运筹学5-单纯形法
合集下载
运筹学单纯形法的计算步骤

b2
0… 0
a2,m+1
…
a2n
2
…
…
…
…
cm xm
bm
0… 1
am,m+1
…
amn
m
-z -z 值 0 … 0
m+1
…
n
XB 列——基变量, CB 列——基变量的价值系数(目标函数系数) cj 行——价值系数,b 列——方程组右侧常数 列——确定换入变量时的比率计算值
下面一行——检验数, 中间主要部分——约束方程系数
(4).根据max(j > 0) =k,拟定xk为换入变量,按 规则计算 =min{bi/aik\aik>0}
可拟定第l行旳基变量为换出变量。转入下一步。
(5).以 alk 为主元素进行迭代(即用高斯消去法或称为旋转变 换),把 xk 所对应的列向量变换为(0,0,…,1,…,0)T,将
XB 列中的第 l 个基变量换为 xk,得到新的单纯形表,返回(2)。
b
x1
x2
x3
x4
x5
2 x1 2 0 x4 8 3 x2 3
1
0
1
0 -1/2 -
0 0 -4 1 (2 ) 4
0 1 0 0 1/4 12
-z
-13
0
0 -2
0 1/4
X(2)=(2,3,0,8,0)T, z2 =13
cj
2 30 0 0
CB XB
b
x1
x2
x3
x4
x5
2 x1 4 0 x5 4 3 x2 2
量,给出第一阶段的数学模型为:
min = x6+x7
x1-2x2+x3+x4
运筹学-第一章-单纯形法基本原理

初始基本可行解:
X ( 0) ( x1 , x2 ,, xm ,0,0,...,0)T (b1 , b2 ,......,bm ,0,0,...,0)T
0
0
0
单纯形法基本原理
2、基变换 定义:两个基可行解称为相邻的,如果它们之间变换 且仅变换一个基变量。 初始基可行解的前m个为基变量,
X
凸集
顶点
凸集
不是凸集
顶点:如果凸集C中不存在任何两个不同的点X1,X2,使X 成为这两个点连线上的一个点
单纯形法基本原理
定理1:若线性规划问题存在可行解,则该问题的可行域是 凸集。 定理2:线性规划问题的基可行解X对应可行域(凸集)的顶 点。 定理3:若问题存在最优解,一定存在一个基可行解是最优 解。(或在某个顶点取得)
的左边变成一个单位矩阵,
b (b1 a1 j ,.,bl 1 al 1 j , , bl 1 al 1 j ,.,bm am1 j , ) ( x1 , x2 ,..., xl 1 , x j , xl 1 ,..., xm )
X
(1)
T
与X
( 0)
是相邻的基可行解。
M M bm 0 L
M M
M M
L 1 am,m1 L L 00
M , M amn m
bi 其中: i a kj 0 a kj
j c j ci aij c j z j
单纯形法的计算步骤
例1.12 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
xi0 aij 0, aij 0,取值无限,
X ( 0) ( x1 , x2 ,, xm ,0,0,...,0)T (b1 , b2 ,......,bm ,0,0,...,0)T
0
0
0
单纯形法基本原理
2、基变换 定义:两个基可行解称为相邻的,如果它们之间变换 且仅变换一个基变量。 初始基可行解的前m个为基变量,
X
凸集
顶点
凸集
不是凸集
顶点:如果凸集C中不存在任何两个不同的点X1,X2,使X 成为这两个点连线上的一个点
单纯形法基本原理
定理1:若线性规划问题存在可行解,则该问题的可行域是 凸集。 定理2:线性规划问题的基可行解X对应可行域(凸集)的顶 点。 定理3:若问题存在最优解,一定存在一个基可行解是最优 解。(或在某个顶点取得)
的左边变成一个单位矩阵,
b (b1 a1 j ,.,bl 1 al 1 j , , bl 1 al 1 j ,.,bm am1 j , ) ( x1 , x2 ,..., xl 1 , x j , xl 1 ,..., xm )
X
(1)
T
与X
( 0)
是相邻的基可行解。
M M bm 0 L
M M
M M
L 1 am,m1 L L 00
M , M amn m
bi 其中: i a kj 0 a kj
j c j ci aij c j z j
单纯形法的计算步骤
例1.12 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
xi0 aij 0, aij 0,取值无限,
运筹学第5章 单纯形法

0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的 各列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基 本可行解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作 为初始可行基,我们将构造初始可行基,具体做法在以后详细讲述。
8Leabharlann §1 单纯形法的基本思路和原理
二、 最优性检验 所谓最优性检验就是判断已求得的基本可行解是否是最优解。
5
§1 单纯形法的基本思路和原理
线性规划解之间的关系:
1.可行解与最优解: 最优解一定是可行解,但可行解不一定是最优解。
2. 可行解与基本解: 基本解不一定是可行解,可行解也不一定是基本解。
3. 可行解与基本可行解: 基本可行解一定是可行解,但可行解不一定是基本可行解。
4. 基本解与基本可行解: 基本可行解一定是基本解, 但基本解不一定是基本可行解。
9
§1 单纯形法的基本思路和原理
2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,如
果所有检验数 j≤0,则这个基本可行解是最优解。 下面我
们用通俗的说法来解释最优解判别定理。设用非基变量表示
的目标函数为: z z0 j xj jJ 由于所有的xj的取值范围为大于等于零,当所有的 j都小
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找
到一个基,令这个基的非基变量为零,再求解这个m元线性方程组就
可得到唯一的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到
1 1 0 B3 1 0 0
为A的一个基,令这个基的非
1 0 1
基变量x1,s2为零。这时约束方程就变为基变量的约束方程:
第五章 单 纯 形 法
运筹学单纯形法

单纯形表
max z=x1+2x2 s.t. x1+x23 x2 1 x1, x2 0
Cj CB XB b 0 0 Z X3 3 X4 1 0 1 2 0 0
标准化
max z=x1+2x2 s.t. x1+x2+ x3 =3 x2 +x4=1 x1, x2 ,x3, x40
X1 X2 X3 X4 1 0 1 1 1 2 1 0 0 0 1 0
Z=x1+2x2 x1+x2+ x3 =3 x2 +x4=1 单纯形表
Cj
1
2
0
0
单纯形法原理 单纯形表 CB XB b
z=x1+2x2 x3 =3-x1-x2 x4=1 -x2
x2进基,x4离基
X1 X2 X3 X4
3/1 11
0
1 0
1 1
1 1
2 2 0 1 0 2 0 1 0 0 1 0 -1 0
max z=x1+2x2 s.t. x1+x2+x3 =3 x2 +x4=1 x1, x2, x3, x40
x1=0
(x1,x2,x3,x4)= (0,1,2,0), z=2 C (x1,x2,x3,x4)= (2,1,0,0), z=4,最优解
B
x4=0 x3=0
(x1,x2,x3,x4)= (0,0,3,1), z=0
1 0
0 0
0 1
0
CB XB b 0 2 Z Cj CB XB b 1 2 Z X1 2 X2 1 4 X3 2 X2 1 2 1 1 0 0
X1 X2 X3 X4 1 0 1 1 0 0 0 -1 1 -1
运筹学5-单纯形法

保持可行性 保持可行性 保持可行性
保持可行性
X1
X2
X3
...
Xk
保持单调增 保持单调增 保持单调增
Z1
Z2
Z3
...
保持单调增
Zk
当Zk 中非基变量的系数的系数全为负值时,这时的基 本可行解Xk 即是线性规划问题的最优解,迭代结束。
(2) 线性规划的典则形式
标准型
Max Z CX AX b
s.t X 0
j 1
j 1
j 1
j 1
与X 0 相比,X 1 的非零分量减少1个,若对应的k-1个 列向量线性无关,则即为基可行解;否则继续上述步
骤,直至剩下的非零变量对应的列向量线性无关。
几点结论
❖ 若线性规划问题有可行解,则可行域是一个凸多边形或 凸多面体(凸集),且仅有有限个顶点(极点);
❖ 线性规划问题的每一个基可行解都对应于可行域上的 一个顶点(极点);
10
令 x1 0 x2 0
则 x3 15
X 0 0 15 24T
x4 24
为基本可行解,B34为可行基
B
0
X 24
3
108
A
0
X 34
0
15 24
0
0
X 23
12
45 0
1 基本解为边界约束方程的交点; 2 基对应于可行解可行域极点; 3 相邻基本解的脚标有一个相同。
1 0
1 0
B23 1 0 B24 1 1 B34 0 1
C42
2!
4! 4
2
!
43 21 21 21
6
由于所有|B|≠ 0, 所以有6个基阵和 6个基本解。
运筹学单纯形法

总结:①在迭代过程中要保持常数列向量非负,这能确保基 可行解旳非负性。最小比值能做到这一点。 ②主元素不能为0。因为行旳初等变换不能把0变成1。 ③主元素不能为负数。因为用行旳初等变换把负数变成1会 把常数列中相应旳常数变成负数。
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2
单纯形法的计算步骤

运筹学基础及应用
解:化标准型
max
z 2 x1 x2 0 x3 0 x4 0 x5 5 x2 x3 15 6 x 2 x x4 24 1 2 x5 5 x1 x2 x1 , , x5 0
运筹学基础及应用
表1:列初始单纯形表 (单位矩阵对应的变量为基变量)
运筹学基础及应用
单纯形表
- Z x1基变量 x 2 ... xm XB 0 1 1E 0 单位阵 ....... 0 1 1 c c 0... c 1 2 m xm xNn 非基变量 1 .... X a1m 1 ...a1n a 2 m 1N...a 2 n
非基阵 ......
在上一节单纯形法迭代原理中可 知,每一次迭代计算只要表示出当前的约 束方程组及目标函数即可。
a1m 1 xm 1 ..... a1n xn b1 x1 x a2 m 1 xm 1 ..... a2 n xn b2 2 .......... .......... .......... ..... xm amm 1 xm 1 ..... amn xn bm Z c1 x1 ... cm xm cm 1 xm 1 ... cn xn 0
3
0 1 5/4 -15/2 1*3/2 0 0 1/4 -1/2 +0*15/2 检验数<=0 1 0 -1/4 3/2
cj z j
8.5
0
0
-1/4
-1/2
最优解为X=(7/2,3/2,15/2,0,0) 目标函数值Z=8.5
cj
CB
0 0 0
2
1
0最小的值对应 0 0
运筹学教程 第五章 单纯形法(2表格形式)

0 5 1 0 0 6 2 0 1 0 1 1 0 0 1
r2 ÷ 6
b
15 24 5
x1 = 4 x2 = 0 x3 = 15 x4 = 0 x5 = 1
P P P P P 1 2 3 4 5
b
P 1
P2
P3
P4
P5
b
0 5 1 0 0 1 1/ 3 0 1 / 6 0 1 1 0 0 1
元数a 元数a21决定了从一个基可行解到相邻基可行解 的转移去向,取名主元 的转移去向,取名主元
§5.2单纯形法的表格形式
第3步:迭代。 步
1.确定入基变量 确定入基变量 2.确定出基变量 确定出基变量 3.用入基变量替换出基变量,得到一个新的基; 用入基变量替换出基变量, 用入基变量替换出基变量 得到一个新的基; 对应这个基可以找到一个新的基可行解; 对应这个基可以找到一个新的基可行解; 并画出一个新的单纯形表。 并画出一个新的单纯形表。
§5.2单纯形法的表格形式
迭代 次数 基 x3 x4 0 x5 CB 0 0 0 x1 2 0 6 1 x2 1 5 2 1 0 1 x3 0 1 0 0 0 0 x4 0 0 1 0 0 0 x5 0 0 0 1 0 0 b 15 24 5 Z=0 比值 24/6 5
zj σj= cj -zj
? 0
z = c 3 × b1 + c 4 × b2 + c 5 × b3 = 0 × 15 + 0 × 24 + 0 × 5 = 0
§5.2单纯形法的表格形式
迭代 次数 基 x3 x4 0 x5 CB 0 0 0 x1 2 0 6 1 0 2 x2 1 5 2 1 0 1 x3 0 1 0 0 0 0 x4 0 0 1 0 0 0 x5 0 0 0 1 0 0 b 15 24 5 Z=0 比值 24/6 5
r2 ÷ 6
b
15 24 5
x1 = 4 x2 = 0 x3 = 15 x4 = 0 x5 = 1
P P P P P 1 2 3 4 5
b
P 1
P2
P3
P4
P5
b
0 5 1 0 0 1 1/ 3 0 1 / 6 0 1 1 0 0 1
元数a 元数a21决定了从一个基可行解到相邻基可行解 的转移去向,取名主元 的转移去向,取名主元
§5.2单纯形法的表格形式
第3步:迭代。 步
1.确定入基变量 确定入基变量 2.确定出基变量 确定出基变量 3.用入基变量替换出基变量,得到一个新的基; 用入基变量替换出基变量, 用入基变量替换出基变量 得到一个新的基; 对应这个基可以找到一个新的基可行解; 对应这个基可以找到一个新的基可行解; 并画出一个新的单纯形表。 并画出一个新的单纯形表。
§5.2单纯形法的表格形式
迭代 次数 基 x3 x4 0 x5 CB 0 0 0 x1 2 0 6 1 x2 1 5 2 1 0 1 x3 0 1 0 0 0 0 x4 0 0 1 0 0 0 x5 0 0 0 1 0 0 b 15 24 5 Z=0 比值 24/6 5
zj σj= cj -zj
? 0
z = c 3 × b1 + c 4 × b2 + c 5 × b3 = 0 × 15 + 0 × 24 + 0 × 5 = 0
§5.2单纯形法的表格形式
迭代 次数 基 x3 x4 0 x5 CB 0 0 0 x1 2 0 6 1 0 2 x2 1 5 2 1 0 1 x3 0 1 0 0 0 0 x4 0 0 1 0 0 0 x5 0 0 0 1 0 0 b 15 24 5 Z=0 比值 24/6 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n! 基本解的数目不超过 C m!n m !
m n
解的集合: 解空间
非 可 行 解
可 行 解
基 本 可 行 解
最 优 解
基 本 解
(2) 解的基本性质
判别可行解为基可行解的准则
定理1 线性规划问题的可行解是基可行解的充要 条件是它的非零向量所对应的列向量线性无关.
线性规划问题的基本定理:定理2和定理3
X1
X(1)
单纯形法小结: 单纯形法是这样一种迭代算法——如下图… 当Zk中非基变量的系数的系数全为负值时,这时的基本可 行解Xk即是线性规划问题的最优解,迭代结束。
X1
保持可行性
X2
保持可行性
X3
保持可行性
...
保持可行性
Xk
保持单调增
保持单调增
保持单调增
保持单调增 ...
Z1
Z2
Z3
Zk
当Zk 中非基变量的系数全为负值时,这时的基本可 行解Xk 即是线性规划问题的最优解,迭代结束。
BX B b NX N
X B B 1b B 1 NX N
B 1b B 1 NX N X X N
令 则
XN 0
B 1b X 0
定义 在约束方程组(2) 中,对于 一个选定的基B,令所有的非基变 量为零得到的解,称为相应于基B 的基本解。
第五章 单纯形法
1. 线性规划问题的解 2 单纯形法 3 求初始基的人工变量法
1.线性规划问题的解
Max
(1) 解的基本概念
Z CX AX b X 0
1 2 3
s.t
定义 在线性规划问题中,约束方程组(2)的系 数矩阵A(假定 m n)的任意一个 m m 阶的 非奇异(可逆)的子方阵B(即 B 0 ),称 为线性规划问题的一个基阵或基。
X2
X2 X2
30/
2 2 2
60/
24/
X2 = min ( 30/2 , 60/2 , 24/2 ) =12 X2 :进基变量, X5 :出基变量。
B2=( P3 P4 P2 )
Z= 0 + 40 X1 + 50 X2
X3 + 2X2 = 30 - X1 2X2 = 24 - X5 X4 + 2X2 = 60 - 3X1
3) bi’> 0( I = 1 , 2,…,m ),即X(0)为非退化的基可行解。
则从X(0)出发,一定能找到一个新的基可行解X(1),使得 CX(1) > CX(0) 。
(5) 单纯形表
将线性规划问题典式中各变量及系数填写在一张 表格中,该表即为单纯形表。
cj CB 0 基 xn+1 c1 x1 a11 c2 x2 a12 … … … cn xn a1n 0 xn+1 1 0 … 0 S b1
(2)" ∵ 15>0
∴ X(3)不是
(3)" 选X5从0↗, X3 =0
X1=6 +X5 0
X4= 18 -2X5 0
X2=12-1/2 X5 0
X5=min( 18/2 , 12/1/2 ) =9 X5进基, X4出基。
B4=(P1 P5 P2 ) Z=975- 35/2X3 - 15/2X4 X1= 15 + 1/2X3 - 1/2X4
+X5 =24
解:(1)、确定初始可行解 B = ( P3 P4 P5 ) = I Z = 0 + 40X1 + 50X2
X3 = 30 - ( X1 + 2X2 )
X4= 60 - ( 3X1 + 2X2 )
X5 = 24
令X1 = X2 =0
- 2 X2
X(1) =(0, 0, 30, 60, 24)T
定理2 线性规划问题有可行解,则它必有基可行解.
定理3 若线性规划问题有最优解,则一定存在一个 基可行解是它的最优解.
几点结论
若线性规划问题有可行解,则可行域是一个凸多边形或 凸多面体(凸集),且仅有有限个顶点(极点); 线性规划问题的每一个基可行解都对应于可行域上的 一个顶点(极点); 若线性规划问题有最优解,则最优解必可在基可行解 (极点)上达到;
B N I b
- C B B -1 B -1
B-1
-CB B-1
- C B B -1b -1 B b
B-1b
CBB-1b
I
0
B-1N
CN -CB B-1N
CB
CN
0
0
对应I 式的单纯形表—— I 表(初始单纯形表)
价值系数cj 基系数 0 基 Xs
CB XB B B 0 CB CB
线性规划问题的基可行解(极点)的个数是有限的,不会 m C 超过 n 个.
上述结论说明:
线性规划的最优解可通过有限次运算在基可行解中获得.
2 单纯形法
(1)单纯形法的引入
例1 Max Z=40X1 +50X2
X1 +2X2 +X3 3X1 +2X2 2X2 X1 … X5 0 +X4 =30 =60
- z C B X B C N X N 0X s 0 BX B NX N IX s b
1 CB 0 B CN N
0 0 1 CB I b 0 I
CN B -1 N
0 B -1
0 -1 B b
1 0 C N C B B -1 N -1 0 I B N
定义 在基本解中,若该基本解满足非负约束, 即 X B B 1b 0 ,则称此基本解为基本可行解,简 称基可行解;对应的基B称为可行基。
基本解中最多有m个非零分量。
个。 定义 在线性规划问题的一个基本可行解中,如果 所有的基变量都取正值,则称它为非退化解,如 果所有的基本可行解都是非退化解。称该问题为 非退化的线性规划问题;若基本可行解中,有基 变量为零,则称为退化解,该问题称为退化的线 性规划问题。
XB Z CX C B C N X CB X B CN X N N C B B 1b B 1 NX N C N X N
C B B b C B B NX N C N X N
-1 -1
C B B - 1b C N C B B 1 N X N
(3) 最优性判别定理
在线性规划问题的典式中,设 X(0)=(x1,x2,…,xm,0,…,0) 为对应于基B 的一个基可行解,若有
j 0 ( j = m+1 , m+2 , … , n )
则X(0)是线性规划问题的最优解,基B为最优基。
证:设X为线性规划问题的一个可行解,必有 X 0 ,当 j 0, 则 X 0 Z*=CX(0) = Z(0) Z(0) + X =CX 故X(0)为线性规划问题的最优解。
a11 a 21 A a m1
a12 a 22
a1m a2m
a1m1 a 2 m 1 a mm1
a1m 2 a2m 2 a mm 2
a m 2 a mm
a1n a2n a mn
a1n a2 n amn
T
非 基 向 量
x2 xm
X N xm 1 xm 2 xn
非基变量
ቤተ መጻሕፍቲ ባይዱ
基变量
A B N
AX b
XB B N X b N
XB X X N
XB X X N
BX B NX N b
z CX AX b X 0
Max z C B X B C N X N 0X s BX B NX N IX s b s .t X B , X N , X s 0
Max Z C B B 1b C N C B B 1 N X N X B B 1 NX N B 1b s .t X B 0 , X N 0
(4) 基可行解改进定理
在线性规划问题的典式中,设
X(0)=(x1,x2,…,xm,0,…,0)
为对应于基B 的一个基可行解,若满足以下条件: 1) 某个非基变量的检验数 k > 0 ( m+1 k n );
2) aik ( i = 1,2,…,m )不全小于或等于零,即至少有一个 aik > 0 ( 1 k m );
CN XN N N 0 CN CN
0 XS I I 0 0 0
S b b 0 0 S
θ
zj 检验数σj
迭代
价值系数cj 基系数 CB 基 XB CB XB I I 0 CB 0
对应B 式的单纯形表—— B 表 CN XN B-1 N -1 B N CN -CB -1 B-1N CB B N CN -CB B-1N 0 XS -1 B-1 B -1 -CB B CB B-1 -CB B-1 S B-1-1 b B b CBB-1b S-CBB-1b θ
X5= 9 + 3/2X3 - 1/2X4
X2= 15/2 -3/4X3 + 1/4X4 令X3 =X4 =0 X(4) =(15, 15/2 , 0, 0 ,9 )T Z(4) =975
X2 X(2) X(3)
B
(6,12)
(0,12) A (15,7.5)
X(4) C
(0,0) 0
D
Z=40X1+50X2