2016年福建省初中数学学业质量监测命题工作指南(1.24-28)
2016年福建省福州市中考数学试题(含解析)

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题(全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题! 毕业学校 姓名 考生号一、 选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项) 1.下列实数中的无理数是A .0.7B .21C .πD .-8【考点】无理数. 【专题】计算题. 【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可. 【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,-8为正数,都属于有理数, π为无限不循环小数, ∴π为无理数. 故选:C .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1, 故选:C .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a 、b 被直线C 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角. 【分析】根据内错角的定义求解.【解答】解:直线a ,b 被直线c 所截,∠1与∠2是内错角.故选B .【点评】本 题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类 角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a 6 的是A .a 4+a 2B .a 2+a 2+a 2C .a 4·a 2D .a 2·a 2·a 2【考点】同底数幂的乘法;合并同类项.第2题【专题】计算题;推理填空题.【分析】A :a 4+a 2≠a 6,据此判断即可.B :根据合并同类项的方法,可得a 2+a 2+a 2=3a 2.C :根据同底数幂的乘法法则,可得a 2•a 3=a 5.D :根据同底数幂的乘法法则,可得a 2•a 2•a 2=a 6. 【解答】解:∵a 4+a 2≠a 6, ∴选项A 的结果不等于a 6;∵a 2+a 2+a 2=3a 2,∴选项B 的结果不等于a 6;∵a 2•a 3=a 5,∴选项C 的结果不等于a 6;∵a 2•a 2•a 2=a 6,∴选项D 的结果等于a 6. 故选:D .【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组⎩⎨⎧>->+0301x x 的解集是A .x >-1B .x >3C .-1<x <3D .x <3【考点】解一元一次不等式组. 【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集. 【解答】解解不等式①,得 x >-1,解不等式②,得 x >3,由①②可得,x >3,故原不等式组的解集是x >3. 故选B .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21C .概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为 P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P (A)=1;不可能发生事件的概率 P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C(-m,-n),则点D的坐标是A.(-2 ,l )B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(-m,-n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,-1),∴点D的坐标是(-2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以O 为圆心,半径为1 的弧交坐标轴于A,B 两点,P是⌒AB上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴,,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10对于不同的xA.平均数,中位数B.众数,中位数C.平均数,方差D.中位数,方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(-l,m),B ( l,m),C ( 2,m+l)在同一个函数图象上,这个函数图象可以是【分析】由点A(A与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(-1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可. 【解答】解:∵一元二次方程有实数根,∴△=(-4)2-4ac=16-4ac≥0,且a≠0, ∴ac≤4,且a≠0;A 、若a >0,当a=1、c=5时,ac=5>4,此选项错误;B 、a=0不符合一元二次方程的定义,此选项错误;C 、若c >0,当a=1、c=5时,ac=5>4,此选项错误;D 、若c=0,则ac=0≤4,此选项正确; 故选:D .【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每题4分,满分24分) 13.分解因式:x 2-4= .【考点】因式分解-运用公式法. 【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可. 【解答】解:x 2-4=(x+2)(x-2).故答案为:(x+2)(x-2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 .【考点】二次根式有意义的条件. 【专题】常规题型.【分析】根据二次根式的性质可求出x 的取值范围.【解答】解:若二次根式1-x 在实数范围内有意义,则:x+1≥0,解得x≥-1. 故答案为:x ≥-1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x 1图象上的概率是 .【考点】概率公式;反比例函数图象上点的坐标特征. 【分析】先判断四个点的坐标是否在反比例函数图象上,再让在反比例函数图象上点的个数除以点的总数即为在反比例函数图象上的概率,依此即可求解.【解答】解:∵-1×1=-1,2×2=4,,,∴2个点的坐标在反比例函数图象上,∴在反比例函数图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“>“,”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上<r下.故答案为<.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1 ,则x3y+xy3=.【考点】代数式求值.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2-2xy,然后将x+y与xy的值代入即可.【解答】解:x3y+xy3=xy(x2+y2)=xy[(x+y)2-2xy]=1×(102-2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y 与xy 的值,则x 2+y 2=(x+y )2-2xy ,再将x+y 与xy 的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .【考点】菱形的性质;解直角三角形. 【专题】网格型.【分析】如图,连接EA 、EB ,先证明∠AEB=90°,根据,求出AE 、EB 即可解决问题.【解答】解:如图,连接EA ,EC ,设菱形的边长为a ,由题意得∠AEF=30°,∠BEF=60°,,EB=2a∴∠AEB=90°, ∴.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9 小题,满分90 分)19.(7分)计算:|-1|-38+(-2016)0 .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|-1|-38+(-2016)0=1-2+1 =0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.(7分)化简:a -b -b a b a ++2)(【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可. 【解答】解:原式=a-b-(a+b )=a-b-a-b =-2b .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750-743=7(万人);(2)由图可知2012年增加:,2013年增加:,2014年增加:,2015年增加:,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.(12分)如图,正方形ABCD内接于⊙O,M 为⌒AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2 时,求⌒BM的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=215,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC·CD 的大小关系;(2)求∠ABD 的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD 的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AD=BC=1,,∴AD=,DC=1-=.∴AD2=,AC•CD=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.(13分)如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN ,当DM=1时,求△ABN的面积;(3)当射线BN 交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出 NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:,∴DF的最大值=DC-CF=.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x-1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则,b=-2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x-1)2+2,∵抛物线经过原点,∴0=a(0-1)2+2,∴a=-2,∴抛物线解析式为y=-2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵,∴b=-2ah,∴y=ax2-2ahx,∵顶点A(h,k),∴k=ah2-2ah2=-ah2,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2-2ah2,∴t=-a,(3)∵点A在抛物线y=x2-x上,∴k=h2-h,又k=ah2-2ah2,∴,∵-2≤h<1,∴-2≤<1,①当1+a>0时,即a>-1时,,解得a>0,②当1+a<0时,即a<-1时,解得,综上所述,a的取值范围a>0或.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。
从第二次质检看2016年福州市中考数学试卷

从第二次质检看2016年福州市中考数学试卷(3)福州模式我在福州市一检后写过:、16年中考考点教学要点是:(1)25题考点:圆(2)26题考点:几何计算与第一动点问题(3)27题考点:抛物线第二动点问题这就是以福州为代表的几何模式。
再看看二检:第18题(简单第二动点问题)18.如图,点A在二次函数y=ax2(a>O)第一象限的图象上,AB⊥x轴,AC⊥y轴,垂足分别为B,C,连接BC.交函数图象于点D,则的值为.第25题(圆、面积问题)25.如图,△ABC中,∠A=30°,AB=AC,以B为圆心,BC长为半径画弧,交AC于点D,交AB于点E (1)求∠ABD的度数;(2)当BC=时,求线段AE,AD与围成阴影部分的面积.第26题(第一动点问题:最值问题)26.如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E(1)求证:△AMN是等腰三角形;(2)求BM•AN的最大值;(3)当M为BC中点时,求ME的长.第27题(抛物线第二动点问题:有关角存在性问题、辅助圆及交轨问题)27.如图,抛物线y=a (x ﹣2)2﹣1过点C (4,3),交x 轴于A ,B 两点(点A 在点B 的左侧). (1)求抛物线的解析式,并写出顶点M 的坐标; (2)连接OC ,CM ,求tan ∠OCM 的值;(3)若点P 在抛物线的对称轴上,连接BP ,CP ,BM ,当∠CPB=∠PMB 时,求点P 的坐标.二检的中考四题仍然保持几何模式。
二检之前曾有人断言要向厦门模式靠拢,在试题示例中也有暗示,如: 26.福州市中考考试说明的试题示例笫28题(15年厦门中考试题)已知点A (-2,n )在抛物线y =x 2+bx +c 上. (1)若b =1,c =3,求n 的值; (2)若此抛物线经过点B (4,n ),且二次函数y =x 2+bx +c 的最小值是-4,请画出点P (x -1,x 2+bx +c )的纵坐标随横坐标变化的图象,并说明理由.解析:(1)解:∵ b =1,c =3,∴ y =x 2+x +3.∵点A (-2,n )在抛物线y =x 2+x +3上,∴n =4-2+3=5.(2)解:∵点A (-2,n ),B (4,n )在抛物线y =x 2+bx +c 上,∴⎩⎨⎧4-2b +c =n ,16+4b +c =n .∴b =-2.∴顶点的横坐标是-b2=1.即顶点为(1,-4). ∴-4=1-2+c .∴c =-3. ∴P (x -1,x 2-2x -3). ∵将点(x ,x 2-2x -3)向左平移一个单位得点P (x -1,x 2-2x -3), ∴将点(x ,x 2-2x -3)的纵坐标随横坐标变化的函数的图象向左平移一个单位后可得点P (x -1,x 2-2x -3)的纵坐标随横坐标变化的函数的图象.设p =x -1,q =x 2-2x -3,则q =p 2-4.画出抛物线q =p 2-4的图象.(略)29.福州市中考考试说明的试题示例笫31题(16年北京东城一检倒1)已知两个函数,如果对于任意的自变量x ,这两个函数对应的函数值记为y 1,y 2,都有点(x ,y 1)、(x ,y 2)关于点(x ,x )对称,则称这两个函数为关于y =x 的对称函数.例如,112y x =和232y x =为关于y =x 的对称函数.(1)判断:①13y x =和2y x =-;②11y x =+和21y x =-;③211y x =+和221y x =-,其中为关于y =x的对称函数的是__________(填序号).(2)若132y x =+和2y kx b =+(0k ≠)为关于y =x 的对称函数.①求k 、b 的值.②对于任意的实数x ,满足x >m 时,12y y >恒成立,则m 满足的条件为______. (3)若21y ax bx c =++ (0)a ≠和22y x n =+为关于y =x 的对称函数,且对于任意的实数x ,都有12y y <,请结合函数的图象,求n 的取值范围.但二检不敢小试,不妨看看厦门5月新动向: 1.(厦门双十倒1)2.(厦门一中倒3)已知直线y =kx (k ≠0),点A 在直线y =kx 上且位于第一象限,点B 为x 轴正半轴上一点,AO =AB , 若点P (2,4)在直线y =kx 上,且线段AB 上有一点C 满足OA 2-15=AC 2,求点C 的纵坐标随横坐标变化的函数关系式.3.(厦门一中倒2)已知函数c bx x y x y ++==221,,方程y 1=y 2的两个根为m 、n ,点M (t ,T )在函数2y 的图象上. ⑴若m =3,n =1,求函数2y 的解析式;⑵若0<m <n <1,当01t <<时,试确定T 、m 、n 三者之间的大小关系,并说明理由.4.(厦门市翔安区)16. 设c b a ,,都是非负数,且满足3=++c b a ,53=-+c b a ,则c b a 245++的最大值是 .5.(厦门市翔安区倒4)设max{x,y}表示x ,y 两个数中的最大值。
2016年福州市初三二检数学试卷解析版

2016年福州市初三质检数学试卷一、选择题(共12小题,每题3分,满分36分,每小题只有一个正确选项,请在答题卡的相应位置填涂)1.下列算式中,与﹣1+2相等的是()A.2﹣1 B.﹣1﹣2 C.﹣(2﹣1)D.﹣(1+2)2.已知圆周率π=3.1415926…,将π精确到干分位的结果是()A.3.1 B.3.14 C.3.141 D.3.1423.下列图形中,∠1与∠2是同位角的是()A.B.C.D.4.下列运算结果是a6的式子是()A.a2•a3B.(﹣a)6C.(a3)3D.a12﹣a65.方程(x﹣2)2+4=0的解是()A.x1=x2=0 B.x1=2,x2=﹣2 C.x1=0,x2=4 D.没有实数根6.将∠AOB绕点O顺时针旋转15°,得到∠COD,若∠COD=45°,则∠AOB的度数是()A.15°B.30°C.45°D.60°7.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A.3 B.9 C.12 D.188.函数y=的图象是()A.B.C.D.9.如图,△ABC中,∠A=50°,O是BC的中点,以O为圆心,OB长为半径画弧,分别交AB,AC于点D,E,连接OD,OE,测量∠DOE的度数是()A.50°B.60°C.70°D.80°10.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.中位数C.众数 D.方差11.无论m为何值,点A(m,5﹣2m)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是()A.3 B.4 C.2D.二、填空题(共6小题,每题4分,满分24分)13.分解因式:x2﹣1=.14.若二次根式有意义,则x的取值范围是.15.2016年2月上旬福州地区空气质量指数(AQI)如下表所示,空气质量指数不大于100表示空气质量优良,2016年2月上旬福州地区空气质量指数(AQI)日期 1 2 3 4 5 6 7 8 9 10ug/m326 34 43 41 34 48 78 1 15 59 45如果小王该月上旬来福州度假三天那么他在福州度假期间空气质量都是优良的概率是.16.已知平行四边形ABCD中,点A,B,C的坐标分别是A(﹣1,1),B(1,﹣2),C(4,2),则点D的坐标是.17.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)tanα+tanβ.(填“>”“=”“<”)18.如图,点A在二次函数y=ax2(a>O)第一象限的图象上,AB⊥x轴,AC⊥y轴,垂足分别为B,C,连接BC.交函数图象于点D,则的值为.三、解答题(共9小题,满分90分)19.计算:﹣22﹣+(﹣1)0.20.化简:.21.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.22.顺风旅行社组织200人到花果岭和云水洞旅游,到花果岭的人数是到云水洞的人数的2倍少1人,到两地旅游的人数各是多少?23.2016年3月,某中学以“每天阅读l小时”为主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)请把折线统计图(图1)补充完整;(2)如果这所中学共有学生900名,那么请你估算最喜爱科普类书籍的学生人数.24.已知点A(m,n)在y=的图象上,且m(n﹣1)≥0.(1)求m的取值范围;(2)当m,n为正整数时,写出所有满足题意的A点坐标,并从中随机抽取一个点,求:在直线y=﹣x+6下方的概率.25.如图,△ABC中,∠A=30°,AB=AC,以B为圆心,BC长为半径画弧,交AC于点D,交AB 于点E(1)求∠ABD的度数;(2)当BC=时,求线段AE,AD与围成阴影部分的面积.26.如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E(1)求证:△AMN是等腰三角形;(2)求BM•AN的最大值;(3)当M为BC中点时,求ME的长.27.如图,抛物线y=a(x﹣2)2﹣1过点C(4,3),交x轴于A,B两点(点A在点B的左侧).(1)求抛物线的解析式,并写出顶点M的坐标;(2)连接OC,CM,求tan∠OCM的值;(3)若点P在抛物线的对称轴上,连接BP,CP,BM,当∠CPB=∠PMB时,求点P的坐标.2016年福建省福州市长乐市中考数学一模试卷参考答案与试题解析一、选择题(共12小题,每题3分,满分36分,每小题只有一个正确选项,请在答题卡的相应位置填涂)1.下列算式中,与﹣1+2相等的是()A.2﹣1 B.﹣1﹣2 C.﹣(2﹣1)D.﹣(1+2)【考点】有理数的加法;有理数的减法.【分析】根据有理数的加法法则,即可解答.【解答】解:﹣1+2=1,A、2﹣1=1,故正确;B、﹣1﹣2=﹣3,故错误;C、﹣(2﹣1)=﹣1,故错误;D、﹣(1+2)=﹣3,故错误;故选:A.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数的加法法则.2.已知圆周率π=3.1415926…,将π精确到干分位的结果是()A.3.1 B.3.14 C.3.141 D.3.142【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:π≈3.142(精确到干分位).故选D.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等.3.下列图形中,∠1与∠2是同位角的是()A.B.C.D.【考点】同位角、内错角、同旁内角.【分析】同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.【解答】解:根据同位角的定义,可知A是同位角.故选:A.【点评】本题考查了同位角,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.4.下列运算结果是a6的式子是()A.a2•a3B.(﹣a)6C.(a3)3D.a12﹣a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】探究型.【分析】先将选项中的式子进行化简算出正确的结果,然后进行对照即可解答本题.【解答】解:∵a2•a3=a5,(﹣a)6=a6,(a3)3=a9,a12﹣a6无法合并,故选B.【点评】本题考查幂的乘方与积的乘方、合并同类项、同底数幂的乘法,解题的关键是明确它们各自的计算方法.5.方程(x﹣2)2+4=0的解是()A.x1=x2=0 B.x1=2,x2=﹣2 C.x1=0,x2=4 D.没有实数根【考点】解一元二次方程-直接开平方法.【分析】先移项得到(x﹣2)2=﹣4,由实数的平方是非负数推知该方程无解.【解答】解:由已知方程得到:(x﹣2)2=﹣4,∵(x﹣2)2≥0,﹣4<0,∴该方程无解.故选:D.【点评】本题考查了解一元二次方程﹣﹣因式分解法.关键是将方程右侧必须一个非负已知数.6.将∠AOB绕点O顺时针旋转15°,得到∠COD,若∠COD=45°,则∠AOB的度数是()A.15°B.30°C.45°D.60°【考点】旋转的性质.【分析】直接根据旋转的性质求解.【解答】解:∵∠AOB绕点O顺时针旋转15°,得到∠COD,∴∠AOB=∠COD=45°.故选C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A.3 B.9 C.12 D.18【考点】几何体的表面积.【分析】观察几何体,得到这个几何体向前、向后、向上、向下、向左、向右分别有3个正方形,则它的表面积=6×3×1.【解答】解:这个几何体的表面积=6×3×1=18.故选:D.【点评】本题考查了几何体的表面积:正方体表面积为6a2 (a为正方体棱长).8.函数y=的图象是()A.B.C.D.【考点】反比例函数的图象.【分析】根据反比例函数的值域进行判断.【解答】解:∵函数y=中的y>0,且关于y轴对称.∴选项C符合题意.故选:C.【点评】本题考查了反比例函数的图象.解题时,从函数解析式入手分析得到:y的值是正数,且y==,由此得到该函数图象.9.如图,△ABC中,∠A=50°,O是BC的中点,以O为圆心,OB长为半径画弧,分别交AB,AC于点D,E,连接OD,OE,测量∠DOE的度数是()A.50°B.60°C.70°D.80°【考点】圆的认识.【分析】首先根据圆的性质得到OC=OB=OD=OE,然后根据∠A=50°求得∠B+∠C=130°,从而得到∠CEO+∠BDO=130°,即∠AEO+∠ADO=230°,利用∠EOD=360°﹣∠A﹣∠AEO﹣∠ADO求解.【解答】解:如图,根据题意得:OC=OB=OD=OE,∵∠A=50°,∴∠B+∠C=130°,∴∠CEO+∠BDO=130°,∴∠AEO+∠ADO=230°,∴∠EOD=360°﹣∠A﹣∠AEO﹣∠ADO=360°﹣50°﹣230°=80°,故选D.【点评】本题考查了圆的认识,解题的关键是能够了解三角形的内角和定理和四边形的内角和的知识,难度不大.10.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.中位数C.众数 D.方差【考点】统计量的选择.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选B.【点评】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.11.无论m为何值,点A(m,5﹣2m)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).【解答】解:当m<0时,5﹣2>0,点A(m,5﹣2m)在第二象限,当0<m时,点A(m,5﹣2m)在第一象限,当m时,点A(m,5﹣2m)在第四象限.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是()A.3 B.4 C.2D.【考点】相似三角形的判定与性质;角平分线的性质.【分析】过点D作DE⊥AB交AB于E,设CD=x,则BD=8﹣x,根据角平分线的性质得到,求得CD=3,求得S△ABD=AB•DE=3=15,由勾股定理得到AD==3,根据三角形的面积公式即可得到结论.【解答】解:过点D作DE⊥AB交AB于E,设CD=x,则BD=8﹣x,∵AD平分∠BAC,∴,即,∴x=3,∴CD=3,∴S△ABD=AB•DE=3=15,∵AD==3,设BD到AD的距离是h,∴S△ABD=AD•h,∴h=2.故选C.【点评】本题考查了角平分线的性质,三角形的面积公式,三角形的角平分线定理,正确的作出辅助线是解题的关键.二、填空题(共6小题,每题4分,满分24分)13.分解因式:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了平方差公式分解因式的知识.题目比较简单,解题需细心.14.若二次根式有意义,则x的取值范围是x≥2.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.【点评】本题考查二次根式的意义,只需使被开方数大于或等于0即可.15.2016年2月上旬福州地区空气质量指数(AQI)如下表所示,空气质量指数不大于100表示空气质量优良,2016年2月上旬福州地区空气质量指数(AQI)日期 1 2 3 4 5 6 7 8 9 10ug/m326 34 43 41 34 48 78 1 15 59 45如果小王该月上旬来福州度假三天那么他在福州度假期间空气质量都是优良的概率是.【考点】概率公式.【分析】先求出3天中空气质量都是优良的情况数,再根据概率公式求解即可..【解答】解:∵由图可知,当1号到达时,停留的日子为1、2、3号,此时3天空气质量均为优;当2号到达时,停留的日子为2、3、4号,此时3天空气质量均为优;当3号到达时,停留的日子为3、4、5号,此时3天空气质量均为优;当4号到达时,停留的日子为4、5、6号,此时3天空气质量均为优;当5号到达时,停留的日子为5、6、7号,此时3天空气质量均为优;当6号到达时,停留的日子为6、7、8号,此时2天空气质量为优;当7号到达时,停留的日子为7、8、9号,此时2天空气质量为优;当8号到达时,停留的日子为8、9、10号,此时3天空气质量均为优;∴小王该月上旬来福州度假三天那么他在福州度假期间空气质量都是优良的概率是,故答案为:.【点评】本题考查的是概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.已知平行四边形ABCD中,点A,B,C的坐标分别是A(﹣1,1),B(1,﹣2),C(4,2),则点D的坐标是(2,5).【考点】平行四边形的性质;坐标与图形性质.【分析】根据平行四边形的性质和A、B、C的坐标得出A点的纵坐标和B点的纵坐标的差为3,横坐标差为﹣2,即可得出点D的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,∵A(﹣1,1),B(1,﹣2),C(4,2),∴A点的纵坐标和B点的纵坐标的差为3,横坐标差﹣2,∴D(2,5),故答案为:(2,5).【点评】本题考查了平行四边形性质和坐标与图形性质;熟练掌握平行四边形的性质是解决问题的关键.17.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)>tanα+tanβ.(填“>”“=”“<”)【考点】特殊角的三角函数值;等腰直角三角形;锐角三角函数的定义.【专题】网格型.【分析】根据正切的概念和正方形网格图求出tanα和tanβ,根据等腰直角三角形的性质和tan45°的值求出tan(α+β),比较即可.【解答】解:由正方形网格图可知,tanα=,tanβ=,则tanα+tanβ=+=,∵AC=BC,∠ACB=90°,∴α+β=45°,∴tan(α+β)=1,∴tan(α+β)>tanα+tanβ,故答案为:>.【点评】本题考查的是特殊角的三角函数值、锐角三角函数的定义以及等腰直角三角形的性质,熟记特殊角的三角函数值、正确理解锐角三角函数的定义是解题的关键.18.如图,点A在二次函数y=ax2(a>O)第一象限的图象上,AB⊥x轴,AC⊥y轴,垂足分别为B,C,连接BC.交函数图象于点D,则的值为.【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征.【分析】设A(m,am2),则B(m,0),C(0,am2),根据待定系数法求得直线BC的解析式,然后联立方程求得D的坐标即可求得的值.【解答】解:设A(m,am2),则B(m,0),C(0,am2),设直线y=kx+b,∴,解得,∴y=﹣amx+am2,解得x1=,x2=m(舍去),∴==.故答案为.【点评】本题考查了二次函数图象上点的坐标特征,待定系数法求一次函数的解析式以及二次函数和一次函数的交点问题,求得D的坐标是解题的关键.三、解答题(共9小题,满分90分)19.计算:﹣22﹣+(﹣1)0.【考点】实数的运算;零指数幂.【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣22﹣+(﹣1)0.=﹣4﹣(﹣2)+1=﹣1【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.20.化简:.【考点】分式的加减法.【专题】计算题;分式.【分析】原式第二项约分后,去括号合并即可得到结果.【解答】解:原式=a+b﹣=a+b﹣(a+b)=a+b﹣a﹣b=0.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.【考点】全等三角形的判定.【专题】证明题.【分析】根据垂直的定义可得∠ADC=∠E=90°,然后根据同角的余角相等求出∠B=∠ACD,再利用“角角边”证明△ACD≌△CBE.【解答】证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵∠B+∠BCE=90°,∴∠B=∠ACD,在△BEC和△CDA中,,∴△ACD≌△CBE(AAS).【点评】本题考查了全等三角形的判定与性角相等求出∠B=∠ACD是证明三角形全等的关键.22.顺风旅行社组织200人到花果岭和云水洞旅游,到花果岭的人数是到云水洞的人数的2倍少1人,到两地旅游的人数各是多少?【考点】二元一次方程组的应用.【分析】此题中的等量关系有:①顺风旅行社组织200人到花果岭和云水洞旅游;②到花果岭的人数是到云水洞的人数的2倍少1人.【解答】解:设到花果岭的旅游人数为x人,则到云水洞的人数为y人,根据题意得出:,解得:,答:到花果岭的旅游人数为133人,则到云水洞的人数为67人.【点评】本题考查了二元一次方程组的应用.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.23.2016年3月,某中学以“每天阅读l小时”为主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)请把折线统计图(图1)补充完整;(2)如果这所中学共有学生900名,那么请你估算最喜爱科普类书籍的学生人数.【考点】折线统计图;用样本估计总体;扇形统计图.【分析】(1)用文学的人数除以所占的百分比计算即可得总人数,根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(2)用总人数乘以科普所占的百分比,计算即可得解.【解答】解:(1)一共调查了45÷30%=150(名),艺术的人数:150×20%=30名,其它的人数:150﹣(40+45+20+30)=15名;补全折线图如图:(2)最喜爱科普类书籍的学生人数为:×900=240(人),答:估算最喜爱科普类书籍的学生有240人.【点评】本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比,根据题意从统计图中读取有用信息是解题关键.24.已知点A(m,n)在y=的图象上,且m(n﹣1)≥0.(1)求m的取值范围;(2)当m,n为正整数时,写出所有满足题意的A点坐标,并从中随机抽取一个点,求:在直线y=﹣x+6下方的概率.【考点】反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.【分析】(1)先把点A(m,n)代入y=,求出m,n的值,把m,n的值代入mn﹣m≥0即可得出结论.(2)根据(1)求得所有的可情况,再求出符合条件的情况,即可求得答案.【解答】解:(1)∵A(m,n)在y=的图象上,∴mn=6,∵m(n﹣1)≥0,∴mn﹣m≥0,∴6﹣m≥0解得m≤6.(2)∵m≤6,mn=6,m,n为正整数,∴满足条件的A点的坐标为(6,1)或(3,2)或(2,3)或(1,6);在直线y=﹣x+6下面的点有:(3,2),(2,3)共2个,故在直线y=﹣x+6下方的概率==.【点评】本题考查的是反比例函数和一次函数图象上点的坐标特点,熟知图象上各点的坐标一定适合此函数的解析式是解答此题的关键.25.如图,△ABC中,∠A=30°,AB=AC,以B为圆心,BC长为半径画弧,交AC于点D,交AB 于点E(1)求∠ABD的度数;(2)当BC=时,求线段AE,AD与围成阴影部分的面积.【考点】扇形面积的计算;等腰三角形的性质.【分析】(1)根据AB=AC,利用三角形内角和定理求出∠ABC、∠BCD的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠ABD的度数;(2)过点D作DF⊥AB与F,在RT△BDF中和RT△BDF中分别求出DF、BF、AF的长,即可知AB的长,最后根据S阴影=S△ABD﹣S扇形BDE列式可求得.【解答】解:(1)∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵BC=BD,∴∠BDC=∠BCD=75°,∴∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=45°;(2)过点D作DF⊥AB与F,在RT △BDF 中,∠FBD=45°,BD=BC=,∴BF=DF=BDsin45°=×=1, 在RT △BDF 中,∠A=30°,∴AD=2DF=2,AF=, ∴AB=AF+BF=+1,∴S 阴影=S △ABD ﹣S 扇形BDE =AB •DF ﹣=. 【点评】本题主要考查对等腰三角形的性质和扇形面积等知识点的理解和掌握,此题的突破点是利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后利用割补法可求阴影部分面积.26.如图,矩形ABCD 中,AB=3,BC=2,点M 在BC 上,连接AM ,作∠AMN=∠AMB ,点N 在直线AD 上,MN 交CD 于点E(1)求证:△AMN 是等腰三角形;(2)求BM •AN 的最大值;(3)当M 为BC 中点时,求ME 的长.【考点】相似形综合题.【分析】(1)根据矩形的性质和平行线的性质证明即可;(2)作NH ⊥AM 于H ,证明△NAH ∽△AMB ,根据相似三角形的性质得到AN •BM=AM 2,根据勾股定理计算即可;(3)由(2)的结论,结合相似三角形的性质求出CE,根据勾股定理计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,又∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)解:作NH⊥AM于H,∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠AMN=∠AMB,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,在Rt△AMB中,AM2=AB2+BM2=9+BM2,∵BM≤2,∴9+BM2≤13,∴AN•BM≤,即当BM=2时,BM•AN的最大值为;(3)解:∵M为BC中点,∴BM=CM=BC=1,由(2)得,AN•BM=AM2,∵AM2=32+12=10,∴AN=5,∴DN=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴=,即=,解得,x=,即CE=,∴CE=,∴ME==.【点评】本题考查的是相似三角形的判定和性质、勾股定理的应用以及等腰三角形的性质和矩形的性质,掌握相似三角形的判定定理和性质定理是解题的关键,注意方程思想的正确运用.27.如图,抛物线y=a(x﹣2)2﹣1过点C(4,3),交x轴于A,B两点(点A在点B的左侧).(1)求抛物线的解析式,并写出顶点M的坐标;(2)连接OC,CM,求tan∠OCM的值;(3)若点P在抛物线的对称轴上,连接BP,CP,BM,当∠CPB=∠PMB时,求点P的坐标.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;根据顶点式解析式,可得顶点坐标;(2)根据勾股定理及逆定理,可得∠OMC=90°,根据正切函数,可得答案;(3)根据相似三角形的判定与性质,可得PM的值,可得M点坐标.【解答】解:(1)由抛物线y=a(x﹣2)2﹣1过点C(4,3),得3=a(4﹣2)2﹣1,解得a=1,抛物线的解析式为y=(x﹣2)2﹣1,顶点M的坐标为(2,﹣1);(2)如图1,连接OM,OC2=32+42=25,OM2=22+12=5,CM2=22+42=20,∴CM2+OM2=OC2,∴∠OMC=90°,OM=,CM=2,tan∠OCM===;(3)如图2,过C作CN⊥对称轴,垂足N在对称轴上,取一点E,使EN=CN=2,连接CE,EM=6.当y=0时,(x﹣2)2﹣1=0,解得的x1=1,x2=3,A(1,0),B(3,0).由CN=EN,PB=PM,得∠CEP=∠PMB=∠CPB=45°.∵∠CPM=∠CEP+∠ECP,∴∠ECP=∠BPM,∴△CEP∽△PMB,∴=,解得MB=,CE=2,∴=,解得PM=3,P点坐标为(2,2+)或(2,2﹣).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用相似三角形的判定与性质得出PM的值是解题关键.。
2016年福州市中考数学试题及答案

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题(全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题!毕业学校姓名考生号一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项)1.下列实数中的无理数是A.0.7 B.21C.πD.-82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A.B.C.D.3.如图,直线a、b被直线C所截,∠1和∠2的位置关系是A.同位角B.内错角C.同旁内角D.对顶角4.下列算式中,结果等于a6的是A.a4+a2B.a2+a2+a2C.a4·a2D.a2·a2·a25.不等式组⎩⎨⎧>->+31xx的解集是A.x>-1 B.x>3 C.-1<x<3 D.x<36.下列说法中,正确的是A.不可能事件发生的概率为0B.随机事件发生的概率为21C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C(-m,-n),则点D的坐标是A.(-2 ,l )B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )⌒AB上一点(不与9.如图,以O 为圆心,半径为1 的弧交坐标轴于A,B 两点,P是A,B重合),连接OP,设∠POB=α,则点P的坐标是A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)年龄/岁13 14 15 16第2题频数 5 15 x 10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是A .平均数,中位数B .众数,中位数C .平均数,方差D .中位数,方差11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0二、填空题(共6小题,每题4分,满分24分)13.分解因式:x 2-4= .14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 .15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”) 17.若x +y =10,xy =1 ,则x 3y +xy 3= .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC的值是 .三、解答题(共9 小题,满分90 分)19.(7分)计算:|-1|-38+(-2016)0 . 20.(7分)化简:a -b -ba b a ++2)( 21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两x y O x yO x y O x y O种票各买了多少张? 23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是 万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.25.如图,在△ABC 中,AB =AC =1,BC =215 ,在AC 边上截取AD =BC ,连接BD . (1)通过计算,判断AD 2与AC ·CD 的大小关系;(2)求∠ABD 的度数.26.(13分)如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .(1)当AN 平分∠MAB 时,求DM 的长;(2)连接BN ,当DM =1时,求△ABN 的面积;(3)当射线BN 交线段CD 于点F 时,求DF 的最大值.27.(13分)已知,抛物线y =ax 2+bx +c ( a ≠0)经过原点,顶点为A ( h ,k ) (h ≠0).(1)当h =1,k =2时,求抛物线的解析式;(2)若抛物线y =tx 2(t ≠0)也经过A 点,求a 与t 之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.。
2016年福建省福州市中考数学试题(含解析)-精编.doc

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题 (全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题!毕业学校 姓名 考生号一、 选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项)1.下列实数中的无理数是A .0.7B .21C .πD .-8【考点】无理数.【专题】计算题. 【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,-8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1, 故选:C .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a 、b 被直线C 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a ,b 被直线c 所截,∠1与∠2是内错角.故选B .【点评】本 题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类 角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a 6 的是A .a 4+a 2B .a 2+a 2+a 2C .a 4·a 2D .a 2·a 2·a 2【考点】同底数幂的乘法;合并同类项.第2题【专题】计算题;推理填空题.【分析】A :a 4+a 2≠a 6,据此判断即可.B :根据合并同类项的方法,可得a 2+a 2+a 2=3a 2.C :根据同底数幂的乘法法则,可得a 2•a 3=a 5.D :根据同底数幂的乘法法则,可得a 2•a 2•a 2=a 6.【解答】解:∵a 4+a 2≠a 6,∴选项A 的结果不等于a 6;∵a 2+a 2+a 2=3a 2,∴选项B 的结果不等于a 6;∵a 2•a 3=a 5,∴选项C 的结果不等于a 6;∵a 2•a 2•a 2=a 6,∴选项D 的结果等于a 6.故选:D .【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组⎩⎨⎧>->+0301x x 的解集是A .x >-1B .x >3C .-1<x <3D .x <3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解解不等式①,得x >-1,解不等式②,得x >3,由①②可得,x >3,故原不等式组的解集是x >3.故选B .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21C .概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为 P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P (A)=1;不可能发生事件的概率 P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C(-m,-n),则点D的坐标是A.(-2 ,l )B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(-m,-n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,-1),∴点D的坐标是(-2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以O 为圆心,半径为1 的弧交坐标轴于A,B 两点,P是⌒AB上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P 作PQ⊥OB,交OB 于点Q ,在Rt△OPQ 中,OP=1,∠POQ=α, ∴,,即PQ=sinα,OQ=cosα,则P 的坐标为(cosα,sinα),故选C .【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布年龄/岁 13 1415 16 频数 5 15x 10-x对于不同的x A .平均数,中位数 B .众数,中位数C .平均数,方差D .中位数,方差 【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:,即对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选:B .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D【考点】坐标确定位置;函数的图象.【分析】由点A (,m ),C (2,m+1)在同一个函数图象上,可得A 与B 关于y 轴对称,当x >0时,y 随x 的增大而增大,继而求得答案.【解答】解:∵点A (-1,m ),B (1,m ),∴A 与B 关于y 轴对称,故A ,B 错误;∵B(1,m ),C (2,m+1),∴当x >0时,y 随x 的增大而增大,故C 正确,D 错误.故选C .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.x y O x y O x y O x y O12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(-4)2-4ac=16-4ac≥0,且a≠0,∴ac≤4,且a≠0;A 、若a >0,当a=1、c=5时,ac=5>4,此选项错误;B 、a=0不符合一元二次方程的定义,此选项错误;C 、若c >0,当a=1、c=5时,ac=5>4,此选项错误;D 、若c=0,则ac=0≤4,此选项正确;故选:D .【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每题4分,满分24分)13.分解因式:x 2-4= .【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x 2-4=(x+2)(x-2).故答案为:(x+2)(x-2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x 的取值范围.【解答】解:若二次根式1-x 在实数范围内有意义,则:x+1≥0,解得x≥-1.故答案为:x ≥-1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x 1图象上的概率是 .【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数图象上,再让在反比例函数图象上点的个数除以点的总数即为在反比例函数图象上的概率,依此即可求解.【解答】解:∵-1×1=-1,2×2=4,,,∴2个点的坐标在反比例函数图象上,∴在反比例函数图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r下,则r上r下.(填“>“,”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上<r下.故答案为<.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1 ,则x3y+xy3=.【考点】代数式求值.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2-2xy,然后将x+y与xy的值代入即可.【解答】解:x3y+xy3=xy(x2+y2)=xy[(x+y)2-2xy]=1×(102-2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y 与xy 的值,则x 2+y 2=(x+y )2-2xy ,再将x+y 与xy 的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA 、EB ,先证明∠AEB=90°,根据,求出AE 、EB 即可解决问题.【解答】解:如图,连接EA ,EC ,设菱形的边长为a ,由题意得∠AEF=30°,∠BEF=60°,,EB=2a ∴∠AEB=90°, ∴. 故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9 小题,满分90 分) 19.(7分)计算:|-1|-38+(-2016)0 .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|-1|-38+(-2016)0=1-2+1=0. 【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.(7分)化简:a -b -b a b a ++2)(【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a-b-(a+b )=a-b-a-b=-2b .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750-743=7(万人);(2)由图可知2012年增加:,2013年增加:,2014年增加:,2015年增加:,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.(12分)如图,正方形ABCD内接于⊙O,M 为⌒AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2 时,求⌒BM的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=215,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC·CD 的大小关系;(2)求∠ABD 的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD 的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AD=BC=1,,∴AD=,DC=1-=.∴AD2=,AC•CD=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.(13分)如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN ,当DM=1时,求△ABN的面积;(3)当射线BN 交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出 NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:,∴DF的最大值=DC-CF=.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x-1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则,b=-2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x-1)2+2,∵抛物线经过原点,∴0=a(0-1)2+2,∴a=-2,∴抛物线解析式为y=-2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵,∴b=-2ah,∴y=ax2-2ahx,∵顶点A(h,k),∴k=ah2-2ah2=-ah2,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2-2ah2,∴t=-a,(3)∵点A在抛物线y=x2-x上,∴k=h2-h,又k=ah2-2ah2,∴,∵-2≤h<1,∴-2≤<1,①当1+a>0时,即a>-1时,,解得a>0,②当1+a<0时,即a<-1时,解得,综上所述,a的取值范围a>0或.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。
福建省泉州市2016年初中学业质量检查数学试题(含答案).课案

A .B .C .D .2016年福建省泉州市初中学业质量检查数 学 试 卷(试卷满分:150分;考试时间:120分钟)友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题(每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分. 1.2016-的相反数是( ).A .2016B .2016-C .12016D .12016-2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( ).3.一组数据2、9、5、5、8、5、8的中位数是( ).A .2B .5C .8D .9 4.下列计算正确的是( ).A .22423a a a +=B .2a a a -=C .235a a a ⋅=D .632a a a ÷=5.下列图形不是..轴对称图形的是( ). A .正方形 B .等腰三角形 C .圆 D .平行四边形 6. 菱形的两条对角线长分别为6和8,则菱形的周长是( ).A .40B .24C .20D .107. 使不等式x -1≥2与3x -7<8同时成立的x 的整数值是( ). A .3,4B .4,5C .3,4,5D .4二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答. 8.81的平方根是 .9. 据报道,2016年2月9日,约有30 000 000海内外泉州人士关注央视春晚“泉州风采”, 将30 000 000用科学记数法表示为 . 10. 分解因式:22_________x x -=.11.边形的内角和等于900°,则 . 12. 计算:3622n n n+=-- . 13. 方程组,34y x x y =⎧⎨+=⎩的解是 .14.抛物线y =x x 22-的对称轴为直线 .15. 如图,在▱ABCD 中,BC =10,则AD 的长是 .16. 一个扇形的半径是5cm ,面积是15πcm 2,这个扇形的弧长是 cm . 17. 如图,在△ABC 中,∠C =90º,∠ABC 的平分线BD 交AC 于点D ,CD =1,AD =2.则(1)点 D 到直线AB 的距离是 ; (2)BC 的长度为 .三、解答题(共89分):在答题卡上相应题目的答题区域内作答.18.(9分)11(1)32π-⎛⎫-+-+ ⎪⎝⎭.19.(9分)先化简,再求值:2(1)(6)a a a ++-,其中12a =-.(第15题图)DCBA(第17题图)D CBA20.(9分)在一个不透明的口袋里装有四个小球,球面上分别标有数字2-、0、1、2,它们除数字不同外没有任何区别,每次实验先搅拌均匀. (1)从中任取一球,求抽取的数字为负数的概率;(2)从中任取一球,将球上的数字记为x (不放回);再任取一球,将球上的数字记为y ,试用画树状图(或列表法)表示所有可能出现的结果,并求“0x y +>”的概率.21. (9分)如图,AD //BC ,∠BAD =90°,以点B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过C 点作CF ⊥BE ,垂足为F .证明:AB =FC .22. (9分) 今年泉州元宵期间,某数学兴趣小组为了了解游客最喜欢的花灯类型,随机抽取部分游客进行调查,并将调查的结果绘制成下面两幅不完整的统计图:(1)本次共抽取的游客人数为__________,“传统”型所对应的圆心角为________ º; (2)将条形统计图补充完整;(3)据了解,今年观赏花灯的游客约100万人次,请你估计“最喜欢现代型”花灯的人数是多少?23. (9分)在平面直角坐标系中,反比例函数k y x =的图象过点A (32,2). (1)求k 的值;(2)如图,在反比例函数ky x=(0)x >上有一点C ,过A 点的直线l //x 轴,并与OC 的延长线交于点B ,且2OC BC =,求点C 的坐标.24.(9分) 某公司销售智能机器人,售价每台为10万元,进价y与销售量x的函数关系式如图所示.(1)当x=10时,公司销售机器人的总利润...为万元;(2)当10≤x≤30时,求出y与x的函数关系式;(3)问:销售量为多少台时,公司销售机器人的总利润为37.5万元.25.(13分) 在平面直角坐标系中,直线335y x=-+与x轴、y轴相交于B、C两点.动点D在线段OB上,将线段DC绕着点D顺时针旋转90︒得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥y轴,交直线l于F,设点D的横坐标为m.(1)填空:请直接写出点B、C的坐标;(2)当点E落在直线BC上时,求tan∠FDE的值;(3)对于常数m,探究:在直线l上是否存在点G,使得CDO DFE DGH∠=∠+∠?若存在,请求出点G的坐标;若不存在,请说明理由.)26.(13分) 如图,∠ABC =45 º,ADE ∆是等腰直角三角形,AE AD =,顶点A 、D 分别在∠ABC 的两边BA 、BC 上滑动(不与点B 重合),ADE ∆的外接圆交BC 于点F ,O 为圆心.(1) 直接写出∠AFE 的度数; (2) 当点D 在点F 的右侧时,①求证:EF DF -=;②若24=AB ,28<BE ≤134,求⊙O 的面积S 的取值范围.2016年福建省泉州市初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1.A 2.D 3.B 4.C 5.D 6.C 7.A 二、填空题(每小题4分,共40分)8.9± 9.7310⨯ 10.(2)x x - 11.7 1 2.3 13.11x y =⎧⎨=⎩14.1x = 15.10 16.6π 17.(1)1, 三、解答题(共89分) 18.(本小题9分)解:原式4132=-++………………………………………8分8=.……………………………………………………9分19.(本小题9分)解:原式=22126a a a a +++-=81a +.………………………………………6分当21-=a 时, 原式=18()12⨯-+=3-.……………………………………………… 9分20.(本小题9分)解:(1)根据题意得:抽取的数字为负的情况有1个,则P (数字为负数)=14; …3分 (2)解法一:列表如下:……………………………………………………………………7分解法二:画出树状图如下:证明:∵BE 、BC 为⊙B 的半径,∴BE=BC .…………………………1分 ∵AD//BC ,∴∠AEB=∠EBC .……3分 ∵CF ⊥BE ,∠BAD=90°, ∴∠BFC=∠BAE=90°,……………5分 ∴△ABE ≌△FCB , ………………7分 ∴AB=FC . …………………………9分22.(本小题9分)(1)1000,144; ………………………………4分 (2)补充的图形如图; …………………………6分(3)解:100×1401000=14(万人). ………………9分 答:“最喜欢创意型”花灯的人数约是14万人.23.(本小题9分)12开始-2解:(1)把点A (32,2)代入ky x= 得3k =;…………………………………3分 (2)过点C 作MN ⊥x 轴,分别交l 、x 轴于点M 、N . ∵AB y ⊥轴,∴MB ∥x 轴, ∴△MBC ∽△NOC ,∴BC CM OC CN=.……………………………………6分 ∵2OC BC =,12CM CN =,即23CN MN =. ∵A (32,2),∴2MN =, ∴43CN =,∴433x =,解得94x =.…………8分∴C (94,43).……………………………………………………………9分 24.(本小题9分)解: (1) x =10时,公司销售机器人总利润...为 20 万元;………………………2分 (2) 设y 与x 的函数关系式是(0)y kx b k =+≠, ……………………………3分依题意,可得⎩⎨⎧=+=+,630,810b k b k ………………………………………………4分解得⎪⎩⎪⎨⎧=-=.9,101b k∴当10≤x ≤30时, y 与x 的函数关系式1910y x =-+;………………………5分 (3) ∵37.520>,∴10m >.又∵m 为正整数,∴437.5m ≠,∴只有在10≤m ≤30内,公司销售机器人的总利润才有可能为37.5万元.……6分 依题意得:110(9)37.510m m ⎡⎤--+=⎢⎥⎣⎦, ……………………………………7分 解得:115m =,225m =-(舍去).答:销售量为15台时,公司销售机器人的总利润为37.5万元. ……………9分25.(本小题13分)解:(1)(5,0)B ,(0,3)C ;……………………………………………………………4分(2) 法一:∵CD DE ⊥,∴ 90CDO EDH ∠+∠=︒.∵ 90OCD CDO ∠+∠=︒, ∴OCD EDH ∠=∠.∵CD DE =, 90COD FHD ∠=∠=︒,∴△OCD ≌△HDE ,………………………………5分 ∴HD=OC .∵l ⊥x 轴,CF ⊥y 轴,∴HF OC =,∴HF HD =,∴45HDF FDE EDH ∠=∠+=︒. ∵CD DE =,90CDE ∠=︒,∴45DCE ∠=︒, ∴45OCD FCE ∠+∠=︒, 即45EDH FCE ∠+∠=︒,∴ECF EDF ∠=∠.……………………………………………………6分 ∵CF ⊥y 轴,∴FC ∥x 轴,∴BCF CBO ∠=∠.∵点E 落在直线BC 上,∴EDF ECF BCF CBO ∠=∠=∠=∠.……………………………………7分 在Rt △OCB 中,3OC =,5OB =,∴tan CBO ∠=OC OB =35,∴tan FDE ∠=35;……………………………………8分 法二:∵CD DE ⊥,∴ 90CDO EDH ∠+∠=︒.∵ 90OCD CDO ∠+∠=︒,∴OCD EDH ∠=∠.∵CD DE =, 90COD FHD ∠=∠=︒,∴△OCD ≌△HDE ,∴3HD OC ==.………5分 ∴点E 的坐标为(m+3, m ) .∵点E 在直线335y x =-+上,∴3)3(53++-=m m ,∴43=m ,∴43=EH ,49=EF .……………6分由勾股定理得:417322=+=EH DH DE , 2322=+=FH DH DF .如图,过点E 作EM ⊥DF ,垂足为M. ∵EM DF DH EF S DEF ⋅=⋅=∆2121,∴829=⋅=DF DH EF EM .…………7分 由勾股定理得:821522=-=ME DE DM . xyO MCDEF l BH数学试题(含草稿纸) 第 11 页 共 12 页∴tan FDE ∠=DM EM =35;…………………8分 (3) 如图,由(2)可知△OCD ≌△HDE ,∴CDO DEH ∠=∠.要使CDO DFE DGH ∠=∠+∠,只要DEH DFE DGH ∠=∠+∠. 在△DEF 中,DEH EDF DFE ∠=∠+∠,∴只要EDF DGF ∠=∠.又∵∠FED =∠GED ,∴只要△EDF ∽△EGD , ∴只要EF DE DE EG=,即2DE EF EG =⋅. ………………………………9分 由(2) 可知2222DE CD OD OC ==+=223m +,3EF m =-.∴当03m <<时,293m EG m+=-,此时299333m mHG m m m++=+=--,3HO m =+, 此时933,3m G m m +⎛⎫+ ⎪-⎝⎭.…………10分 根据对称可知,当03m ≤<时,此时还存在'933,3m G m m +⎛⎫+-⎪-⎝⎭.…………11分 当m =3,时,此时点E 在点F 重合,∠DFE 不存在.当3<m ≤5时,点E 在点F 上方,此时∠DFE >∠DEF , ∴此时不存在CDO DFE DGH ∠=∠+∠…………12分 综上所述,当03m ≤<时,存在CDO DFE DGH ∠=∠+∠,此时933,3m G m m +⎛⎫+ ⎪-⎝⎭或933,3m m m +⎛⎫+- ⎪-⎝⎭;当35m ≤≤时,不存在CDO DFE DGH ∠=∠+∠. ………………………13分26.(本小题13分)解:(1)∠AFE =45º;…………………………………………3分(2)①法一:如图,连接AF 、EF . ∵∠EFD =∠EAD =90 º, ∴∠BFE =90 º.∵∠AFE =45 º,∴∠AFB =∠ABF=45 º, ..............................4分 ∴AF AB =,∠BAF =90 º,∴∠BAD =∠F AE . (5)又∵AE AD =,∴ABD ∆≌AFE ∆, …………………………6 F数学试题(含草稿纸) 第 12 页 共 12 页∴EF BD =,∴BF DF BD DF EF =-=-. ……………7分 ∵BF AFB BF AF 22cos =∠⋅=,即AF BF 2=.∴EF DF -=;…………………………………………8分 法二:如图,连接AF 、EF .过点A 作AF GA ⊥,垂足为A . ∵ADE ∆是等腰直角三角形,AD=AE ,∴∠EAD =90 º, ……4分 ∴∠EAD =∠GAF =90 º,∴∠EAG =∠DAF .……………………5分 又∵∠AEG =∠ADF ,∴AEG ∆≌ADF ∆,∴DF EG =.…6分∵AF AFGAFGF 2cos =∠=,………………………………7分∴EF DF -=;…………………………………………8分 ②由(2)①得,EF BD =. ∵∠BAF= 90º,24=AB ,∴845cos 24cos 0==∠=ABF AB BF . …………9分设x BD =,则x EF =,8-=x DF . ∵222BF EF BE +=,28<BE ≤134,∴128<228+EF ≤208,∴8<EF ≤12,即8<x ≤12.……………………10分[]ππππ8)4(2)8(442222+-=-+==x x x DE S ,…………………………11分∵2π>0,∴抛物线的开口向上.又∵对称轴为直线4=x ,∴当8<x ≤12时,S 随x 的增大而增大, ……12分 ∴π16<S ≤π40. ………………………………………13分。
2016年福州初中中考数学考试说明.

2016年福州市初中毕业会考与高中招生考试数学学科考试说明一、考试性质初中毕业会考与高中招生考试是义务教育初中阶段的终结性考试,目的是全面、准确地反映初中毕业生是否达到《义务教育数学课程标准(2011年版)》(以下简称《数学课程标准》)所规定的学业水平.考试结果不仅衡量学生是否达到毕业标准,也是高一级学校招生的重要依据,同时也检测区域和群体的数学教学质量.二、命题依据《数学课程标准》及省考试大纲.三、命题原则1.导向性:体现义务教育性质,体现《数学课程标准》理念,落实《数学课程标准》所设立的课程目标,面向全体学生,关注每个学生的不同发展;关注数学概念的理解和解释,关注数学规则的选择和运用,关注数学问题的发现与解决;促进师生在教与学方式上的转变,促进数学教学质量的提升.2.公平性:试题素材、背景应符合学生所能理解的生活现实、数学现实和其他学科现实,考虑城乡学生认知的差异性,避免偏题、怪题.3.科学性:试卷的命制应严格按照命题的程序和要求进行,有效发挥各种题型的功能,保持测量目标与行为目标一致,避免出现知识性、技术性、科学性错误.4.基础性:突出基础知识、基本技能、基本思想、基本活动经验的考查,注重对数学问题解决的通性通法的考查,注重考查学生对其中所蕴含的数学本质的理解,关注学生学习数学过程与结果的考查.5.发展性:突出对学生数学思维能力、解决问题能力和数学素养的发展性评价,重视反映数学思想方法、数学探究活动的过程性评价,注重对学生的应用意识和创新意识的考查,提倡评价标准多样化,促进学生的个性化发展.四、考试范围《数学课程标准》(7—9年级)中:数与代数、图形与几何、统计与概率、综合与实践四个部分的内容.凡是《数学课程标准》中标有*的选学内容,不作为考试要求.五、内容目标㈠基础知识与基本技能考查的主要内容了解数产生的意义,理解代数运算的意义、算理,能够合理地进行基本运算与估算;能够在实际情境中有效地应用代数运算、代数模型及相关概念解决问题;能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性;正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果作合理的预测;了解概率的涵义,能够借助概率模型、或通过设计活动解释一些事件发生的概率.㈡“数学基本能力”考查的主要内容数学基本能力指学生在运算能力、推理能力、空间观念、数据分析观念、应用意识、创新意识等方面的发展情况,其内容主要包括:1.运算能力:主要是指能够根据法则和运算律正确地进行运算的能力.2.推理能力:凭借经验和直觉,通过观察、尝试、归纳、类比等活动获得数学猜想,并能进一步从已有的事实和确定的规则出发,按照逻辑推理的法则进行证明和计算.3.空间观念:主要指能依据语言的描述画出图形,懂得描述图形的运动和变化,并利用图形描述和分析问题,研究基本图形性质.4.数据分析观念:指会收集、分析数据,并根据数据中蕴涵的信息选择合适的方法做出判断,体验随机性.5.应用意识:认识到现实生活中蕴含着大量与数量和图形有关的问题可以抽象成数学问题,并有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题.6.创新意识:主要指能发现和提出简单数学问题,初步懂得应用所学的数学知识、技能和基本思想进行独立思考;能归纳概括得到猜想和规律,并加以验证.㈢“数学基本思想”考查的主要内容数学基本思想着重考查学生对函数与方程思想、数形结合思想、分类与整合思想、特殊与一般思想、化归与转化思想、或然与必然思想等的领悟程度.1.函数与方程思想函数思想的实质是抛开所研究对象的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立各变量之间固有的函数关系,通过函数形式,利用函数的有关性质,使问题得到解决.方程思想是将所求的量设成未知数,用它表示问题中的其它各量,根据题中隐含的等量关系,列方程(组),通过解方程(组)或对方程(组)进行研究,以求得问题的解决.函数与方程是整体与局部、一般与特殊、动态与静止等相互联系的,在一定条件下,它们可以相互转化.2.数形结合思想数形结合思想就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,包含“以形助数”和“以数辅形”两个方面.其中“以形助数”是指借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的.“以数辅形”是指借助于数的精确性和规范严密性来阐明形的某些属性,即以数为手段,形作为目的.3.分类与整合思想在解某些数学问题时,当被研究的问题包含了多种情况时,就必须抓住主导问题发展方向的主要因素,在其变化范围内,根据问题的不同发展方向,划分为若干部分分别研究.这里集中体现的是由大化小,由整体化为部分,由一般化为特殊的解决问题的方法,其研究的基本方向是“分”,但分类解决问题之后,还必须把它们整合在一起,这种“合—分—合”的解决问题的思想,就是分类与整合思想.4.特殊与一般思想人们对一类新事物的认识往往是通过对某些个体的认识与研究,逐渐积累对这类事物的了解,逐渐形成对这类事物总体的认识,发现特点,掌握规律,形成共识,由浅入深,由现象到本质,由局部到整体,这种认识事物的过程是由特殊到一般的认识过程.但这并不是目的,还需要用理论指导实践,用所得到的特点和规律解决这类事物中的新问题,这种认识事物的过程是由一般到特殊的认识过程.于是这种由特殊到一般再由一般到特殊反复认识的过程,就是人们认识世界的基本过程之一.数学研究也不例外,这种由特殊到一般,由一般到特殊的研究数学问题的思想,就是数学研究中的特殊与一般思想.5.化归与转化思想化归与转化思想是指在研究解决数学问题时采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种解题策略.数学题中的条件与条件、条件与结论之间存在着差异,差异即矛盾,解题过程就是有目的地不断转化矛盾,最终解决矛盾的过程.6.必然与或然思想人们发现事物或现象可以是确定的,也可以是模糊的,或随机的.随机现象有两个最基本的特征,一是结果的随机性,即重复同样的试验,所得到的结果未必相同,以至于在试验之前不能预料试验的结果;二是频率的稳定性,即在大量重复试验中,每个试验结果发生的频率“稳定”在一个常数附近.概率与统计研究的对象均是随机现象,研究的过程是在“或(偶)然”中寻找“必然”,然后再用“必然”的规律去解决“或然”的问题,这其中所体现的数学思想就是必然与或然思想.㈣对考查目标的要求层次依据数学课程标准,考试要求的知识技能目标分为四个不同层次:了解;理解;掌握;运用.具体涵义如下:了解:从具体事例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象.理解:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系.掌握:在理解的基础上,把对象用于新的情境.运用:综合使用已掌握的对象,选择或创造适当的方法解决问题.㈤考试内容与要求数与代数考试内容目标水平㈠有理数的意义理解数与式1.有理数用数轴上的点表示有理数掌握比较有理数的大小掌握相反数和绝对值的意义理解求有理数的相反数与绝对值掌握|a|的含义(这里a表示有理数)了解乘方的意义理解有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)掌握有理数的运算律理解用运算律简化运算掌握用有理数的运算解决简单的问题运用2.实数平方根、算术平方根、立方根的概念了解用根号表示数的平方根、算术平方根、立方根理解乘方与开方互为逆运算了解用平方运算求百以内整数的平方根理解用立方运算求百以内整数(对应的负整数)的立方根理解用计算器求平方根和立方根理解无理数和实数的概念了解实数与数轴上的点一一对应了解求实数的相反数与绝对值掌握用有理数估计一个无理数的大致范围掌握近似数了解在解决实际问题中,用计算器进行近似计算,并按问题的要求对结果取近似值掌握二次根式、最简二次根式的概念了解二次根式(根号下仅限于数)加、减、乘、除的运算法则了解用二次根式(根号下仅限于数)加、减、乘、除运算法则进行有关的简单四则运算理解3.代数式代数式了解用字母表示数的意义理解分析具体问题中的简单数量关系,用代数式表示掌握求代数式的值理解整数指数幂的意义和基本性质了解用科学记数法表示数(包括在计算器上表示)理解4.整式与分式整式的概念理解合并同类项和去括号的法则掌握进行简单的整式加法和减法运算掌握进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)掌握推导乘法公式:(a+b)( a-b) = a 2- b 2,(a±b)2 = a 2±2ab + b 2掌握平方差、完全平方公式的几何背景了解利用平方差、完全平方公式进行简单计算掌握用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)掌握分式和最简分式的概念了解利用分式的基本性质进行约分和通分掌握进行简单的分式加、减、乘、除运算掌握㈡方程与不等式1.方程与方程组根据具体问题中的数量关系列出方程掌握等式的基本性质掌握解一元一次方程、可化为一元一次方程的分式方程掌握代入消元法和加减消元法掌握解二元一次方程组掌握配方法理解用配方法、公式法、因式分解法解数字系数的一元二次方程掌握用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等理解根据具体问题的实际意义,检验方程的解是否合理掌握2.不等式与不等式组不等式的意义了解解数字系数的一元一次不等式掌握在数轴上表示出一元一次不等式的解集掌握用数轴确定由两个一元一次不等式组成的不等式组的解集理解根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题掌握㈢函数常量、变量的意义了解函数的概念和三种表示法了解结合图象对简单实际问题中的函数关系进行分析掌握确定简单实际问题中函数自变量的取值范围掌握1.函数求出函数值理解用适当的函数表示法刻画简单实际问题中变量之间的关系掌握结合对函数关系的分析,对变量的变化情况进行初步讨论掌握2.一次函数根据已知条件确定一次函数的表达式掌握利用待定系数法确定一次函数的表达式理解画出一次函数的图象掌握k>0和k<0时,一次函数y = kx + b (k≠0)图象的变化情况理解正比例函数理解用一次函数解决简单实际问题掌握3.反比例函数根据已知条件确定反比例函数的表达式掌握画出反比例函数的图象掌握k>0和k<0时,y =kx(k≠0)图象的变化情况理解用反比例函数解决简单实际问题掌握4.二次函数用描点法画出二次函数的图象理解通过图象了解二次函数的性质了解用配方法将数字系数的二次函数的表达式化为khxay+-=2)(的形式理解能根据二次函数表达式得到图象的顶点坐标,开口方向和对称轴,掌握用二次函数解决简单实际问题掌握用二次函数图象求一元二次方程的近似解理解图形与几何考试内容目标水平㈠图形的性质1.点、线、面、角从物体抽象出来的几何体、平面、直线和点的认识了解线段长短的比较理解线段的和、差以及线段中点的意义理解基本事实:两点确定一条直线掌握基本事实:两点之间线段最短掌握两点间距离的意义理解两点间距离的度量掌握角的概念理解角的大小的比较掌握度、分、秒的意义,度、分、秒间的换算,角的和、差的计算理解2.相交线与平行线对顶角、余角、补角等的概念理解对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质掌握垂线、垂线段等的概念理解用三角尺或量角器过一点画已知直线的垂线掌握点到直线的距离的意义理解度量点到直线的距离掌握基本事实:过一点有且只有一条直线与已知直线垂直掌握同位角、内错角、同旁内角的定义理解平行线的概念理解两条直线被第三条直线所截,如果同位角相等,那么两直线平行掌握基本事实:过直线外一点有且只有一条直线与这条直线平行掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等掌握用三角尺和直尺过已知直线外一点画这条直线的平行线掌握平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么两直线平行掌握平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)掌握平行于同一条直线的两条直线平行了解3.三角形三角形及其内角、外角、中线、高线、角平分线等的概念理解三角形的稳定性了解三角形的内角和定理掌握三角形的内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和掌握三角形的任意两边之和大于第三边理解全等三角形的概念理解全等三角形中的对应边、对应角的意义理解基本事实:两边及其夹角分别相等的两个三角形全等掌握基本事实:两角及其夹边分别相等的两个三角形全等掌握基本事实:三边分别相等的两个三角形全等掌握定理:两角分别相等及其中一组等角的对边相等的两个三角形全等掌握角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上掌握线段垂直平分线的概念理解线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上掌握等腰三角形、等边三角形的概念了解等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形掌握等边三角形的性质定理:等边三角形的各角都等于60°掌握等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形掌握直角三角形的概念了解直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半掌握直角三角形的判定定理:有两个角互余的三角形是直角三角形掌握勾股定理理解勾股定理的逆定理了解运用勾股定理及其逆定理解决一些简单的实际问题运用判定直角三角形全等的“斜边、直角边”定理掌握三角形重心的概念了解4.四边形多边形的定义,多边形的顶点、边、内角、外角、对角线等的概念了解多边形内角和与外角和公式掌握平行四边形、矩形、菱形、正方形等的概念以及它们之间的关系理解四边形的不稳定性了解平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分掌握平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形掌握两条平行线之间距离的意义了解两条平行线之间距离的度量掌握矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;正方形具有矩形和菱形的一切性质掌握矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形掌握三角形的中位线定理掌握5.圆圆、弧、弦、圆心角、圆周角等的概念理解等圆、等弧的概念了解点与圆的位置关系了解圆周角与圆心角及其所对弧的关系理解圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补掌握三角形的内心和外心的意义了解直线和圆的位置关系了解切线的概念掌握切线与过切点的半径的关系掌握用三角尺过圆上一点画圆的切线理解圆的弧长、扇形的面积的计算理解正多边形的概念及正多边形与圆的关系了解6.尺规作图基本作图:作一条线段等于已知线段;作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线掌握利用基本作图作三角形:已知三边、两边及其夹角、两角及其夹边作三角形;已知底边及底边上的高线作等腰三角形;已知一直角边和斜边作直角三角形理解利用基本作图完成:过不在同一直线上的三点作圆;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形理解尺规作图的道理(保留作图的痕迹,不要求写出作法)了解7.定义、命题、定理定义、命题、定理、推论的意义了解命题的条件和结论的意义理解原命题及其逆命题的概念了解两个互逆的命题的识别理解原命题成立,其逆命题不一定成立了解证明的意义和证明的必要性,证明要合乎逻辑,证明的过程可以有不同的表达形式了解综合法证明的格式理解反例的意义及其作用(利用反例判断一个命题是错误的)了解反证法的含义理解㈡图形的变化1.图形的轴对称轴对称的概念了解轴对称的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分理解画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴的对称图形掌握轴对称图形的概念了解等腰三角形、矩形、菱形、正多边形、圆的轴对称性质理解自然界和现实生活中的轴对称图形了解2.图形的旋转平面图形关于旋转中心的旋转的认识了解平面图形关于旋转中心的旋转的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等理解中心对称、中心对称图形等的概念了解中心对称、中心对称图形的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分理解线段、平行四边形、正多边形、圆的中心对称性质理解自然界和现实生活中的中心对称图形了解3.图形的平移平移的认识了解平移的意义及其基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等理解平移在自然界和现实生活中的应用了解运用图形的轴对称、旋转、平移进行图案设计运用4.图形的比例的基本性质、线段的比、成比例的线段了解相似黄金分割了解图形相似的认识了解相似多边形和相似比了解基本事实:两条直线被一组平行线所截,所得的对应线段成比例掌握相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方了解图形的位似,利用位似可以将一个图形放大或缩小了解利用图形的相似解决一些简单的实际问题理解锐角三角函数(sinA,cosA,tanA)理解30°,45°,60°角的三角函数值了解使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它的对应锐角掌握用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题掌握5.图形的投影中心投影和平行投影等的概念了解画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图理解简单物体视图的判断掌握根据视图描述简单的几何体理解直棱柱、圆柱、圆锥的侧面展开图了解根据展开图想象实物模型掌握视图与展开图在现实生活中的应用了解㈢图形与坐标1.坐标与图形位置用有序数对表示物体的位置理解平面直角坐标系的有关概念理解画出直角坐标系;在给定的直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标掌握建立适当的直角坐标系,描述物体的位置掌握对给定的正方形,选择适当的直角坐标系,写出它的顶点坐标理解在平面上,用方位角和距离刻画两个物体的相对位置掌握2.坐标与在直角坐标系中,以坐标轴为对称轴,写出一个已知顶点坐掌握。
2016年福建省初中学业质量测查数学试题(附答案)

福建省初中学业质量测查数学试题(试卷满分:150分;考试时间:120分钟)温馨提示:所有答案必须填写到答题卡相应的位置上,答在本试卷上一律无效.毕业学校 姓名 考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.-2015的相反数是( )A .-2015B .2015C .12015 D .12015- 2.下列运算正确的是( )A .a 3+a 3=a 6B . a 6÷a 2=a 4C .a 3•a 5=a 15D .(a 3)4=a 73.如图所示几何体的俯视图是( )A .B .C .D . 4.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( ) A .10° B .15° C .20° D .25° 5.关于x 的方程01322=--x x 的解的情况,正确的是( ).A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.如图所示,把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A .正三角形B .正方形C .正五边形D .正六边形7.已知二次函数y=﹣x 2+2bx +c ,当x >1时,y 的值随x 值的增大而减小,则实数b 的取值范围是( )A .b ≥﹣1B . b ≤﹣1C .b ≥1D .b ≤1二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为 .(第3题图) (第4题图)(第6题图)219.若正n 边形的中心角等于24°,则这个正多边形的边数为 . 10.分解因式:x x 42+ = .11.若a <13<b ,且a ,b 为连续正整数,则b 2﹣a 2= .12. 计算:_______x yx y x y +=++.13.在《中国梦•我的梦》演讲比赛中,由6个评委对某选手打分,得分情况如下:8,9,7,8,9,10 (单位:分),则该选手得分的中位数是 分. 14. 不等式组⎩⎨⎧≤-≥+0201x x 的解集是 . 15.菱形ABCD 的边长AB =5cm ,则菱形ABCD 的周长为 cm .16.如图,P A 、PB 是⊙O 的切线,切点是A 、B ,已知60P ∠=︒,P A =63,那么AB 的长为 .17.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,边AO 在y 轴上,点B 1,B 2,B 3,…都在直线kx y =上,则(1)k = ,(2)A 2015的坐标是 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:10)31(28)2(|3|-+⨯--+-π.19.(9分)先化简,再求值:)22(2)2(2-++a a a ,其中3=a .20.(9分)如图,已知:点B 、F 、C 、E 在一条直线上,∠B =∠E ,BF =CE ,AB =DE .求证:△ABC ≌△DEF .21.(9分)为了解我县八年级学生参加社会实践活动情况,随机抽查了部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图所示).A OP B(第16题图)ECABDFA 1A 2 A OB 1 B 2B3 AO BP (第17题图)请根据图中提供的信息,解答下列问题:(1)直接填写:a =____%,该扇形所对圆心角的度数为____度,并补全条形图;(2)如果全县共有八年级学生7000人,请你估计“活动时间不少于...7天”的学生人数大约有多少人?22.(9分)第14届亚洲艺术节计划于2015年11月底在泉州举行.现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人. (1)若从这20人中随机选取一人作为联络员,直接写出选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.23.(9分)已知反比例函数xm y 1-=(m 为常数)的图象在第一、三象限内. (1)求m 的取值范围;(2)如图,若该反比例函数的图象经过平行四边形ABOD 的顶点D ,点A 、B 的坐标分别为a(0,3),(﹣2,0).①求出该反比例函数解析式;②设点P 是该反比例函数图象上的一点,且在ΔDOP 中,OD=OP ,求点P 的坐标. 24.(9分)甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2小时后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为y 甲(km ),y 乙(km ),甲车行驶的时间为x (h ),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题: (1)乙车休息了 h ;(2)求乙车与甲车相遇后y 乙与x 的函数解析式,并写出自变量x 的取值范围;(3)当两车相距40km 时,求出x 的值.25.(13分)如图,已知抛物线c bx x y ++-=221图象经过A (﹣1,0),B (4,0)两点. (1)求抛物线的解析式;y/km y(2)若C (m ,m ﹣1)是抛物线上位于第一象限内的点,D 是线段AB 上的一个动点(不与端点A 、B 重合),过点D 分别作DE ∥BC 交AC 于E ,DF ∥AC 交BC 于F .①求证:四边形DECF 是矩形; ②试探究:在点D 运动过程中,DE 、DF 、CF 的长度之和是否发生变化?若不变,求出它的值;若变化,试说明变化情况.A O D BF EC x26.(13分)在平面直角坐标系中,O 为坐标原点,直线33+-=k kx y 交y 轴正半轴于点A ,交x 轴于点B (如图1)(1)不论k 取何值,直线AB 总经过一个定点C ,请直接写出点C 坐标; (2)当OC ⊥AB 时,求出此时直线AB 的解析式;(3)如图2,在(2)条件下,若D 为线段AB 上一动点(不与端点A 、B 重合),经过O 、D 、B 三点的圆与过点B 垂直于AB 的直线交于点E ,求ΔDOE 面积的最小值.(图1)(图2)参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分) 1.B 2.B 3.C 4.D 5.A 6.A 7.D 二、填空题(每小题4分,共40分)8. 5101.1⨯ 9. 15 10. )4(+x x 11.7 12. 1 13. 8.5 14. 21≤≤-x 15. 20 16. π4 17.(1)33(2))2017,32015( 三、解答题(共89分) 18.(本题9分)解:原式=3+1-4+3…………………………………………………………8分 =3…………………………………………………………………… 9分 19.(本题9分)解:原式=a a a a 444422-+++…………………………………………………4分=452+a ………………………………………………………………6分当3=a 时,原式=4)3(52+⨯………………………………………7分=19…………………………………………………9分 20.(本题9分)证明:∵CE BF =, ∴CF CE CF BF +=+即EF BC =……………4分又∵E B DE AB ∠=∠=,……………7分 ∴△ABC ≌△DEF . ………………………9分21.(本题9分)解:(1)10,36°,补图如右;(填空各2分,补图2分, 共6分)(2)7000×(25%+10%+5%)=7000×40%=2800人. 答:“活动时间不少于7天”的学生人数大约有2800人……………………9分 22. (本题9分)ECA BDF解 :(1)P (女生)=53;……………………………………………………3分 (2)解法一: 画树状图…………………………………………………………………………6分由树状图可知,共有12种机会均等的情况,其中和为偶数的有4种情况,P ∴(甲参加)=31124=,P (乙参加)=32128=. P (甲参加)<P (乙参加), ∴这个游戏不公平. ……………………………………………………9分 解法二:列表(略)23. (本题9分)解:(1)根据题意得01>-m解得1>m …………………3分(2)①∵四边形ABOC 为平行四边形, ∴AD ∥OB ,AD =OB =2 又A 点坐标为(0,3)∴D 点坐标为(2,3)………………5分∴1-m =2×3=6∴反比例函数解析式为xy 6=………………6分 ②(法一)如图所示,以O 为圆心,OD 长为半径作圆O ,与双曲线xy 6=分别交于321,,,P P P D 四点. 根据图形的对称性,得点D (2,3)关于直线y =x 对称点1P 的坐标为(3,2);………………7分 点D (2,3)关于原点中心对称点2P 的坐标为(﹣2,﹣3);点1P (3,2)关于原点中心对称点3P 的坐标为(﹣3,﹣2). ………….8分 由于O 、D 、2P 三点共线.,所以符合题意的P 点只有两点, 其坐标分别为(3,2),(﹣3,﹣2). …………..9分(法二)2 第1张第2张 3 4 53 4 52 4 52 3 52 3 4和 5 6 7 5 7 8 6 7 9 7 8 9∵直线y =x 是反比例函数x y 6=图象的对称轴, D (2,3)在反比例函数xy 6=图象上, ∴点D (2,3)关于直线y =x 对称点的坐标为(3,2),则此时满足条件OP =OD 的P 点坐标为(3,2)………………..7分 ∵反比例函数xy 6=的图象是以原点为对称中心的中心对称图形 ∴当点P 与点D 关于原点中心对称,则OD =OP ,但此时O 、D 、P 三点共线. 而点(3,2)关于原点中心对称的点的坐标为(﹣3,﹣2)即此时满足条件OP =OD 的P 点坐标为(﹣3,﹣2)…………………8分综上,符合题意的P 点有两点,其坐标分别为(3,2),(﹣3,﹣2).………………9分 24. (本题9分)解:(1)0.5;………………………3分(2)设乙车与甲车相遇后y 乙与x 的函数解析式y 乙=kx +b ,y 乙=kx +b 图象过点(2.5,200),(5,400),得⎩⎨⎧=+=+4005,2005.2b k b k 解得⎩⎨⎧==0,80b k ∴乙车与甲车相遇后y 乙与x 的函数解析式y 乙=80x (2.5≤x ≤5);………………6分(其中自变量取值范围1分)(3)设乙车与甲车相遇前y 乙与x 的函数解析式y 乙=kx ,图象过点(2,200),所以200=2k 解得k =100 ∴乙车与甲车相遇前y 乙与x 的函数解析式y 乙=100x可求y 甲与x 的函数解析式y 甲=-80x +400…………………7分 ①当0≤x <2.5时,y 甲减y 乙等于40千米即﹣80x +400﹣100x =40,解得 x =2………………………8分 ②当2.5≤x ≤5时,y 乙减y 甲等于40千米即80x ﹣(﹣80x +400)=40,解得x =…………………9分综上,x =2或x =.25. (本题13分) 解:∵抛物线y=﹣221x +bx +c 图象经过A (﹣1,0),B (4,0)两点, 根据题意,得⎪⎩⎪⎨⎧++-=+--=c b c b 480,210 解得⎪⎩⎪⎨⎧==.2,23c b ∴抛物线的解析式为:223212++-=x x y ;…………3分(2)①证明:把C (m ,m ﹣1)代入223212++-=x x y 得 2232112++-=-m m m ,解得:m =3或m =﹣2,∵C (m ,m ﹣1)位于第一象限,∴⎩⎨⎧-01,0 m m ∴m >1,∴m =﹣2不合舍去,只取m =3, ∴点C 坐标为(3,2),…………4分(法一)如图,过C 点作CH ⊥AB ,垂足为H ,则∠AHC =∠BHC =90°, 由A (﹣1,0)、B (3,0)、C (3,2)得 AH =4,CH =2,BH =1,AB =5 ∵,2==BH CH CH AH ∠AHC =∠BHC =90°∴△AHC ∽△CHB ,∴∠ACH =∠CBH , ∵∠CBH +∠BCH =90°∴∠ACH +∠BCH =90°∴∠ACB =90°,…………6分 ∵DE ∥BC ,DF ∥AC ,即四边形DECF 是平行四边形,…………7分 ∴四边形DECF 是矩形;…………8分 (法二)∵202=AC ,52=BC ,AB =5, ∴222AB BC AC =+=25, ∴∠ACB =90°.以下解法同上.(法三)由1-=∙BC AC k k ,证得∠ACB =90°. 以下解法同上.(3)(法一) ∵DE ∥BC ∴ΔAED ∽ΔACB ∴AB AD BC ED = (1)…………9分同理:ABBDAC DF =(2) 设n AD =, 则n BD -=5由(1)得55n ED =………10分∴55nED FC ==由(2)得5)5(52n DF -=………11分 ∴52=++FC DF ED ………12分∴DE 、DF 、CF 的长度之和不变. …………13分(法二)∵DE ∥BC ∴ΔAED ∽ΔACB∴AB AD BC ED = (1)…………9分 同理:ABBDAC DF =(2) 由(1)+(2)得:1=+ACDF BC ED …………10分又∵5,52==BC AC ,CF =ED ∴522=+DF ED …………11分 ∴52=++FC DF ED ………12分∴DE 、DF 、CF 的长度之和不变. …………13分26. (本题13分)解:(1))3,3(C …………3分(2)(法一)如图,作CF ⊥OB 于F ,则3=OF ,CF =3 在Rt ΔOCF 中,tan ∠COF =333==OF CF∴∠COF = 60………4分又∵AB OC ⊥∴∠ABO = 30………5分在Rt ΔBCF 中,tan ∠ABO =33=BF CF ∴33=BF ∴34=OB ∴)0,34(B …………6分 把)0,34(B 代入33+-=k kx y ,得33-=k …………7分 ∴433+-=x y …………8分(法二)由BF OF CF ∙=2,得33=BF(法三)设B )0,(a ,由222OB CB OC =+,得22222)3(33)3(a a =-+++ 解得34=a(法四)可求直线OC 解析式为x y 3=,由AB OC ⊥,得13-=k ,∴33-=k(3)∵O 、D 、B 、E 四点共圆∴ 180=∠+∠DBE DOE ……………………9分又∵AB ⊥BE ∴ 90=∠ABE ∴ 90=∠DOE∵ 30=∠=∠ABO DEO ……………………10分在Rt ΔDOE 中,tan ∠DEO =33=OE OD ∴OD OE 3= ∴22321OD OE OD S DOE =∙=∆……………………11分 ∴当OD ⊥AB 时,ΔDOE 的面积最小,即点D 与点C 重合, 此时32==OC OD ……………………12分∴ΔDOE 面积的最小值为36.……………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年福建省初中数学质量监测命题工作指南(1.24-28)
一、命题原则
⒈命题基于《全日制义务教育数学课程标准(2011版)》(以下称《课程标准》),体现课程标准的基本理念和基本目标要求。
试题重点考察学生对初中数学核心知识技能的理解和掌握,尤其应注重对学生收集与分析信息的能力、综合运用所学知识解决实际问题的能力以及对数学思想方法的理解与掌握的考查,发挥学生学业质量监测对初中数学教学的正确导向作用。
⒉测试根据《课程标准》,结合我省使用多版本教材的实际,确定八年级学生在“数与代数”“图形与几何”“统计与概率”内容领域应达到的合格标准。
严格控制试卷的总体难度,组卷试题以体现《课程标准》对学生基本要求的题目为主,有难度的题目主要考察学生的高层次认知能力。
⒊题型以客观性试题为主,辅以少量主观性试题。
关注通过客观题考察学生高层次认知能力,试题多使用真实的情境和任务形式呈现。
二、整合、组卷
各命题组在组长的领导下认真审核原试卷,按照命题培训的要求对试卷进行调整:
1.是否符合《课程标准》的要求,有没有超纲,有没有地域或版本的差异;
2.是否体现数学的本质,是否关注了过程性、操作性、应用性;
3.试题的考查目标指向是否明确,各目标层次和各维度的比例是否合适;
4.选择题各选择支的设置是否恰当有效,干扰效果是否合适;
5.解答题的评分标准是否指向能力立意,分值分布能否体现学生能力水平;
三、双向细目表
双向细目表1包含内容维度和目标水平两个部分,如下表。
内容维度可以细化到二级。
在两个维度构成的每个格子里填上试题的比例,比例可以为0。
权衡考察目标、考察内容为达到《课程标准》要求所需教学时间的多少,及各项内容在
⒈了解:从具体实例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象。
了解的同类词:知道,初步认识。
⒉理解:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系。
理解的同类词:认识,会。
⒊掌握:在理解的基础上,把对象用于新的情境。
掌握的同类词:能。
⒋运用:综合使用已掌握的对象,选择或创造适当的方法解决问题。
运用的同类词:证明。
1.根据质量监测命题规范要求,各认知维度的难度范围应当有交叉,这样监测出来的结果分布比较合理,过于简单或过难的试题区分度比较差;
2.难度范围、难度控制如上表,难度范围指这类试题难度分布的范围,难度控制指这类试题主要分布范围,如:“了解”的试题(大约8-9题,按二级题统计题数)难度在0.6-0.89,主要分布在0.7 -0.85(大约7-8题),个别试题在0.85-0.89和0.6-0.7(一般分别为1题),其他类推;
3.各维度试题数比例调整如上表(按二级题统计题数,如13题2个小题,14题2个小题,15题3个小题,16题3个小题,那么本卷总题数为22题),预估难度应控制在0.65左右。
㈡内容维度涵盖试卷的考察内容,包括“数与代数”“图形与几何”“统计与概率”等内容领域,细化内容见附件一。
与内容维度相应的能力要求应贯穿其中。
主要是:
运算能力:主要是指能够根据法则和运算律进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简洁的运算途径,能根据要求对数据进行估计和近似计算。
推理能力:推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。
推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。
在解决问题的过程中,两种推理功能不同,相辅相成;合情推理用于探索思路,发现结论;演绎推理用于证明结论。
应用意识:一方面,有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。
双向细目表2包含内容维度和认知维度两个部分,如下表。
内容维度可以细化到二级。
在两个维度构成的每个格子里填上试题的比例,
说明:
1.各维度试题的难度分布范围尽量大,并且有交叉;
2.概念理解主要考查学生对数学概念的理解,能用所学的数学概念直接解释数学问题;
3.规则运用主要考查学生能否合理利用规则进行运算、推理、判断和操作,这里主要考查学生对教材中已有的规则的直接使用;
4.问题解决主要考查学生能否从数学的角度发现问题和提出问题,经历从不同角度寻求分析问题和解决问题的方法的过程,并综合运用数学知识和方法等解决简单的实际问题,初步形成评价与反思的意识。
四、试卷规范细目表
试卷规范细目表是一种考查内容和各考查目标之间的列联表,对试卷结构的全面描述。
使命题者明确测验的目标,把握试题的比例与份量,提高命题的效率和质量。
同时,它对于审查试题的效度、信度也有重要的指导意义。
配合试卷规范细目表使用试题规范表,有助于提高命题质量和试题管理。
试卷规范细目表见附件二
五、试卷的结构与考试时间
整卷共16道题,其中:选择题12道,解答题4道(每道题不超过三个子问题)。
考试时间1小时。
六、使用试题规范表
试题规范表是对试题属性的全面描述。
配合双向细目表使用试题规范表,有助于提高命题质量和试题管理。
试题规范表包括:题号、所属学科领域、题型、预估难度、测试的核心内容和能力、知
说明:
题号(M82016*****)说明: M82016*(内容维度:数与代数为S,图形与几何为K,统计与概率为T)*(认知维度:概念理解为1,规则运用为2,问题解决为3)*(数学能力:无为0,运算能力1,推理能力2应用意识3) **(题号)
附件一:监测内容维度细化表
一、数与代数
二、图形与几何
三、统计与概率
四、综合与实践
1.在实际情境中,学会设计具体问题的解决方案,综合运用所学的数学知识、思想与方法,建立模型、解决问题,尝试发现问题和提出问题,增强应用意识,提高实践能力。
2.在问题情景中,学会操作观察、探索发现问题的本质(或性质、或变化规律、或结论),并用数学的语言加以阐述,进一步体会分析问题和解决问题的方法,提高搜集分析、提取有用信息解决问题的能力,增强创新意识,发展理性思维。
3.在问题探求中,了解所学过知识(包括其他学科知识)之间的关联,学会从不同角度探求解决问题的途径与方法,体会知识之间的联系性(即,数学学科之间、数学与其他学科之间、数学与生活之间的联系)及解决问题方法的多样性,进一步理解有关知识,发展应用意识,提高思维品质。
附件二:福建省初中数学质量监测试卷规范细目表
附件三
双向细目表1
双向细目表2
双向细目表3。