高一数学《基本初等函数(I)》测试题(含答案)
高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.方程的根的情况是()A.仅有一根B.有两个正根C.有一正根和一个负根D.有两个负根【答案】C【解析】主要考查指数函数、对数函数的图象和性质。
解:采用数形结合的办法,在同一坐标系中,画出的图象可知。
2.已知 .【答案】8【解析】主要考查指数函数、二次函数的性质。
利用换元法。
解:可化为,令,又因为所以,,,故。
3.若下列命题正确的个数为()A.0B.1C.2D.3【答案】B【解析】主要考查对数运算法则。
解:根据对数的运算性质易知只有④是正确的。
4.已知_____________【答案】【解析】主要考查对数运算。
解:5.已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x年的剩留量为y,则y 与x的函数关系是A.y=(0.9576)B.y=(0.9576)100xC.y=()x D.y=1-(0.0424)【答案】A【解析】设每年减少q%,因为镭经过100年,剩留原来质量的95.76%,所以=95.76%, q%=1-(0.9576),所以=(0.9576)。
故选A。
【考点】主要考查函数的概念、解析式,考查应用数学知识解决实际问题的能力。
点评:审清题意,构建函数解析式。
6.一个体户有一种货,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为2.4%,如果月末售出可获利120元,但要付保管费5元,问这种货是月初售出好,还是月末售出好?【答案】当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【解析】解:设这种货的成本费为a元,则若月初售出,到月末共获利润为:y1=100+(a+100)×2.4%若月末售出,可获利y2=120-5=115(元)y 2-y1=0.024a-12.6=0.024(a-525)故当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【考点】主要考查函数模型的广泛应用,考查应用数学知识解决实际问题的能力。
高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.(本小题满分12分)已知函数,定义域为(1)证明函数是奇函数;(2)若试判断并证明上的单调性【答案】(1)见解析;(2)减函数。
【解析】(1)先确定函数的定义域关于原点对称,再根据奇函数的定义判断f(-x)=-f(x)即可证明. (2)当a=1时,利用函数单调性的定义证明分三个步骤:第一步在区间内取两个不同的值,第二步作差比较两个函数值的大小,第三步得出结论.2.(本小题满分12分)定义在R上的函数,,当时,,且对任意实数,有,(1) 求证:;(2)求证:对任意的∈R,恒有>0;(3)证明:是R上的增函数;(4)若,求的取值范围.、【答案】见解析。
【解析】(1)令a=b=0,可知,因为,所以f(0)=1.(2)令a=x,b=-x,可得f(0)=f(x)f(-x),再结合f(0)=1,x>0,f(x)>1,可确定当x<0时,f(x)>0,又因为f(0)=1.,从而问题得证.(3)任取x2>x1,则,从而证得结论.(4),从而再利用(3)的单调性转化为不等式,从而问题易解.3.如图所示,当时,函数的图象是 ( )【答案】D【解析】因为当时,函数,因为a,b同号,则可知当a>0,b>0,或者a<0,b<0那么分析可知选D4.若函数是上的减函数,则实数的取值范围是()A.B.C.D.【答案】C【解析】因为函数是上的减函数,则可知2-3a<0,0<a<1,a3-3a,解得实数a的范围是,选C.5.已知函数(1)当时,求函数的最大值与最小值;(2)求实数的取值范围,使得在区间上是单调函数.【答案】(1) 当时,函数取得最小值,最小值为1;当时,函数取得最大值,最大值为;(2)。
【解析】本事主要是考查二次函数的性质和单调性的运用。
(1)依题意得当时,,那么可知,由图象知当时,函数取得最小值,最小值为1(2)由于图象的对称轴为直线,根据定语和对称轴的关系得到参数的范围。
高一数学必修1《基本初等函数Ⅰ》测试卷(含答案)

第二章《基本初等函数Ⅰ》测试卷考试时间:120分钟 满分:150分一.选择题.(本大题共12小题,每小题5分,共60分)1.给出下列说法:①0的有理次幂等于0;②01()a a R =∈;③若0,x a R >∈,则0a x >;④11221()33-=.其中正确的是( )A.①③④B.③④C.②③④D. ③ 2.552log 10log 0.25+的值为( )A.0B.1C.2D.4 3.函数2()3x f x =的值域为( )[A.[)0,+∞B.(],0-∞C.[)1,+∞D.(),-∞+∞4.幂函数2()(1),(0,)m f x m m x x =--∈+∞当时为减函数,则m 的值为( ) A.1 B.1- C.12-或 D.25.若函数2013()2012(0,1)x f x a a a -=->≠且,则()f x 的反函数图象恒过定点( ) A.(2013,2011)B.(2011,2013)C.(2011,2012)D.(2012,2013)6.函数22()log (1)()f x x x x R =++∈的奇偶性为( ) A.奇函数而非偶函数 B.偶函数而非奇函数C.非奇非偶函数D.既是奇函数又是偶函数-7. 若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的2倍,则a 的值为( )A. 24B. 22C. 14D. 128.如果60.7a =,0.76b =,0.7log 6c =,则( )A.a b c <<B.c b a <<C.c a b <<D.b c a <<9.函数2()log (1)2f x x =++的单调递增区间为( ) A.()1,-+∞ B.[)0,+∞ C.[]1,2 D.(]0,110.当1a >时,在同一坐标系中,函数x y a -=与log xa y =的图象是下图中的( )}11.对于0,1a a >≠,下列说法中,正确的是( )①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =?A.①②③④B.①③C.②④D.②12.已知R 上的奇函数()f x 和偶函数()g x 满足()()2(0,1)x x f x g x a a a a -+=-+>≠且,若(2),(2)g a f =则的值为( )A.2B.154 C.174D.2a 二.填空题.(本大题共4小题,每小题5分,共20分)13.设12322()((2))log (1)2x e x f x f f x x -⎧<⎪=⎨-≥⎪⎩,,则的值为, . 14.函数215()log (1)f x x =+的单调递减区间为 .15.已知23234(0),log 9a a a =>则的值为 .16.关于函数()2x f x -=,对任意的1212,,x x R x x ∈≠且,有下列四个结论:&()(0)0()0,F x F x F x ∴=⎧⎪=⎨又是a0∴<①当max 1241()()/xf t -⎡∴∈⎢⎣=5.0lg1.5L =+(0)1(2)f ∴=对任意的。
高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.已知偶函数在区间单调递减,则满足的x 取值范围是()A[-,) B (-,) C(,) D [,)【答案】B【解析】因为f(x)在区间单调递减的偶函数,所以等价于,所以不等式的解集为(-,).2.如图所示,当时,函数的图象是 ( )【答案】D【解析】因为当时,函数,因为a,b同号,则可知当a>0,b>0,或者a<0,b<0那么分析可知选D3.设,则的大小关系为()A.B.C.D.【答案】D【解析】因为,所以,选D.4.函数的单调增区间为;【答案】【解析】因为函数作图函数的图像,结合二次函数的图像的特点可知其单调增区间为。
5.里氏震级的计算公式为:其中是测震仪记录的地震曲线的最大振幅,为“标准地震”的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为__________级;9级地震的最大振幅是5级地震的最大振幅的__________倍.【答案】6; 10000【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA-lgA0=lg1000-lg0.001=3-(-3)=6.设9级地震的最大的振幅是x,5级地震最大振幅是y, 9=lgx+3,5=lgy+3,解得x=106,y=102,∴=10000故答案为:6,100006.(12分)已知函数是定义在上的奇函数,且,(1)确定函数的解析式;(2)用定义证明在(-1 ,1)上是增函数;(3)解不等式【答案】解:(1);(2)证明:见解析;(3)。
【解析】本试题主要是考查了函数的奇偶性和单调性的运用,求解抽象不等式问题。
(1)依题意得,解方程组得到参数a,b的值。
得到第一问。
(2)任取,则利用变形定号,确定与0的大小关系来证明。
(3)在上是增函数,∴,解得解:(1)依题意得即得∴(2)证明:任取,则,又∴在上是增函数。
高一数学函数概念与基本初等函数Ⅰ试题答案及解析

高一数学函数概念与基本初等函数Ⅰ试题答案及解析1. (2010·浙江文,16)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________. 【答案】20【解析】本题考查了不等式的实际应用.由题意列出不等式:3860+500+2[500(1+x %)+500(1+x %)2]≥7000 (x >0) 整理可得:x 2+300x -6400≥0,解之得,x ≥20. ∴x 的最小值为20.【考点】一元二次不等式的应用点评:本题是应用题,题中涉及的量比较多,在仔细审题、正确列出不等式的同时还应考虑到实际意义得到x >0. 2. 若,则( ) A .B .C .D .【答案】B 【解析】化为指数式即,所以,故选B 。
【考点】本题主要考查对数函数的概念、对数式与指数式的互化。
点评:理解对数函数的定义,注意对数式与指数式的互化。
3. (2011·佛山质检)如图所示是函数y =()x 和y =3x 2图象的一部分,其中x =x 1,x 2(-1<x 1<0<x 2)时,两函数值相等.(1)给出如下两个命题: ①当x <x 1时,()x <3x 2; ②当x >x 2时,()x <3x 2,试判断命题①②的真假并说明理由; (2)求证:x 2∈(0,1).【答案】(1)当x =-8时, ()-8=28=256,3×(-8)2=192,此时()-8>3×(-8)2,故命题①是假命题.又当x ∈(0,+∞)时,y =()x 是减函数,y =3x 2是增函数,故命题②是真命题. (2)证明:令则,∴f (x )在区间(0,1)内有零点, 又∵函数在区间(0,+∞)上单调递增,∴x 2∈(0,1)【解析】首先从图象上直观观察很容易得到①是错误的②正确。
基本初等函数练习题与答案

5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.
x
|
x
1
,y
|
y
0,
且y
1
2x
1
0,
x
1
;
y
1
8 2 x 1
0, 且y
1
2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3
2log2 3
log2
1 8
2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)
log a
(1
1 a
)
②
log a
(1
a)
log a
(1
1 a
)
③ a1a
高中数学必修1基本初等函数测试题及答案1

必修1 第二章 基本初等函数(1)一、选择题: 1.3334)21()21()2()2(---+-+----的值 ( ) A 437 B 8 C -24 D -8 x y 24-=的定义域为 ( )A ),2(+∞B (]2,∞-C (]2,0D [)+∞,13.下列函数中,在),(+∞-∞上单调递增的是 ( ) A ||x y = B x y 2log = C 31x y = D x y 5.0=x x f 4log )(=与x x f 4)(=的图象 ( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x y =对称2log 3=a ,那么6log 28log 33-用a 表示为 ( )A 2-aB 25-aC 2)(3a a a +-D 132--a a10<<a ,0log log <<n m a a ,则 ( )A m n <<1B n m <<1C 1<<n mD 1<<m nf (x )=2x ,则f (1—x )的图象为 ( )A B C D8.有以下四个结论 ① l g(l g10)=0 ② l g(l n e )=0 ③若10=l g x ,则x=10 ④ 若e =ln x,则x =e 2, 其中正确的是 ( )A. ① ③B.② ④C. ① ②D. ③ ④9.若y=log 56·log 67·log 78·log 89·log 910,则有 ( )A. y ∈(0 , 1) B . y ∈(1 , 2 ) C. y ∈(2 , 3 ) D. y =110.已知f (x )=|lgx |,则f (41)、f (31)、f (2) 大小关系为 ( ) A. f (2)> f (31)>f (41) B. f (41)>f (31)>f (2) C. f (2)> f (41)>f (31) D. f (31)>f (41)>f (2) 11.若f (x )是偶函数,它在[)0,+∞上是减函数,且f (lg x )>f (1),则x 的取值范围是( )A. (110,1)B. (0,110)(1,+∞)C. (110,10) D. (0,1)(10,+∞) 12.若a 、b 是任意实数,且a >b ,则 ( )A. a 2>b 2B. a b <1C. ()lg a b - >0D.12a ⎛⎫ ⎪⎝⎭<12b⎛⎫ ⎪⎝⎭ 二、填空题:13. 当x ∈[-1,1]时,函数f (x )=3x -2的值域为⎩⎨⎧<+≥=-),3)(1(),3(2)(x x f x x f x 则=)3(log 2f _________. )2(log ax y a -=在]1,0[上是减函数,则a 的取值范围是_________16.若定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (21)=0,则不等式 f (l og 4x )>0的解集是______________.三、解答题:x y 2=(1)作出其图象;(2)由图象指出单调区间;(3)由图象指出当x 取何值时函数有最小值,最小值为多少?18. 已知f (x )=log a 11x x+- (a >0, 且a ≠1) (1)求f (x )的定义域(2)求使 f (x )>0的x 的取值范围.19. 已知函数()log (1)(0,1)a f x x a a =+>≠在区间[1,7]上的最大值比最小值大12,求a 的值。
高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.函数的单调增区间为()A.(,+∞)B.(3,+∞)C.(-∞,)D.(-∞,2)【答案】D【解析】由得所以函数的定义域为设函数在是减函数;在是增函数;函数是减函数,所以函数单调增区间为故选D2.已知函数=" " ,求,的值.【答案】(1)(2)解:=()2+1 = ==+1=【解析】略3.(本小题满分12分)若非零函数对任意实数均有¦(a+b)=¦(a)·¦(b),且当时,.(1)求证:(2)求证:为减函数;(3)当时,解不等式【答案】解:(1)(2)设则,为减函数(3)由原不等式转化为,结合(2)得:故不等式的解集为.【解析】略4.(本小题满分14分)某商店经营的消费品进价每件14元,月销售量Q(百件)与销售价格P(元)的关系如下图,每月各种开支2000元,(1)写出月销售量Q(百件)与销售价格P(元)的函数关系。
(2)该店为了保证职工最低生活费开支3600元,问:商品价格应控制在什么范围?(3)当商品价格每件为多少元时,月利润并扣除职工最低生活费的余额最大?并求出最大值。
【答案】解:(1)2)当时,即,解得,故;当时,即,解得,故。
所以(3)每件19.5元时,余额最大,为450元。
【解析】略5.函数在上是增函数,则实数的范围是(▲ )A.≥B.≥C.≤D.≤【答案】A【解析】函数图像是开口向下,对称轴为的抛物线,所以函数在上是增函数,需使故选A6.求值:= ▲(答案化为最简形式)【答案】1【解析】略7.定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有,则等于▲【解析】略8.下面运算结果正确的是()A.B.C.D.【答案】B【解析】此题考查指数的运算性质;同底数幂的乘法法则:底数不变指数相加,所以,所以A错误;根据,可知:,所以B正确;因为,,二者不相等,所以C错误;因为任何一个不为零的零次方等于1,所以D中的底数是否为零不知道,所以D错误;所以选 B;9.设函数,则=()A.-3B.4C.9D.16【答案】B【解析】故选B10.A.B.C.D.【答案】D【解析】主要考查二次函数的图象和性质。