传热传质第二章

合集下载

化工原理知识点总结详细

化工原理知识点总结详细

化工原理知识点总结详细第一章:化工原理基础知识1.1 化工原理的定义和基本概念化工原理是研究化学工程过程的基本原理、基本规律和数学模型的学科。

化工原理包括物理化学、热力学、传质与分离、反应工程等方面的知识,其中热力学和传质与分离是化工原理的两个重要组成部分。

1.2 化工原理的基本原理和基本规律化工原理涉及到许多基本原理和基本规律,其中包括质量守恒、能量守恒、热力学第一、第二定律、传热、传质、反应动力学等。

这些基本原理和基本规律是化工过程描述、分析和设计的基础。

1.3 化工原理的应用领域化工原理的应用领域非常广泛,包括化学工程、环境工程、生物工程、材料工程等方面。

化工原理在工业生产、环境保护、能源开发、新材料研发等领域都有重要的应用价值。

第二章:热力学2.1 热力学基本概念热力学是研究能量转化和能量传递规律的科学。

热力学基本概念包括系统、热平衡、热力学过程、熵等。

热力学基本原理包括能量守恒、熵增原理等。

2.2 理想气体状态方程理想气体状态方程描述了理想气体的压力、温度、体积之间的关系,可以表示为PV=nRT。

理想气体状态方程是描述气体性质的重要方程之一。

2.3 热力学循环热力学循环是指气体、水蒸汽等工质在一定压力和温度条件下发生各种物理或化学变化,最后又回到原来状态的过程。

常见的热力学循环包括卡诺循环、斯特林循环、布雷顿循环等。

2.4 热力学第一、第二定律热力学第一定律:能量守恒,能量既不能被创造也不能被毁灭,只能从一种形式转化为另一种形式。

热力学第二定律:熵增原理,自然界熵不减少的倾向。

第三章:传质与分离3.1 传质基本概念传质是指物质在不同相间传递的过程,包括扩散、对流、传热等。

传质的重要概念包括浓度、摩尔通量、传质系数等。

3.2 传质方程和传质过程传质方程描述了物质在不同相间传递的规律,传质过程包括扩散传质、对流传质等,传质方程是描述传质过程的基本数学模型。

3.3 分离技术化工生产中,常需要对混合物进行分离和纯化,分离技术包括蒸馏、结晶、游离、萃取等,这些技术都是基于传质原理。

食品工程原理-第二章 传热

食品工程原理-第二章 传热
物体的温度分布是空间坐标和时间的函数,即
t = f (x,y,z,τ)
式中:t —— 温度(℃或K); x, y, z —— 空间坐标; τ—— 时间(S)。
温 ➢不稳定温度场:温度场内各点温度随时间而改变。

相应的传热称为非定态热传导。
场 ➢稳定温度场:温度场内各点温度不随时间而改变。
相应的传热称为稳定传热
随温度变化,视为常数;
➢平壁的温度只沿着垂直于壁面
的x轴方向变化,故等温面皆为垂
直于x轴的平行平面。
➢平壁侧面的温度t1及t2恒定。
t1
Q
t2
tb t1 t2
ob
x
根据傅立叶定律
Q A dt
dx
分离积分变量后积分,积分边界条件:当x=0时,t= t1; x=b时,t= t2,
Q
b
A(t1 t2 )
b1
t t1
b2
b3
t2 t3
Q t4
x
第一层
Q1
1
b1
A(t1 t2 )
Q1
b1
1 A
t1
t2
t1
第二层
Q2
b2
2 A
t2
第三层
Q3
b3
3 A
t3
对于稳定导热过程:Q1=Q2=Q3=Q
Q( b1
1 A
b2
2 A
b3 )
3 A
t1
t2
t3
Q t1 t2 t3
t1 t4
( b1 b2 b3 ) ( b1 b2 b3 )
t1
t2 b
t1 t x
t t1 bx(t1 t2) 单层平壁内温度分布为直线

流体力学与传热:第二章 吸收第三次课

流体力学与传热:第二章 吸收第三次课
10
2.总传质速率方程
速率=总总推阻动力力=总传质系数 推动力 总推动力=主体浓度 平衡浓度
气相:N

A
p
1
pe
Kg p
pe
Ky(y
ye )
Kg NA
液相:NA=ce
1
c
Kl
ce
c
Kx
(xe
x)
Kl
Kg,Ky,Kl,Kx—气、液相总传质系数; pe ,ce—分别为气液相的平衡分压及平衡摩尔浓度。
❖ 以液相及气相为推动力的传质速率方程:
液 相 :N A
D Z
Co c Bm
c A1 c A2
气 相 :N A
D RT Z
P
pBm
pA1 pA2
❖ p 、co 称为漂流因子,其值大于1。
pBm c Bm
有主体流动存在的传质速率大于单纯的分子扩散 反映主体流动对传质速率的贡献。
❖ 描述吸收过程的传质:气相中的A不断溶解,B 不能进入液相。
NA
D RTZ G
P pBm
p
pi
令: D RTZ g
P pBm
=k
g
N

A
p
1
pi
kg
p pi
ky ( y yi )
kg
k y Pk g
9
➢ 液膜内传质速率方程
NA
D Zg
c0 cB,m
(ci
c)
令:D
Zg
co cBm
=kl
N A= ci
1
c
kl
ci c
kx (xi x)
NA Ky ( y ye ) Ky (mxe mx) (4)

热质交换原理_第二章

热质交换原理_第二章
mA NA D (m 2 / s ) dC dn A A dy dy

质量扩散系数和动量扩散系数及热量扩散系数具有相同的单 位。 扩散系数的大小取决于扩散物质和扩散介质的种类以及环境 温度和环境压力。 扩散系数一般由实验测定。分为自扩散系数与互扩散系数。
自扩散系数
DAA K 3T 3 2 2/3 2 3 d p M
AL
* nB ,m
zt2 zt2 0 2
M A nt (n* ,1 n* ,2 ) A A
水蒸气通过空气扩散时扩散系数 试验装置如图所示。该装置放于 温度为328.15K的恒温槽内,压 强为1atm,在管顶端流过的是经 过干燥的空气,空气中蒸汽浓度 为0。经测定z的距离由0.125m降 为0.150m需要290h,求该条件 下的水-空气系统的扩散系数。
pB,m
NA
n* ,1 n* ,2 nD A A h n
* B,m

* * nB ,2 nB ,1 nD
h
n
* B ,m
nB ,m
* * nB ,2 nB ,1 * * ln(nB ,2 / nB ,1 )

当水蒸气的分压强及其变化与总压强比为很小时,可 以忽略质量平均速度,斯蒂芬定律转化为斐克定律。

整体质量平均速度 v 0
* * dC A dCB * * C A CB 1 dy dy DAB DBA D

这表明二元混合物的分子互扩散系数相等。
等摩尔扩散条件

绝对摩尔扩散通量
同理
N A N A nAV nDAB
dn* A nAV dy
绝对质量浓度表达式 绝对摩尔浓度表达式

【传热传质学】传热学第2章1

【传热传质学】传热学第2章1

周向导热
Φ
t
r
drdzd
Φ d
r
t
t
r
rd drdzd
2.2 导热微分方程及定解条件 (Conduction Differential Equation and 二、圆柱坐标D系ef中in的iti导on热C微o分nd方it程ions)
分为轴向z、径向r和周向f的导热 ,以物性参数为常数为例:
轴向导热
内热源生成热:
Φ rddrdzd
t
a
1 r
t r
2t r 2
2t z 2
1 r2
2t
2
Φ
c
2.2 导热微分方程及定解条件 (Conduction Differential Equation and 二、圆柱坐标D系ef中in的iti导on热C微o分nd方it程ions)
分为轴向z、径向r和周向f的导热 ,以物性参数为常数为例:
gradt
y
t n
cosn
,
y
t y
n
gradtz
t n
cosn
,z
t z
n
x
x
温度梯度在直角坐标系中表示:
t
gradt
t
i
t
j
t
k
x y z
t+t t t- t
2.1 导热基本定律(The Basic Law of Heat Conduction)
2.1.3 傅立叶定律──导热的基本定律
tboundary f x, y, z,

tboundary f x, y, z
tboundary-1
tboundary-3
2.2 导热微分方程及定解条件 (Conduction Differential Equation and 五、定解条件Definition Conditions)

传热和传质基本原理 第二章 传热复习conduction_convection_radiation

传热和传质基本原理   第二章 传热复习conduction_convection_radiation
A. Shiny white B. Dull white C. Shiny black D. Dull black
5. Which is the best surface for absorbing heat radiation?
A. Shiny white B. Dull white C. Shiny black D. Dull black
Fluid movement
Cooler, more d_en_s_e_, fluids sink through w_a_rm__e_r , less dense fluids.
In effect, warmer liquids and gases r_is_e_ up.
Cooler liquids and gases s_in_k_.
Water movement
Cools at the surface
Cooler water sinks
Convection current
Hot water rises
Why is it windy at the seaside?
Cold air sinks
Where is the freezer
Understanding Heat Transfer, Conduction, Convection and
Radiation
Heat Transfer
• Heat always moves from a warmer place to a cooler place.
• Hot objects in a cooler room will cool to room temperature.
• The cup of coffee will cool until it reaches room temperature. The popsickle will melt and then the liquid will warm to room temperature.

第二章传热传质过程

第二章传热传质过程

第二章1、有一2O (A )和2CO (B)的混合物,温度为297K ,压力为 1.519х105Pa,已知s m u s m u y B A A /02.0,/08.0,40.0===,试计算下列各值:(1) 混合物、组分A 和组分B 的摩尔浓度B Ac c c , (2) 混合物、组分A 和组分B 的质量浓度B A ρρρ,(3) 混合物的质量平均速度和A 、B 组分的相对速度v u v u v B A --,,(4) 混合物、组分A 和组分B 的绝对摩尔扩散通量B A N N N ,,(5) 混合物、组分A 和组分B 的绝对质量扩散通量B A n n n ,,(6) 组分B 的相对质量扩散通量和相对摩尔扩散通量B B J j ,答案:(1)333/0369.0;/0246.0;/0615.0m kmol m kmol m kmol(2)333/624.1;/787.0;/411.2m kg m kg m kg(3) s m s m s m /0196.0;/0404.0;/0396.0-(4) ()()()s m kmol s m kmol s m kmol ./000738.0./00197.0;./00271.0222(5)()()()s m kg s m kg s m kg ./0325.0./0630.0./0955.0222(6)()()s m kmol s m kg ./1086.8;./0318.0242-⨯--2、氢气和空气在总压力为1.0132×105Pa ,温度为25℃的条件下作等摩尔互扩散,已知扩散率为0.6×10-4m2/s ,在垂直于扩散方向距离为10mm 的两个平面上氢气分压力为16000Pa 和5300Pa 。

试计算此两种气体的摩尔扩散通量。

(必做)答案:()s m mol ⋅-2/0259.0 3、采用量筒来测定水蒸气在空气中的扩散系数。

化工原理第二章第四节讲稿-31页文档资料

化工原理第二章第四节讲稿-31页文档资料

变温差传热:传热温度差随位置而改变的传热。一侧或两侧的
流体,温度随着流动方向而发生变化。
1).恒温传热温度差:
设横坐标为换热器壁面,纵坐标为温度,因为冷热两种流 体的温度均不发生变化,所以,传热的温度差也就始终不
th tc
会发生变化,则 Δtm=th -tc
2019/9/22
2)变温传热平均温度差 : (1)流动型式:
2) 通过管壁的传导传热
2AmTWtW或 TWtW A 2m
3) 管壁与流动中的冷流体的对流给热
32A 2tWt或 tWt 2A 32
2019/9/22
此过程为稳态传热,所以Ф1 = Ф2= Ф3 = Ф,把以上三式相加
则: 11A 1TT W 或 TT W 1A 11 2AmTWtW或 TWtW A 2m 32A 2tWt或 tWt 2A 32
d(Tt)qm,1 1cp,1qm,2 1cp,2d
d(Tt) d
11 qm ,1cp,1 qm ,2cp,2 K(Tt)dA d(Tt)
11 qm,1cp,1 qm,2cp,2
2019/9/22
f
即: ( 1 1 )Kd A d(Tt)
2r1 1 L 12 T rm L t2r2 1 L 2 1 1r1 2 L rm (T t )A 2 m r2
其中
rmlr2n r2r1,当 rr1 2 2; rmr1 2r2,当 rr1 2 2
r1
在圆筒中,有一个特殊情况,就是化工生产中最常见的薄壁管,此时
依据:总传热速率方程和热量衡算。
2019/9/22
一、总传热速率方程:
1.总传热过程分析:

T
热流体
体 壁 冷流体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途? 曲线的形状主要受那些因素的影响? 解:参见教材P14-16
A 称为涡流扩散项 , B 为分子扩散项, C 为传质阻力项。 下面分别讨论各项的意义: (1) 涡流扩散项 A 气体碰到填充物颗粒时,不断地改变流动方向,使试样 组分在气相中形成类似“涡流”的流动,因而引起色谱的扩张。由于 A=2λdp ,表明 A 与填充物的平均颗粒直径 dp 的大小和填充的不均匀性 λ 有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗 粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途 径。
3.当下列参数改变时:(1)柱长缩短,(2)固定相改变,(3)流动 相流速增加,(4)相比减少,是否会引起分配系数的改变?为 什么? 答:固定相改变会引起分配系数的改变,因为分配系数只于组 分的性质及固定相与流动相的性质有关. 所以(1)柱长缩短不会引起分配系数改变 (2)固定相改变会引起分配系数改变
(2)方程式说明,k值增大也对分离有利,但k值太大会延长分离时间,增加分析成 本.
(3)提高柱选择性,可以提高分离度,分离效果越好,因此可以通过选择合适的 固定相,增大不同组分的分配系数差异,从而实现分离.
11.对担体和固定液的要求分别是什么?
答:对担体的要求; (1)表面化学惰性,即表面没有吸附性或吸附性很弱,更不能与被测物质起化学 反应. (2)多孔性,即表面积大,使固定液与试样的接触面积较大.
答:
R= t R ( 2) t R (1)1Biblioteka 2(Y1 Y2 )=
1 1 k n( )( ) 4 1 k
分离度同时体现了选择性与柱效能,即热力学因素和动力学因 素,将实现分离的可能性与现实性结合了起来.
9.能否根据理论塔板数来判断分离的可能性?为什么? 答: 不能,有效塔板数仅表示柱效能的高低,柱分离能力发 挥程度的标志,而分离的可能性取决于组分在固定相和流 动相之间分配系数的差异.
15.试述氢焰电离检测器的工作原理。如何考虑其操作条件?
解:对于氢焰检测器离子化的作用机理,至今还不十分清楚。目前认 为火焰中的电离不是热电离而是化学电离,即有机物在火焰中发生自
由基反应而被电离。化学电离产生的正离子( CHO+、H3O+)和电子(e)在
外加150~300v直流电场作用下向两极移动而产生微电流。经放大后, 记录下色谱峰。 氢火焰电离检测器对大多数的有机化合物有很高的灵
当流速较小时,分子扩散 (B 项 ) 就成为色谱峰扩张的主要因素,此时应采用相对分子 质量较大的载气 (N2 , Ar ) ,使组分在载气中有较小 的扩散系数。而当流速较大时, 传质项 (C 项 ) 为控制因素,宜采用相对分子质量较小的载气 (H2 ,He ) ,此时组分在 载气中有较大的扩散系数,可减小气相传质阻力,提高柱效。
对于填充柱,气相传质项数值小,可以忽略 。
由上述讨论可见,范弟姆特方程式对于分离条件的选择具有指导意义。它可以 说明 ,填充均匀程度、担体粒度、载气种类、载气流速、柱温、固定相液膜厚度 等对柱效、峰扩张的影响。 用在不同流速下的塔板高度 H 对流速 u 作图,得 H-u 曲线图。在曲线的最低点, 塔板高度 H 最小 ( H 最小 ) 。此时柱效最高。该点所对应的流速即为最佳流速 u 最 佳 ,即 H 最小 可由速率方程微分求得:
(3)对试样各组分有适当的溶解能力,否则,样品容易被载气带走而起不到分 配作用.
(4)具有较高的选择性,即对沸点相同或相近的不同物质有尽可能高的分离 能力. (5)化学稳定性好,不与被测物质起化学反应. 担体的表面积越大,固定液的含量可以越高.
12. 试比较红色担体与白色担体的性能,何谓硅烷化担体?它有何优点?
(3)流动相流速增加不会引起分配系数改变
(4)相比减少不会引起分配系数改变
4.当下列参数改变时: (1)柱长增加,(2)固定相量增加,(3)流动 相流速减小,(4)相比增大,是否会引起分配比的变化?为什么? 答: k=K/b,而b=VM/VS ,分配比除了与组分,两相的性质,柱 温,柱压有关外,还与相比有关,而与流动相流速,柱长无关. 故:(1)不变化,(2)增加,(3)不改变,(4)减小
10.试述色谱分离基本方程式的含义,它对色谱分离有什么指导意义?
答:色谱分离基本方程式如下:
R=
1 1 k n( )( ) 4 1 k
它表明分离度随体系的热力学性质(和k)的变化而变化,同时与色谱柱条 件(n改变)有关> (1)当体系的热力学性质一定时(即组分和两相性质确定),分离度与n的平 方根成正比,对于选择柱长有一定的指导意义,增加柱长可改进分离度,但 过分增加柱长会显著增长保留时间,引起色谱峰扩张.同时选择性能优良 的色谱柱并对色谱条件进行优化也可以增加n,提高分离度.
(2) 分子扩散项 B/u 由于试样组分被载气带入色谱柱后,是以“塞子”的形式存 在于柱的很小一段空间中,在“塞子”的前后 ( 纵向 ) 存在着浓差而形成浓度梯 度,因此使运动着的分子产生纵向扩散。而 B=2rDg r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲因子 ) , D g 为组 分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与组分及载气 的性质有关:相对分子质量大的组分,其 D g 小 , 反比于载气密度的平方根或载 气相对分子质量的平方根,所以采用相对分子质量较大的载气 ( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但反比于柱压。弯曲因子 r 为与填充物有关 的因素。 (3) 传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两项。 所谓气相传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分 将在两相间进行质量交换,即进行浓度分配。这种过程若进行缓慢,表示气相传 质阻力大,就引起色谱峰扩张。对于填充柱: 液相传质过程是指试样组分从固定相的气液界面移动到液相内部,并发生质量交 换,达到分配平衡,然后以返回气液界面 的传质过程。这个过程也需要一定时 间,在此时间,组分的其它分子仍随载气不断地向柱口运动,这也造成峰形的扩 张。液相传质阻力系数 C 1 为:
(3)热稳定性高,有一定的机械强度,不易破碎.
(4)对担体粒度的要求,要均匀、细小,从而有利于提高柱效。但粒度过小, 会使柱压降低,对操作不利。一般选择40-60目,60-80目及80-100目等。
对固定液的要求: (1)挥发性小,在操作条件下有较低的蒸气压,以避免流失 (2)热稳定性好,在操作条件下不发生分解,同时在操作温度下为液体.
14.试述热导池检测器的工作原理。有哪些因素影响热导池检测 器的灵敏度?
解: 热导池作为检测器是基于不同的物质具有不同的导热系数。 当 电流通过钨丝时、钨丝被加热到一定温度,钨丝的电阻值也 就增加到一定位(一般金属丝的电阻值随温度升高而增加)。在未进试样时, 通过热导池两个池孔(参比池和测量池)的都是载气。由于载气的热传导作 用,使钨丝的温度下降,电阻减小,此时热导池的两个池孔中钨丝温度 下降和电阻减小的数值是相同的。在进入试样组分以后,裁气流经参比 池,而裁气带着试样组分流经测量池,由于被测组分与载气组成的混合 气体的导热系数和裁气的导热系数不同,因而测量池中钨丝的散热情况 就发生变化,使两个池孔中的两根钨丝的电阻值之间有了差异。此差异 可以利用电桥测量出来。 桥路工作电流、热导池体温度、载气性质和流速、热敏元件阻值及 热导池死体积等均对检测器灵敏度有影响。
优点:准确度高,可根据固定相和柱温直接与文献值对照而不必使用标准 试样.
18.色谱定量分析中,为什么要用定量校正因子?在什么条件下可 以不用校正因子? 解:
答:
(见P27)
13.试述“相似相溶”原理应用于固定液选择的合理性及其存在 的问题。
解:样品混合物能否在色谱上实现分离,主要取决于组分与两相亲和力的差别,及 固定液的性质。组分与固定液性质越相近,分子间相互作用力越强。根据此规律: (1)分离非极性物质一般选用非极性固定液,这时试样中各组分按沸点次序先后流出 色谱柱,沸点低的先出峰,沸点高的后出峰。 (2)分离极性物质,选用极性固定液,这时试样中各组分主要按极性顺序分离,极 性小的先流出色谱柱,极性大的后流出色谱柱。 (3)分离非极性和极性混合物时,一般选用极性固定液,这时非极性组分先出峰, 极性组分(或易被极化的组分)后出峰。 (4)对于能形成氢键的试样、如醉、酚、胺和水等的分离。一般选择极性的或是氢 键型的固定液,这时试样中各组分按与固定液分子间形成氢键的能力大小先后流出, 不易形成氢键的先流出,最易形成氢键的最后流出。 (5)对于复杂的难分离的物质可以用两种或两种以上的混合固定液。 以上讨论的仅是对固定液的大致的选择原则,应用时有一定的局限性。事实上在 色谱柱中的作用是较复杂的,因此固定液酌选择应主要靠实践。
17.何谓保留指数?应用保留指数作定性指标有什么优点?
用两个紧靠近待测物质的标准物(一般选用两个相邻的正构烷烃)标定被 测物质,并使用均一标度(即不用对数),用下式定义:
I = 100
lgXi – lgXZ lgXZ+1 – lg XZ
+Z
X为保留值(tR’, VR ’,或相应的记录纸距离),下脚标i为被测物质,Z, Z+1为 正构烷烃的碳原子数,XZ < Xi < XZ+1,IZ = Z × 100
第二章 习题解答
1.简要说明气相色谱分析的基本原理 借在两相间分配原理而使混合物中各组分分离。 气相色谱就是根据组分与固定相与流动相的亲和力不同而 实现分离。组分在固定相与流动相之间不断进行溶解、挥 发(气液色谱),或吸附、解吸过程而相互分离,然后进 入检测器进行检测。 2.气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统.进样系统、分离系统、温控系统以及检测和记 录系统. 气相色谱仪具有一个让载气连续运行 管路密闭的气路系 统. 进样系统包括进样装置和气化室.其作用是将液体或固体 试样,在进入色谱柱前瞬间气化, 然后快速定量地转入到色谱柱中.
相关文档
最新文档