2022届高考数学统考一轮复习第五章数列第三节等比数列及其前n项和课时规范练文含解析北师大版
全国统考2022高考数学一轮复习课时规范练31等比数列及其前n项和理含解析北师大版.docx

课时规范练31 等比数列及其前n 项和基础巩固组1.(2020安徽安庆二模,理5)等比数列{a n }的前n 项和为S n .若a 3a 6=2a 52,S 4=152,则a 2+a 4=( )A .32B .52C.32D.40 2.等比数列{a n }的前n 项和为S n ,若S 2n =4(a 1+a 3+…+a 2n-1)(n ∈N +),a 1a 2a 3=-27,则a 5=( ) A.81B.24C.-81D.-243.已知正项等比数列{a n }的前n 项和为S n ,且7S 2=4S 4,则公比q 的值为( ) A.1B.1或12C .√32D.±√324.(2020湖南郴州一模)在数列{a n }中,a 1=2,a n 2=a n-1·a n+1(n ≥2,n ∈N *),S n 为{a n }的前n 项和,若a 6=64,则S 7的值为( ) A.126 B.256 C.255 D.254 5.(2020广东惠州联考)已知数列{a n }为等差数列,且2a 1,2,2a 6成等比数列,则{a n }前6项的和为( ) A.15 B .212C.6D.3 6.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( )A.63B.62C.61D.607.(2020辽宁大连24中一模,4)在公差不为零的等差数列{a n }中,a 1+a 2+a 5=13,且a 1,a 2,a 5成等比数列,则数列{a n }的公差等于( ) A.1B.2C.3D.48.(2019全国1,理14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5= .9.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= . 10.(2020四川绵阳三模,理17)若数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=23S n .(1)求S n ;(2)设b n =1S n,求证:b 1+b 2+b 3+…+b n <52.综合提升组11.(2020全国2,理6)数列{a n }中,a 1=2,a m+n =a m a n .若a k+1+a k+2+…+a k+10=215-25,则k=( )A.2B.3C.4D.512.(2020湖南常德一模,文7)等比数列{a n}的各项均为正数,已知向量n=(a5,a4),m=(a7,a8),且m·n=4,则log2a1+log2a2+…+log2a11=()A.5B.112C.132D.2+log2513.我国古代数学著作《算法统宗》中有这样一个问题(意为):“有一个人要走378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,那么,此人第4天和第5天共走路程是()A.24里B.36里C.48里D.60里14.(2020湖南常德一模,文17)在数列{a n}中,a1=1,a n+1=2a n+1(n∈N*).(1)证明:数列{a n+1}为等比数列;(2)求数列{a n}的前n项和S n.创新应用组15.(2020河南驻马店二模,文16)在数列{a n}中,a1=1,a n≠0,曲线y=x3在点(a n,a n3)处的切线经过点(a n+1,0),下列四个结论:①a2=23;②a3=13;③∑i=14a i=6527;④数列{a n}是等比数列,其中所有正确结论的编号是.16.(2020广东广州一模,理17)记S n为数列{a n}的前n项和,2S n-a n=12n-1(n∈N+).(1)求a n+a n+1;(2)令b n=a n+2-a n,证明数列{b n}是等比数列,并求其前n项和T n.参考答案课时规范练31等比数列及其前n项和1.B 设等比数列{a n }的公比为q ,因为a 3a 6=2a 52,所以a 4a 5=2a 52,所以q=a 5a 4=12.因为S 4=152,所以a 1(1-q 4)1-q=152,解得a 1=4,所以a 2=2,a 4=12,a 2+a 4=52.故选B.2.C 设等比数列{a n }的公比为q ,已知S 2n =4(a 1+a 3+…+a 2n-1)(n ∈N *),令n=1,则S 2=4a 1,可得a 2=3a 1,q=3.∵a 1a 2a 3=-27,∴a 23=-27,解得a 2=-3,∴a 1=-1,则a 5=-34=-81.3.C 因为7S 2=4S 4,所以3(a 1+a 2)=4(S 4-S 2)=4(a 3+a 4),故q 2=34,因为数列{a n }为正项的等比数列,故q>0,所以q=√32,故选C .4.D 在数列{a n }中,满足a n 2=a n-1a n+1(n ≥2),则数列{a n }为等比数列.设其公比为q ,由a 1=2,a 6=64,得q 5=a6a 1=32,则q=2,则S 7=2×(1-27)1-2=28-2=254.5.C 由2a 1,2,2a 6成等比数列,可得4=2a 1·2a 6=2a 1+a 6,即a 1+a 6=2,又数列{a n }为等差数列,所以{a n }前6项的和为12×6(a 1+a 6)=6.6.A 由等比数列的性质可知S 2,S 4-S 2,S 6-S 4成等比数列,即3,12,S 6-15成等比数列, 所以S 6-15=12×4,解得S 6=63. 7.B 设数列{a n }的公差为d ,且d ≠0.∵a 1+a 2+a 5=13,∴3a 1+5d=13. ①∵a 1,a 2,a 5成等比数列,∴(a 1+d )2=a 1(a 1+4d ),②解①②组成的方程组,可得d=2.故选B. 8.1213设等比数列{a n }的公比为q ,则a 4=a 1q 3=13q 3,a 6=a 1q 5=13q 5. ∵a 42=a 6,∴19q 6=13q 5.∵q ≠0,∴q=3. ∴S 5=a 1(1-q 5)1-q=13(1-35)1-3=1213.9.32 设该等比数列的公比为q ,则S 6-S 3=634−74=14,即a 4+a 5+a 6=14.①∵S 3=74,∴a 1+a 2+a 3=74. 由①得(a 1+a 2+a 3)q 3=14, ∴q 3=1474=8,即q=2.∴a 1+2a 1+4a 1=74,a 1=14, ∴a 8=a 1·q 7=14×27=32.10.(1)解由a n +1=23S n ,可得S n +1-S n =23S n ,即S n +1=53S n ,由a 1=1,可得S 1=1,所以数列{S n }是首项为1,公比为53的等比数列,则S n =53n-1;(2)证明因为b n =1S n=35n-1,所以b 1+b 2+b 3+…+b n =1-(35) n1-35=52−52×35n <52. 11.C ∵a m+n =a m ·a n ,令m=1,又a 1=2,∴a n+1=a 1·a n =2a n , ∴a n+1a n=2,∴{a n }是以2为首项,2为公比的等比数列,∴a n =2n .∴a k+1+a k+2+…+a k+10=2k+1+2k+2+…+2k+10=2k+1·1-2101-2=2k+11-2k+1=215-25.∴{k +11=15,k +1=5,解得k=4. 12.B 因为向量n =(a 5,a 4),m =(a 7,a 8),m ·n =4,所以m ·n =a 5a 7+a 4a 8=4,因为{a n }是等比数列,所以a 5·a 7=a 4·a 8=2,所以a 1·a 11=2, 所以log 2a 1+log 2a 2+…+log 2a 11=log 2(a 1·a 11)112=log 22112=112.故选B.13.B 记每天走的路程里数为{a n },可知{a n }是公比q=12的等比数列,由S 6=378,得S 6=a 1(1-126)1-12=378,解得a 1=192,∴a 4+a 5=192×(12)3+192×(12)4=24+12=36.所以此人第4天和第5天共走了36里,故选B . 14.(1)证明∵a n+1=2a n +1,∴a n+1+1=2(a n +1),又a 1+1=2,∴数列{a n +1}是以2为首项,2为公比的等比数列. (2)解由(1)得a n +1=2n , ∴a n =2n -1, ∴S n=(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n=2×(1-2n )1-2-n=2n+1-n-2.故S n =2n+1-n-2.15.①③④ ∵y'=3x 2,∴曲线y=x 3在点(a n ,a n 3)处的切线方程为y-a n 3=3a n 2(x-a n ),∵该切线经过点(a n+1,0),∴-a n 3=3a n 2(a n+1-a n ).∵a n ≠0,∴a n+1=23a n ,又a 1=1,∴{a n }是首项为1,公比为23的等比数列.∴a 2=23,a 3=49,∑i=14a i =1-(23)41-23=6527.故所有正确结论的编号是①③④. 16.解(1)由2S n -a n =12n -1,①则2S n+1-a n+1=12n ,②②-①,可得2a n+1-a n+1+a n =12n −12n -1=-12n ,所以a n +a n+1=-12n . (2)由(1)可知a n +a n+1=-12n ,③则a n+1+a n+2=-12n+1,④④-③,可得a n+2-a n =-12n+1--12n =12n+1, 则b n =12n+1,且b n+1=12n+2.令n=1,则b 1=14.又因为b n+1b n=12n+212n+1=12,所以数列{b n }是首项为14,公比为12的等比数列.所以T n =14(1-12n )1-12=121-12n =12−12n+1.。
(人教版)2020届高考数学一轮复习 第五章 数列 第三节 等比数列及其前n项和课时作业

第三节 等比数列及其前n 项和课时作业1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:设数列{a n }的公比为q ,则a 1(1+q 2+q 4)=21,又a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去),所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.故选B.答案:B2.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19D .-19解析:由题知公比q ≠1,则S 3=a 11-q 31-q=a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C. 答案:C3.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( ) A .-3 B .5 C .-31D .33解析:设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18, ∴1-q 31-q 6=218,得q 3=8, ∴q =2.∴S 10S 5=1-q 101-q5=1+q 5=33,故选D.答案:D4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:a m =a 1a 2a 3a 4=a 41qq 2q 3=24×26=210=2m,所以m =10,故选B. 答案:B5.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1解析:因为点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,所以S n =3·2n-3,所以a n =3·2n-1,所以b n +b n +1=3·2n -1,因为数列{b n }为等比数列,设公比为q ,则b 1+b 1q =3,b 2+b 2q=6,解得b 1=1,q =2,所以b n =2n -1,T n =2n-1,所以T n <b n +1,故选D.答案:D6.(2018·郑州质检)已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是________.解析:设{a n }的公比为q .由a 25=2a 3a 6得(a 1q 4)2=2a 1q 2·a 1q 5,∴q =2,∴S 5=a 11-251-2=-62,a 1=-2. 答案:-27.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)=10a n +1,则公比q =________. 解析:因为等比数列{a n }为递增数列且a 1=-2<0,所以0<q <1,将3(a n +a n +2)=10a n +1两边同除以a n 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13,而0<q <1,所以q=13. 答案:138.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =__________. 解析:∵a 2-a 1=1,a 3-a 2=3,∴q =3, ∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3, ∵a 1=1,∴a n =3n -1+12. 答案:3n -1+129.(2018·昆明市检测)数列{a n }满足a 1=-1,a n +1+2a n =3. (1)证明{a n -1}是等比数列,并求数列{a n }的通项公式; (2)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设b n =a n ·sgn(a n ),求数列{b n }的前100项和.解析:(1)因为a n +1=-2a n +3,a 1=-1, 所以a n +1-1=-2(a n -1),a 1-1=-2,所以数列{a n -1}是首项为-2,公比为-2的等比数列.故a n -1=(-2)n ,即a n =(-2)n+1.(2)b n =a n ·sgn(a n )=⎩⎪⎨⎪⎧2n+1,n 为偶数,2n-1,n 为奇数,设数列{b n }的前n 项和为S n ,则S 100=(2-1)+(22+1)+(23-1)+…+(299-1)+(2100+1)=2+22+23+…+2100=2101-2.10.(2018·合肥质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn, ∴{a n n }是以12为首项、12为公比的等比数列.(2)由(1)知{a n n }是首项为12,公比为12的等比数列,∴a n n =(12)n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得:12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组——能力提升练1.(2018·长春调研)等比数列{a n }中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:当公比q =1时,a 1=a 2=a 3=9,∴S 3=3×9=27. 当q ≠1时,S 3=a 1-a 3q1-q,∴27=a 1-9q1-q∴a 1=27-18q , ∴a 3=a 1q 2,∴(27-18q )·q 2=9, ∴(q -1)2(2q +1)=0, ∴q =-12.综上q =1或q =-12.选C.答案:C2.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )A .1B .-1 C.12D .2解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:D3.(2018·彬州市模拟)已知等比数列{a n }的前n 项和S n =2n -a ,则a 21+a 22+…+a 2n =( ) A .(2n -1)2B .13(2n-1) C .4n-1D .13(4n-1) 解析:∵S n =2n-a ,∴a 1=2-a ,a 1+a 2=4-a ,a 1+a 2+a 3=8-a , 解得a 1=2-a ,a 2=2,a 3=4,∵数列{a n }是等比数列,∴22=4(2-a ),解得a =1. ∴公比q =2,a n =2n -1,a 2n =22n -2=4n -1.则a 21+a 22+…+a 2n =4n-14-1=13(4n-1).答案:D4.设数列{a n }是公比为q (|q |>1)的等比数列,令b n =a n +1(n ∈N *),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q =( ) A.32B .-43C .-32D .-52解析:数列{b n }有连续四项在集合{-53,-23,19,37,82}中,且b n =a n +1(n ∈N *),∴a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中, ∵数列{a n }是公比为q (|q |>1)的等比数列, 等比数列中有负数项,则q <0,且负数项为相隔两项∵|q |>1,∴等比数列各项的绝对值递增,按绝对值的顺序排列上述数值18,-24,36,-54,81,相邻两项相除-2418=-43,-3624=-32,-5436=-32,81-54=-32,∵|q |>1,∴-24,36,-54,81是{a n }中连续的四项,此时q =-32.答案:C5.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:由S 3+3S 2=0,得a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 答案:-26.已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n.解析:(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①∴S n -1=32a n -1-1(n ≥2),②①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n=11×3+13×5+…+12n -32n -1=12(1-13+13-15+…+12n -3-12n -1)=n -12n -1. 7.数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 证明:(1)由题设得a n +1n +1=12·a n n ,又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,a n =n ·22-n=4n 2n .(2)b n =a n4n -a n=4n 2n 4n -4n 2n=12n-1,因为对任意n ∈N *,2n-1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝ ⎛⎭⎪⎫1-12n <2.。
2022届高考一轮复习第5章数列第3节等比数列及其前n项和

15,且 a5=3a3+4a1,则 a3=( )
A.16
B.8
C.4
D.2
[解析]
由题意知aa11>+0a,1q+q>a10q,2+a1q3=15, a1q4=3a1q2+4a1,
解得aq1==21,,∴a3=a1q2=4.故选 C.
[答案] C
(2)(2019·高考全国卷Ⅰ)记 Sn 为等比数列{an}的前 n 项和.若 a1=13,a24=a6,则 S5 =________.
[解析] 由 a24=a6 得(a1q3)2=a1q5,
整理得 q=a11=3.∴S5=13(11--335)=1231.
[答案]
121 3
(3)(2018·高考全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3. ①求{an}的通项公式; ②记 Sn 为{an}的前 n 项和.若 Sm=63,求 m. [解析] ①设{an}的公比为 q,由题设得 an=qn-1. 由已知得 q4=4q2,解得 q=0(舍去),q=-2 或 q=2. 故 an=(-2)n-1 或 an=2n-1.
[解析] (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+bn+1=12(an+bn). 又因为 a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8, 即 an+1-bn+1=an-bn+2. 又因为 a1-b1=1. 所以{an-bn}是首项为 1,公差为 2 的等差数列.
A.4
B.8
C.16
D.32
答案:C
2.(基础点:等比数列的前 n 项和)设{an}是公比为正数的等比数列,若 a1=1,a5
(新课标)高考数学一轮总复习 第五章 数列 5-3 等比数列及其前n项和课时规范练 文(含解析)新人

5-3 等比数列及其前n 项和课时规X 练A 组 基础对点练1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( B ) A .21 B.42 C .63D.842.(2018·某某质检)在等比数列{a n }中,a 2=2,a 5=16,则a 6=( C ) A .14 B.28 C .32D.643.(2017·某某摸底考试)已知数列{a n }为等比数列,a 5=1,a 9=81,则a 7=( B ) A .9或-9 B.9 C .27或-27D.27解析:∵数列{a n }为等比数列,且a 5=1,a 9=81, ∴a 27=a 5a 9=1×81=81, ∴a 7=±9.当a 7=-9时,a 26=1×(-9)=-9不成立,舍去. ∴a 7=9.故选B.4.(2018·某某调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( B ) A .-2n B.2n C .2n -1D.2n +1解析:由题意,得a 2a 8=a 24,又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.5.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( D ) A .-3 B.-1 C .1D.3解析:在等比数列{a n }中, ∵a 3=2S 2+1,a 4=2S 3+1,∴a 4-a 3=2S 3+1-(2S 2+1)=2(S 3-S 2)=2a 3, ∴a 4=3a 3, ∴q =a 4a 3=3.故选D.6.我国古代有用一首诗歌形式提出的数列问题:远望巍巍塔七层,红灯向下成倍增.共灯三百八十一,请问塔顶几盏灯?( C ) A .5 B.4 C .3D.27.若等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( D ) A .5 B.9 C .log 345D.10解析:由等比数列性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,∴a 5a 6=9, 则原式=log 3a 1a 2…a 10=log 3(a 5a 6)5=10.8.已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是__-2__. 9.(2018·某某调研)在各项均为正数的等比数列{a n }中,若a 5=5,则log 5a 1+log 5a 2+…+log 5a 9= __9__.解析:因为数列{a n }是各项均为正数的等比数列,所以由等比数列的性质,可得a 1·a 9=a 2·a 8=a 3·a 7=a 4·a 6=a 25=52,则log 5a 1+log 5a 2+…+log 5a 9=log 5(a 1·a 2·…·a 9) =log 5[(a 1·a 9)·(a 2·a 8)·(a 3·a 7)·(a 4·a 6)·a 5]=log 5a 95=log 559=9.10.(2018·某某统考)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=4,a n +1=3S n +4(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89.解析:(1)因为a n +1=3S n +4, 所以a n =3S n -1+4(n ≥2),两式相减,得a n +1-a n =3a n ,即a n +1=4a n (n ≥2). 又a 2=3a 1+4=16=4a 1,所以数列{a n }是首项为4,公比为4的等比数列,所以a n =4n. (2)证明:因为a n b n =log 2a n ,所以b n =2n4n ,所以T n =241+442+643+ (2)4n ,14T n =242+443+644+ (2)4n +1,两式相减得,34T n =24+242+243+244+…+24n -2n4n +1=2⎝ ⎛⎭⎪⎫14+142+143+144+…+14n -2n 4n +1=2×14⎝ ⎛⎭⎪⎫1-14n 1-14-2n 4n +1=23-23×4n -2n4n +1=23-6n +83×4n +1, 所以T n =89-6n +89×4n <89.11.(2017·某某质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n ,知a n +1n +1=12·a nn, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫a n n 是首项为12,公比为12的等比数列,∴a n n =⎝ ⎛⎭⎪⎫12n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②,得12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组 能力提升练1.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( C )A .2B.1C.12D.18解析:设等比数列{a n }的公比为q ,a 1=14,a 3a 5=4(a 4-1),由题可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝ ⎛⎭⎪⎫14×q 3-1,∴q 6-16q 3+64=0,∴(q 3-8)2=0,∴q 3=8,∴q =2,∴a 2=12.故选C.2.(2018·某某质检)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马,”马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a 升,b 升,c 升,1斗为10升,则下列判断正确的是( D )A .a ,b ,c 依次成公比为2的等比数列,且a =507B .a ,b ,c 依次成公比为2的等比数列,且c =507C .a ,b ,c 依次成公比为12的等比数列,且a =507A .a ,b ,c 依次成公比为12的等比数列,且c =507解析:由题意,可得a ,b ,c 依次成公比为12的等比数列,b =12a ,c =12b ,故4c +2c +c =50,解得c =507.故选D.3.在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( B ) A .4 B.5 C .6D.7解析:由等比数列的性质,可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5,故选B.4.(2018·某某适应性考试)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 018=( A )A .22 017-12 B.1-⎝ ⎛⎭⎪⎫12 2 017C .22 018-12D.1-⎝ ⎛⎭⎪⎫12 2 018解析:由a 1=12,a 2a 6=8(a 4-2),得q 6-16q 3+64=0,所以q 3=8,即q =2,所以S 2 018=a 11-q 2 0181-q =22 017-12.故选A.5.(2016·高考某某卷)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( C ) A .充要条件 B.充分而不必要条件 C .必要而不充分条件 D.既不充分也不必要条件解析:由题意,得a n =a 1qn -1(a 1>0),a 2n -1+a 2n =a 1q2n -2+a 1q2n -1=a 1q2n -2(1+q ).若q <0,因为1+q 的符号不确定,所以无法判断a 2n -1+a 2n 的符号;反之,若a 2n -1+a 2n <0,即a 1q 2n -2(1+q )<0,可得q <-1<0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件,故选C.6.若等比数列{a n }的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( D )A.32B.94 C .1D.2解析:设等比数列{a n }的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9①,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92②,①÷②得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2.故选D. 7.已知等比数列{a n }的各项都是正数,且3a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( D )A .6 B.7 C .8D.9解析:∵3a 1,12a 3,2a 2成等差数列,∴a 3=3a 1+2a 2,∴q 2-2q -3=0,∴q =3或q =-1(舍去).∴a 8+a 9a 6+a 7=a 1q 7+a 1q 8a 1q 5+a 1q 6=q 2+q 31+q=q 2=32=9.故选D.8.(2018·某某质检)已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018=( A ) A .22 018-1 B.32 018-6C.⎝ ⎛⎭⎪⎫12 2 018-72D.⎝ ⎛⎭⎪⎫13 2 018-103解析:因为3S n =2a n -3n ,所以当n =1时,3S 1=3a 1=2a 1-3,所以a 1=-3;当n ≥2时,3a n =3S n -3S n -1=(2a n -3n )-(2a n -1-3n +3),所以a n =-2a n -1-3,即a n +1=-2(a n -1+1),所以数列{a n +1}是以-2为首项,-2为公比的等比数列.则a n +1=-2×(-2)n -1=(-2)n,所以a n =(-2)n-1,所以a 2 018=(-2)2 018-1=22 018-1,故选A.9.(2018·某某质量预测)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=__100__.解析:由log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,即a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列.又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100, 所以log 2(a 101+a 102+…+a 110)=log 22100=100.10.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值X 围是__(-∞,-1]∪[3,+∞)__.解析:当q >0时,S 3=a 1+a 2+a 3=1+a 1+a 3≥1+2a 1a 3=1+2a 22=3; 当q <0时,S 3=a 1+a 2+a 3=1+a 1+a 3≤1-2a 1a 3=1-2a 22=-1, 所以S 3的取值X 围是(-∞,-1]∪[3,+∞).11.(2018·某某质检)已知数列{a n }是各项均为正数的等比数列,若a 1=1,a 2·a 4=16. (1)设b n =log 2a n ,求数列{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和S n . 解析:(1)设数列{a n }的公比为q (q >0),由⎩⎪⎨⎪⎧a 1=1,a 2a 4=16,得q 4=16,所以q =2,则a n =2n -1.又b n =log 2a n ,所以b n =n -1. (2)由(1)可知a n ·b n =(n -1)·2n -1,则S n =0×20+1×21+2×22+…+(n -1)·2n -1,2S n =0×21+1×22+2×23+…+(n -1)·2n, 两式相减,得-S n =2+22+23+…+2n -1-(n -1)·2n=2-2n1-2-(n -1)·2n =2n (2-n )-2, 所以S n =2n(n -2)+2.12.(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{}a n 是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n , 即(λ-1)a n +1=λa n ,由a 1≠0,λ≠0,得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n .由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132, 即⎝ ⎛⎭⎪⎫λλ-15=132,解得λ=-1.。
2022届高考数学一轮复习 第五章 数列 第3节 等比数列及其前n项和课时作业(含解析)新人教版

第五章 数列授课提示:对应学生用书第293页[A 组 基础保分练]1.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式为( )A .a n =22n -1B .a n =2nC .a n =22n +1D .a n =22n -3答案:A2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578 D .558答案:A3.(2021·西安模拟)设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5D .159.5 解析:因为1+2a n =(1+2a 1)·2n -1,则a n =5·2n -1-12,a n =5·2n -2-12.a 6=5×24-12=5×16-12=80-12=79.5.答案:C4.正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( ) A .1 B .2 C.22D .2答案:D5.(2021·南宁统一考试)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:等比数列{a n }为递增数列的充要条件为⎩⎪⎨⎪⎧a 1>0,q >1,或⎩⎪⎨⎪⎧a 1<0,0<q <1.答案:D6.已知数列{a n }是各项均为正数的等比数列,S n 是其前n 项和,若S 2+a 2=S 3-3,则a 4+3a 2的最小值为( )A .12B .9C .16D .18解析:因为S 3-S 2=a 3,所以由S 2+a 2=S 3-3,得a 3-a 2=3,设等比数列{a n }的公比为q ,则a 1=3q q -1,由于{a n }的各项为正,所以q >1.a 4+3a 2=a 1q 3+3a 1q =a 1q (q 2+3)=3q q -1q (q 2+3)=3q 2+3q -1=3(q -1+4q -1+2)≥18,当且仅当q -1=2,即q =3时,a 3+3a 2取得最小值18.答案:D7.已知等比数列{a n }的前n 项和为S n (n ∈N *),若S 6S 3=65,则数列{a n }的公比为________.答案:48.(2021·安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________. 答案:29.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解析:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.10.已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.解析:(1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21.(2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)·(a 3+λ), 即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:∵S n =2a n -3n ,∴S n +1=2a n +1-3n -3,∴a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n+1,∴2(a n +3)=a n +1+3,∴a n +1+3a n +3=2,∴存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. ∴a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).[B 组 能力提升练]1.(多选题)如图,在每个小格中填上一个数,使得每一行的数依次成等差数列,每一列的数依次成等比数列,则( )A.x =1 C .z =3D .x +y +z =2解析:因为每一列成等比数列,所以第一列的第3,4,5个小格中的数分别是12,14,18,第三列的第3,4,5个小格中的数分别是1,12,14,所以x =1.又每一行成等差数列,所以y =14+3×12-142=58,z -18=2×18,所以z =38,所以x +y +z =2.故A ,D 正确;B ,C错误. 答案:AD2.已知等比数列{a n }满足a 4+a 6a 1+a 3=18,a 5=4,记等比数列{a n }的前n 项积为T n ,则当T n取最大值时,n =( ) A .4或5 B .5或6 C .6或7D .7或8答案:C3.已知正项等比数列{a n }满足a 2·a 27·a 2 020=16,则a 1·a 2·…·a 1 017=( ) A .41 017 B .21 017 C .41 018 D .21 018答案:B4.(多选题)已知数列{a n }是等差数列,{b n }是等比数列,a 1=1,b 1=2,a 2+b 2=7,a 3+b 3=13.记c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,数列{c n }的前n 项和为S n ,则( ) A .a n =2n -1 B .b n =2nC .S 9=1 409D .S 2n =2n 2-n +43(4n-1)解析:设数列{a n }的公差为d ,数列{b n }的公比为q (q ≠0),依题意有⎩⎪⎨⎪⎧1+d +2q =7,1+2d +2q 2=13,得⎩⎪⎨⎪⎧d =2,q =2,故a n =2n -1,b n =2n ,故A ,B 正确;则c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n ,所以数列{c n }的前2n 项和S 2n =(a 1+a 3+…+a 2n -1)+(b 2+b 4+…+b 2n )=n 1+4n -32+41-4n 1-4=2n 2-n +43(4n -1),S 9=S 8+a 9=385,故C 错误,D 正确. 答案:ABD5.已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________. 答案:2n +1-26.(2021·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.答案:317.(2021·山东德州模拟)给出以下三个条件:①数列{a n }是首项为2,满足S n +1=4S n +2的数列;②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解.设数列{a n }的前n 项和为S n ,a n 与S n 满足________,记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+nb n b n +1,求数列{c n }的前n 项和T n .注:如果选择多个条件分别解答,则按第一个解答计分. 解析:选条件①.由已知S n +1=4S n +2,可得当n ≥2时,S n =4S n -1+2, 两式相减,得a n +1=4(S n -S n -1)=4a n ,即a n +1=4a n (n ≥2),当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,解得a 2=8,满足a 2=4a 1, 故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1, 所以b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,所以c n =n 2+n b n b n +1=n n +1n 2n +12=1n n +1=1n -1n +1. 故T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.选条件②.由已知3S n =22n +1+λ,可得当n ≥2时,3S n -1=22n -1+λ,两式相减,得3a n =22n +1-22n -1=3·22n -1,即a n =22n -1(n ≥2),当n =1时,a 1=2满足a n =22n -1,故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1. 以下同选条件①. 选条件③.由已知3S n =a n +1-2,可得当n ≥2时,3S n -1=a n -2, 两式相减,得3a n =a n +1-a n ,即a n +1=4a n (n ≥2),当n=1时,3a1=a2-2,又a1=2,所以a2=8,满足a2=4a1,故数列{a n}是以2为首项,4为公比的等比数列,所以a n=22n-1.以下同选条件①.[C组创新应用练]1.(多选题)设数列{a n}(n∈N*)是各项均为正数的等比数列,q是其公比,K n是其前n 项的积,且K5<K6,K6=K7>K8,则下列选项中正确的是( )A.0<q<1B.a7=1C.K9>K5D.K6与K7均为K n的最大值解析:若K6=K7,则a7=K7K6=1,故B正确;由K5<K6可得a6=K6K5>1,则q=a7a6∈(0,1),故A正确;由数列{a n}是各项为正数的等比数列且q∈(0,1),可得数列{a n}单调递减,则有K9<K5,故C错误;结合K5<K6,K6=K7>K8,可得D正确.答案:ABD2.(2021·湖南常德模拟)某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药物预防.规定每人每天早晚八时各服一次,现知每次药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%.某人上午八时第一次服药,至第二天上午八时服完药时,这种药在他体内还残留( )A.220毫克B.308毫克C.123.2毫克D.343.2毫克解析:设第n次服药后,药在体内的残留量为a n毫克,则a1=220,a2=220+a1×(1-60%)=220×1.4=308,a3=220+a2×(1-60%)=343.2.答案:D3.设{a n}是各项为正数的无穷数列,A i是边长为a i,a i+1的矩形的面积(i=1,2,…),则{A n}为等比数列的充要条件是( )A.{a n}是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同解析:∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n=q ,从而{A n }为等比数列. 答案:D。
高考数学一轮复习第5章数列第3讲等比数列及其前n项和习题课件

3.[2018·江西九江一模]已知单调递增的等比数列{an}
中,a2·a6=16,a3+a5=10,则数列{an}的前 n 项和 Sn=( )
A.2n-2-14 B.2n-1-12
C.2n-1
D.2n+1-2
解析 因为 a2·a6=16,所以 a3·a5=16,又 a3+a5=10,
等比数列{an}单调递增,所以 a3=2,a5=8,所以公比 q=
∴Sn=2n+nn-2 1·2=n(n+1).故选 A.
5.[2015·全国卷Ⅱ]已知等比数列{an}满足 a1=3,a1+ a3+a5=21,则 a3+a5+a7=( )
A.21 B.42 C.63 D.84
解析 设等比数列{an}的公比为 q,则 a1(1+q2+q4)= 21,又 a1=3,所以 q4+q2-6=0,所以 q2=2(q2=-3 舍 去),所以 a3=6,a5=12,a7=24,所以 a3+a5+a7=42. 故选 B.
2,a1=12,所以 Sn=1211--22n=2n-1-12.故选 B.
4.[2018·延庆模拟]等差数列{an}的公差为 2,若 a2,
a4,a8 成等比数列,则{an}的前 n 项和 Sn=( ) A.n(n+1) B.n(n-1)
nn+1 C. 2
nn-1 D. 2Fra bibliotek解析 ∵a2,a4,a8 成等比数列, ∴a24=a2·a8,即(a1+3d)2=(a1+d)(a1+7d), 将 d=2 代入上式,解得 a1=2,
7.[2018·昆明模拟]设 Sn 是等比数列{an}的前 n 项和,
若SS42=3,则SS64=(
)
A.2
7 B.3
3 C.10
D.1 或 2
高三一轮复习第五章 第三节等比数列及其前n项和

课时作业1.(2022·三明月考)若S n为数列{a n}的前n项和,且S n=2a n-2,则S8等于( ) A.255 B.256C.510 D.511【解析】 当n=1时,a1=2a1-2,据此可得:a1=2,当n≥2时:S n=2a n-2,S n-1=2a n-1-2,两式作差可得:a n=2a n-2a n-1,则:a n=2a n-1,据此可得数列{a n}是首项为2,公比为2的等比数列,其前8项和为:S8=2×(1-28)1-2=29-2=512-2=510.故选C.【答案】 C2.等比数列{a n}中,其公比q<0,且a2=1-a1,a4=4-a3,则a4+a5等于( ) A.8 B.-8C.16 D.-16【解析】 q2=a3+a4a1+a2=4,q=-2.a4+a5=(a3+a4)q=-8.【答案】 B3.(2022·湛江二模)已知递增的等比数列{a n}中,a2=6,a1+1、a2+2、a3成等差数列,则该数列的前6项和S6=( )A.93 B.189C.18916D.378【解析】 设数列的公比为q,由题意可知:q>1,且:2(a2+2)=a1+1+a3,即:2×(6+2)=6q+1+6q,整理可得:2q2-5q+2=0,则q=2,(q=12舍去).则:a1=62=3,该数列的前6项和S6=3×(1-26)1-2=189.故选B.【答案】 B4.(2022·贵阳一中模拟考试)已知各项均为正数的等比数列{a n},前3项和为13,a3=a2·a4,则a4=( )A.13B.19C.1 D.3 【解析】 ∵a3=a2a4,又a n>0,∴a3=1,S3=a3q2+a3q+1=13,又q>0,∴q=13,∴a4=a3q=13,【答案】 A5.(2022·贵州模拟)已知等比数列{a n}的前n项和为S n,若a2=32,S3=214,则数列{a n}的公比为( )A.2或12B.-2或-12C.-12或2 D.12或-2【解析】 设等比数列{a n}的公比为q,则a2=a1q=32,S3=a1(1+q+q2)=214,两式相除得(1+q+q2)q=72,即2q2-5q+2=0,解得q=12或2.故选A.【答案】 A6.(2022·安徽淮北模拟)5个数依次组成等比数列,且公比为-2,则其中奇数项和与偶数项和的比值为( )A.-2120B.-2C.-2110D.-215【解析】 由题意可知设这5个数分别为a,-2a,4a,-8a,16a,a≠0,故奇数项和与偶数项和的比值为a+4a+16a-2a-8a=-2110.【答案】 C7.(2022·大庆二模)已知各项均不为0的等差数列{a n},满足2a3-a27+2a11=0,数列{b n}为等比数列,且b7=a7,则b1·b13=( )A.16 B.8C.4 D.2【解析】 各项均不为0的等差数列{a n},2a3-a27+2a11=0∴4a7-a27=0,∴a7=4b1·b13=b27=a27=16.故选A【答案】 A8.(2022·山西晋中一模)已知等比数列{a n}的各项均为正数,且2a1+3a2=16,2a2+a3=a4,则log2a1+log2a2+log2a3+…+log2a100等于( )A.11 000 B.5 050C.5 000 D.10 000【解析】 设等比数列{a n}的公比为q,因为等比数列{a n}的各项均为正数,所以q>0,因为2a2+a3=a4,所以2a2+a2q=a2q2,即q2-q-2=0,解得q=2或q=-1(舍去),因为2a1+3a2=16,即2a1+3a1q=16,解得a1=2,所以通项公式为a n=a1q n-1=2×2n-1=2n,所以log2a n=log22n=n,所以log2a1+log2a2+log2a3+…+log2a100=1+2+3+…+100=(1+100)×1002=5050.故选B.【答案】 B9.(多选)(2022·广东肇庆模拟)已知数列{a n}是等比数列,公比为q,前n项和为S n,下列判断错误的有( )A.{1a n}为等比数列B.{log2a n}为等差数列C.{a n+a n+1}为等比数列D.若S n=3n-1+r,则r=-1 3【解析】 令b n=1a n,则b n+1b n=a na n+1=1q(n∈N+),所以{1a n}是等比数列,选项A正确;若a n<0,则log2a n无意义,所以选项B错误;当q =-1时,a n +a n +1=0,此时{a n +a n +1}不是等比数列,所以选项C 错误;若S n =3n -1+r ,则a 1=S 1=1+r ,a 2=S 2-S 1=3+r -(1+r )=2, a 3=S 3-S 2=9+r -(3+r )=6, 由{a n }是等比数列,得a 2=a 1a 3,即4=6(1+r ),解得r =-13,所以选项D 正确.故选BC .【答案】 BC10.(多选)(2022·浙江镇海中学模拟)设{a n }为等比数列,设S n 和T n 分别为{a n }的前n 项和与前n 项积,则下列选项正确的是( )A .若S 2023≥S 2 022,则{S n }不一定是递增数列B .若T 2 024≥T 2 023,则{T n }不一定是递增数列C .若{S n }为递增数列,则可能存在a 2 022<a 2 021D .若{T n }是递增数列,则a 2 022>a 2 021一定成立【解析】 对于选项A ,当{a n }为:1,-1,1,-1,1,-1,1,-1,…,时,S 2 023=1,S 2 022=0,S 2 021=1,满足S 2 023≥S 2 022,但S 2 021>S 2 022, 所以{S n }不是递增数列,故选项A 正确;对于选项B ,当{a n }为:1,-1,1,-1,1,-1,1,-1,…,时,T 2 023=-1,T 2 024=1,T 2 026=-1,满足T 2 024≥T 2 023,但{T n }不是递增数列,故选项B 正确;对于选项C ,当{a n }为:1,12,14,18,…,时,S n =1-12n1-12=2(1-12n ),满足{S n }为递增数列,此时a 2 022=122 021<a 2 021=122 020,故选项C 正确; 对于选项D ,当{a n }为:2,2,2,…,时, T n =2n ,满足{T n }是递增数列,但是a 2 022=a 2 021=2,故选项D 不正确. 【答案】 ABC11.(2022·北京海淀高三上期末)设等比数列{a n }的前n 项和为S n .若-S 1、S 2、a 3 成等差数列,则数列{a n }的公比为________.【解析】 设等比数列{a n }的公比为q ,因为等比数列{a n }的前n 项和为S n ,-S 1、S 2、a 3成等差数列,所以2S 2=-S 1+a 3,则2(a 1+a 2)=-a 1+a 3,因此3a 1+2a 2=a 3,所以q 2-2q -3=0,解得q =3或q =-1. 【答案】 3或-112.(2022·新乡三模)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N ).【解析】 很明显等比数列的公比q ≠1,则由题意可得:S 3S 6=a 1(1-q 3)1-qa 1(1-q 6)1-q=11+q 3=89,解得:q =12,则:a n +1a n -a n -1=a n -1q 2a n -1q -a n -1=q 2q -1=1412-1=-12.【答案】 -1213.(2022·石家庄二模)已知前n 项和为S n 的等比数列{a n }中,8a 2=a 3a 4,S 5=a 6-4. (1)求数列{a n }的通项公式; (2)求证:14≤1a 1+1a 2+…+1a n <12.【解】 (1)设等比数列{a n }的公比为q ,首项为a 1, 由8a 2=a 3a 4有q 3=a 3a 4a=8,可得q =2, 又由S 5=a 6-4,有a 1(1-25)1-2=32a 1-4,解得a 1=4,有a n =4×2n -1=2n +1.故数列{a n }的通项公式为a n =2n +1. (2)证明:由1an =(12)n +1,可得1a1+1a2+…+1a n=14[1-(12)n]1-12=12-12n+1,又n∈N*,所以12-12n+1<12;而12-12n+1显然随n的增大而增大,所以12-12n+1≥14,因此14≤1a1+1a2+…+1a n<12.14.(2022·威海市高三模拟)已知正项等差数列{a n}的前n项和为S n,若S3=12,且2a1,a2,a3+1成等比数列.(1)求{a n}的通项公式;(2)设b n=a n3n,记数列{b n}的前n项和为T n,求T n.【解】 (1)∵S3=12,即a1+a2+a3=12,∴3a2=12,所以a2=4.又∵2a1,a2,a3+1成等比数列,∴a2=2a1·(a3+1),即a2=2(a2-d)·(a2+d+1),解得,d=3或d=-4(舍去),∴a1=a2-d=1,故a n=3n-2.(2)b n=a n3n=3n-23n=(3n-2)·13n,∴T n=1×13+4×132+7×133+…+(3n-2)×13n,①①×13得13T n=1×132+4×133+7×134+…+(3n-5)×13n+(3n-2)×13n+1.②①-②得2 3 T n=13+3×132+3×133+3×134+ (3)13n-(3n-2)×13n+1=13+3×132(1-13n-1)1-13-(3n-2)×13n+1=56-12×13n-1-(3n-2)×13n+1,∴T n=54-14×13n-2-3n-22×13n=54-6n+54×13n.。
2022届高考数学(理)大一轮复习顶层设计教师用书:第五章 数列 第三节 等比数列 Word版含答案

第三节等比数列☆☆☆2021考纲考题考情☆☆☆考纲要求真题举例命题角度1.理解等比数列的概念;2.把握等比数列的通项公式与前n项和公式;3.了解等比数列与指数函数的关系。
2022,全国卷Ⅲ,17,12分(等比数列的证明、通项公式)2022,全国卷Ⅰ,15,5分(等比数列有关最值问题)2021,全国卷Ⅱ,4,5分(等比数列的计算)2021,全国卷Ⅱ,17,12分(等比数列的判定、基本运算与性质)主要以选择题、填空题的形式考查等比数列的基本运算与简洁性质。
解答题往往与等差数列、数列求和、不等式等问题综合考查。
微学问小题练自|主|排|查1.等比数列的有关概念(1)定义:①文字语言:从第2项起,每一项与它的前一项的比都等于同一个常数。
②符号语言:a n+1a n=q(n∈N*,q为非零常数)。
(2)等比中项:假如a,G,b成等比数列,那么G叫做a与b的等比中项。
即:G是a与b的等比中项⇔a,G,b成等比数列⇒G2=ab。
2.等比数列的有关公式(1)通项公式:a n=a1q n-1。
(2)前n项和公式:S n=⎩⎪⎨⎪⎧na1,q=1,a11-q n1-q=a1-a n q1-q,q≠1。
3.等比数列的性质(1)通项公式的推广:a n=a m·q n-m(m,n∈N*)。
(2)对任意的正整数m,n,p,q,若m+n=p+q,则a m·a n=a p·a q。
特殊地,若m+n=2p,则a m·a n=a2p。
(3)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列,即(S2m-S m)2=S m(S3m-S2m)(m∈N*,公比q≠-1)。
(4)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是等比数列。
(5)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为q k。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 数列第三节 等比数列及其前n 项和课时规范练 A 组——基础对点练1.(2020·合肥模拟)已知各项均为正数的等比数列{a n }满足a 1a 5=16 , a 2=2 , 那么公比q =( )A .4B .52C .2D.12解析 : 由题意 , 得⎩⎨⎧a 1·a 1q 4=16a 1q =2解得⎩⎨⎧a 1=1 q =2或⎩⎨⎧a 1=-1 q =-2(舍去) , 应选C.答案 : C2.(2020·重庆模拟)已知各项均为正数的等比数列{a n }的前n 项和为S n , 且S 3=14 , a 3=8 , 那么a 6=( ) A .16 B .32 C .64D .128解析 : 由题意得 , 等比数列的公比为q , 由S 3=14 , a 3=8 , 那么⎩⎨⎧a 1〔1+q +q 2〕=14a 3=a 1q 2=8解得a 1=2 , q =2 , 所以a 6=a 1q 5=2×25=64 , 应选C. 答案 : C3.已知等比数列{a n }满足a 1=3 , a 1+a 3+a 5=21 , 那么a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析 : 设数列{a n }的公比为q , 那么a 1(1+q 2+q 4)=21 , 又a 1=3 , 所以q 4+q 2-6=0 , 所以q 2=2(q 2=-3舍去) , 所以a 3=6 , a 5=12 , a 7=24 , 所以a 3+a 5+a 7=42.应选B. 答案 : B4.(2020·辽宁五校协作体联考)已知各项均为正数的等比数列{a n }中 , a 4与a 14的等比中项为2 2 , 那么log 2a 7+log 2a 11的值为( )A .1B .2C .3D .4解析 : 由题意得a 4a 14=(22)2=8 , 由等比数列的性质 , 得a 4a 14=a 7a 11=8 , ∴log 2a 7+log 2a 11=log 2(a 7a 11)=log 28=3 , 应选C. 答案 : C5.在等比数列{a n }中 , a 2a 3a 4=8 , a 7=8 , 那么a 1=( ) A .1 B .±1 C .2D .±2解析 : 因为数列{a n }是等比数列 , 所以a 2a 3a 4=a 33=8 , 所以a 3=2 , 所以a 7=a 3q 4=2q 4=8 , 所以q 2=2 , 那么a 1=a 3q 2=1 , 应选A.答案 : A6.在公比为2的等比数列{a n }中 , 假设sin(a 1a 4)=25 , 那么cos(a 2a 5)的值是( )A .-75B.1725C.75D.725解析 : 由等比数列的通项公式可知a 2a 5=(a 1a 4)q 2=2(a 1a 4) , cos(a 2a 5)=1-2sin 2(a 1a 4)=1-2×⎝⎛⎭⎫252=1725. 答案 : B7.(2020·临沂模拟)已知等比数列{a n }的前n 项和为S n =a ·2n -1+16 , 那么a 的值为( )A .-13B.13 C .-12D.12解析 : 当n ≥2时 , a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2 , 当n =1时 , a 1=S 1=a +16 , 又因为{a n }是等比数列 , 所以a +16=a 2 , 所以a =-13.答案 : A8.(2020·贵阳适应性考试)已知等比数列{a n }的前n 项和为S n , 且a 1=12 , a 2a 6=8(a 4-2) , 那么S 2 019=( )A .22 018-12 B .1-⎝⎛⎭⎫122 018C .22 019-12 D .1-⎝⎛⎭⎫122 019解析 : 由等比数列的性质及a 2a 6=8(a 4-2) , 得a 24=8a 4-16 , 解得a 4=4.又a 4=12q 3, 故q =2 , 所以S 2 019=12〔1-22 019〕1-2=22 018-12 , 应选A.答案 : A9.假设等差数列{a n }和等比数列{b n }满足a 1=b 1=-1 , a 4=b 4=8 , 那么a 2b 2=________.解析 : 设等差数列{a n }的公差为d , 等比数列{b n }的公比为q .由题意得-1+3d =-q 3=8⇒d =3 , q =-2⇒a 2b 2=-1+3-1×〔-2〕=1.答案 : 110.已知数列{a n }是等比数列 , a 2=2 , a 5=14 , 那么a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=________.解析 : 设数列{a n }的公比为q , 那么q 3=a 5a 2=18 , 解得q =12 , a 1=a 2q =4.易知数列{a n a n +1a n +2}是首项为a 1a 2a 3=4×2×1=8 , 公比为q 3=18的等比数列 , 所以a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=8⎝⎛⎭⎫1-18n 1-18=647(1-2-3n ). 答案 : 647(1-2-3n )B 组——素养提升练11.(2020·青州市模拟)我国古代数学著作[九章算术]有如下问题 : 〞今有蒲(水生植物名)生一日 , 长三尺 ; 莞(植物名 , 俗称水葱、席子草)生一日 , 长一尺.蒲生日自半 , 莞生日自倍.问几何日而长等 ?〞意思是 : 今有蒲生长1日 , 长为3尺 ; 莞生长1日 , 长为1尺.蒲的生长逐日减半 , 莞的生长逐日增加1倍.假设蒲、莞长度相等 , 那么所需的时间约为________日.(结果保存一位小数.参考数据 : lg 2≈0.30 , lg 3≈0.48)( ) A .1.3 B .1.5 C .2.6D .2.8解析 : 设蒲(水生植物名)的长度组成等比数列{a n } , 其a 1=3 , 公比为12 , 其前n 项和为A n .莞(植物名)的长度组成等比数列{b n } , 其b 1=1 , 公比为2 , 其前n 项和为B n .那么A n =3⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n 1-12, B n =2n -12-1,令3⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n 1-12=2n-12-1 , 即2n +62n =7 , 解得2n =6 , 2n =1(舍去).∴n =lg 6lg 2=1+lg 3lg 2≈2.6.∴估计2.6日蒲、莞长度相等. 答案 : C12.假设数列{a n +1-a n }是等比数列 , 且a 1=1 , a 2=2 , a 3=5 , 那么a n =__________. 解析 : ∵a 2-a 1=1 , a 3-a 2=3 , ∴q =3 ,∴a n +1-a n =3n -1 , ∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3,∵a 1=1 , ∴a n =3n -1+12.答案 : 3n -1+1213.已知数列{a n }满足a 1=1 , a n +1=3a n +1. (1)证明{a n +12}是等比数列 , 并求{a n }的通项公式 ;(2)证明1a 1+1a 2+…+1a n <32.证明 : (1)由a n +1=3a n +1得a n +1+12=3(a n +12).又a 1+12=32 , 所以{a n +12}是首项为32 , 公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时 , 3n -1≥2×3n -1 , 所以13n -1≤12×3n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.14.已知数列{a n }满足a 1=5 , a 2=5 , a n +1=a n +6a n -1(n ≥2). (1)求证 : {a n +1+2a n }是等比数列 ; (2)求数列{a n }的通项公式.解析 : (1)证明 : 因为a n +1=a n +6a n -1(n ≥2) , 所以a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 因为a 1=5 , a 2=5 , 所以a 2+2a 1=15 , 所以a n +2a n -1≠0(n ≥2) , 所以a n +1+2a na n +2a n -1=3(n ≥2) ,所以数列{a n +1+2a n }是以15为首项 , 3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 那么a n +1=-2a n +5×3n , 所以a n +1-3n +1=-2(a n -3n ). 又因为a 1-3=2 , 所以a n -3n ≠0 ,所以{a n -3n }是以2为首项 , -2为公比的等比数列. 所以a n -3n =2×(-2)n -1 , 即a n =2×(-2)n -1+3n .。