n 所成的角为θ,则cos m n m nθ⋅==⋅显然,二面角M AC B --的平面角为锐角, 故二面角M AC B --的平面角大小为 (Ⅲ)取平面PCM 的法向量取为()11,0,0n =,则点A 到平面PCM 的距离112CA n h n ⋅== ∵1,1PC PM == ,∴111311326212P MAC A PCM V V PC PM h --===⨯⋅⋅=⨯⨯⨯=19、解:(Ⅰ)由题意()2335g x x ax a =-+-, 令()()2335x x a x ϕ=-+-,11a -≤≤对11a -≤≤,恒有()0g x <,即()0a ϕ<∴()()1010ϕϕ<⎧⎪⎨-<⎪⎩ 即22320380x x x x ⎧--<⎨+-<⎩,解得213x -<<故2,13x ⎛⎫∈-⎪⎝⎭时,对满足11a -≤≤的一切a 的值,都有()0g x <-------4分 (Ⅱ)()'2233fx x m =-①当0m =时,()31f x x =-的图象与直线3y =只有一个公共点--------5分0m ≠∴()()2211f x fx mm ==--<-极小 ----------------8分又∵()f x 的值域是R ,且在(),m +∞上单调递增∴当x m >时函数()y f x =的图象与直线3y =只有一个公共点。