等比数列的概念和通项公式(教学设计)

合集下载

高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案

高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案

等比数列的概念及通项公式教学设计
将一张很大的薄纸对折,对折30次后有多厚?
不妨假设这张纸的厚度为0.01毫米。

1 看一看纸的厚度的变化
提示:
折1次折2次折3次折4次 (30)
厚度2 (21)4 (22)8 (23)16 (24) (230)
反之,任给指数函数
f(x)=ka x (k,a为常数,k≠0,
a>0且 a≠1)
则f(1)=ka ,f(2)=ka2,⋯,f(n)=ka n,⋯
构成一个等比数列{ka n},其首项为ka,公比为a.
等比数列的单调性
由等比数列的通项公式与指数型函数的关系可得等比数列的单调性如下:
(1)当a1>0,q>1或 a1<0,0<q<1时,等比数列{a n}为递增数列;
(2)当a1>0,0<q<1或 a1<0,q>1时,等比数列{a n}为递减数列;
(3)当q=1时,数列{a n}为常数列;
(4)当q<0时,数列{a n}为摆动数列.
下面,我们利用通项公式解决等比数列的一些问题.
例1 若等比数列{a n}的第4项和第6项分别为。

职高数学基础模块下(人教版)教案:等比数列的概念及通项公式

职高数学基础模块下(人教版)教案:等比数列的概念及通项公式

职高数学基础模块下(人教版)教案:等比数列的概念及通项公式知能目标解读1.理解等比数列的定义,能够应用定义判断一个数列是否为等比数列,并能确定等比数列的公比.2.探索并掌握等比数列的通项公式,能够应用它解决等比数列的问题.3.体会等比数列与指数函数的关系.4.掌握等比中项的定义,能够应用等比中项的定义解决问题.重点难点点拨重点:等比数列的定义和通项公式的应用. 难点:等比数列与指函数的关系.学习方法指导1.等比数列的定义要正确理解等比数列的定义,应注意以下几方面:①由于等比数列每一项都可能作分母,故每一项均不为0,因此q 也不能为0. ②“从第2项起”是因为首项没有“前一项”.③nn a a 1均为同一常数,即比值相等,由此体现了公比的意义,同时还要注意公比是每一项与其前一项之比,防止前后次序颠倒.④如果一个数列不是从第2项起而是从第3项或第4项起每一项与它前一项的比都是同一个常数,此数列不是等比数列.这时可以说此数列从第2项起或从第3项起是一个等比数列.⑤如果一个数列从第2项起,每一项与它前一项的比尽管是一个与n 无关的常数,但却是不同的常数,这时此数列不是等比数列.⑥常数列都是等差数列,但却不一定是等比数列.如常数列是各项都为0的数列,它就不是等比数列.当常数列各项不为0时,它是等比数列,且公比q =1. 注意:(1)由等比数列的定义知,要证明一个数列是等比数列,只需证明对任意n ∈N +,n n a a 1+是一个常数或证明对任意n ∈N +且n ≥2,1-n n a a是一个常数,这时所说的常数是指一个与n 无关的常数.(2)要证明一个数列不是等比数列,可证明n n a a 1+或1-n n a a(n ≥2)不是一个常数,也可以采用举反例的方法,举一个反例即可.2.等比数列的通项公式(1)等比数列的通项公式:首项为a 1,公比为q 的等比数列的通项公式是a n =a 1q n-1(a 1≠0,q ≠0).(2)等比数列通项公式的推导教材上是采用的不完全归纳法推导等比数列的通项公式为a n =a 1q n-1.除此之外,还可以用如下方法推导.方法1:累积法:因为12a a =q , 23a a =q ,…21--n n a a =q ,1-n n a a=q , 将这n -1个式子相乘得1a a n =q n-1,所以a n =a 1q n-1. 方法2:迭代法:根据等比数列的定义有a n =a n-1·q =a n-2·q 2=…=a 2·q n -2=a 1·q n-1. (3)通项公式中的基本量:通项公式中涉及的基本量有:a 1,q,n,a n ,知道其中的三个,可以求出第四个量,即“知三求一”问题.注意:由等比数列的通项公式a n =a 1q n-1可知,要写出其通项,必须知道a 1和q ,因此要确定通项公式,需两个独立的条件.(4)等比数列通项公式的变形形式:若{a n }是公比为q 的等比数列,则对任意的m,n ∈N +,有a n =a m ·q n-m . ∵a n =a 1q n-1 ①a m =a 1q m-1 ②由①÷②得m n a a =1111--m q a q a n =q n-m ,∴a n =a m q n-m.这里的a n =a m ·q n-m可以看成是通项公式的另一种形式. 注意:在已知a 1和q 的前提下,利用通项公式a n =a 1q n-1可以求出等比数列中的任意一项;在已知等比数列任意两项的前提下,使用a n =a m q n-m可求等比数列中任意一项. (5)用函数的观点看等比数列的通项等比数列{a n }的通项公式a n =a 1q n-1,可以改写为a n =qa 1·q n .当q >0,且q ≠1时,y=q x 是一个指数函数,而y =qa 1·q x 是一个不为0的常数与指数函数的积,因此等比数列{a n }的图像是函数y =qa 1·q x 的图像上的一群孤立的点. 例如,当a 1=1,q =2时,a n =21·2n ,表示这个数列各项的点就都在函数y =21·2x的图像上,如下图所示:3.等比中项(1)在a,b同号时,a,b的等比中项有两个,它们互为相反数;在a,b异号时,没有等比中项.(2)在一个等比数列中,从第二项起(有穷数列的末项除外)每一项都是它的前一项与后一项的等比中项.(3)若a,b,c成等比数列,则b2=ac;反过来,若b2=ac,则a,b,c不一定成等比数列,如a=b=0.特别地,若a,b,c均不为零时,则a,b,c成等比数列 b2=ac.(4)注意a,b,c成等比数列与b=ac是不等价的.知能自主梳理1.等比数列的定义如果一个数列从起,每一项与它的前一项的比都等于,那么这个数列叫做等比数列,这个常数叫做等比数列的,公比通常用字母表示.2.等比数列的递推公式与通项公式已知等比数列{a n}的首项为a1,公比为q(q≠0),填表:3.等比中项(1)如果三个数x,G,y组成,则G叫做x和y的等比中项.(2)如果G是x和y的等比中项,那么,即.[答案] 1.第2项同一个常数公比q2.a1q n-13.等比数列G2=xy G=±xy等比数列的概念及通项公式思路方法技巧命题方向等比数列的判断[例1]已知数列{a n}的前n项和S n=2a n+1,求证:{a n}是等比数列,并求出通项公式.[分析]要证数列是等比数列,关键是看a n与a n-1之比是否为一个常数,由题设还须利用a n=S n-S n-1 (n≥2),求得a n.[证明]∵S n=2a n+1,∴S n+1=2a n+1+1.∴S n+1-S n =a n+1=(2a n+1+1)-(2a n +1)=2a n+1-2a n . ∴a n+1=2a n . ① 又∵S 1=a 1=2a 1+1,∴a 1=-1≠0. 由①式可知,a n ≠0,∴由nn a a 1+=2知{a n }是等比数列,a n =-2n -1. [说明] (1)本题证明,关键是用等比数列的定义,其中说明a n ≠0是非常重要的.证明中,也可以写出S n-1=2a n-1+1,从而得到a n =2a n-1,只能得到n ≥2时,{a n }是等比数列,得到n ≥2时,a n =-2n-1,再将n =1代入,验证a 1=-1也满足通项公式的要求.(2)判断一个数列是否是等比数列的常用方法是: ①定义法nn a a 1+=q (q 为常数且不为零)⇔ {a n }为等比数列. ②等比中项法a n+12=a n a n+2 (n ∈N +且a n ≠0) ⇔ {a n }为等比数列. ③通项公式法a n =a 1q n-1 (a 1≠0且q ≠0) ⇔{a n }为等比数列. 变式应用1 判断下列数列是否为等比数列. (1)1,3,32,…,3n-1,…; (2)-1,1,2,4,8,…; (3)a 1,a 2,a 3,…,a n,….[解析] (1)此数列为等比数列,且公比为3. (2)此数列不是等比数列.(3)当a =0时,数列为0,0,0,…,是常数列,不是等比数列;当a ≠0时,数列为a 1,a 2,a 3,a 4,…,a n ,…,显然此数列为等比数列且公比为a . 命题方向 等比数列的通项公式的应用[例2] 在等比数列{a n }中,已知a 5-a 1=15,a 4-a 2=6,求a n .[分析] 本题可以列关于a 1,q 的方程组入手,解出a 1与q ,然后再求a n . [解析] 设等比数列{a n }的首项为a 1,公比为q , a 5-a 1=a 1q 4-a 1=15 ① 因为a 4-a 2=a 1q 3-a 1q =6 ②由②①得q =21或q =2.当q =21时,a 1=-16. 当q =2时,a 1=1, ∴a n =-16×(21)n-1或a n =2n-1. [说明] 首项和公比是等比数列的基本量,只要求出这两个基本量,其他量便可迎刃而解.此类问题求解的通法是根据条件,建立关于首项和公比的方程组,求出首项和公比.变式应用2 已知等比数列{a n }中,a 2+a 5=18,a 3+a 6=9,a n =1,求n . a 1q +a 1q 4=18 a 1=32 [解析] 解法一:由题意得 ,解得 .a 1q 2+a 1q 5=9 q =21∴a n =a 1q n-1=32(21)n-1=1,∴26-n =20,∴n =6.解法二:∵a 3+a 6=q (a 2+a 5), ∴q =21,又∵a 1q +a 1q 4=18, ∴a 1=32, ∴a n =a 1q n-1=32×(21)n-1=1, 解得n =6.命题方向 等比中项的应用[例3] 等比数列{a n }的前三项的和为168,a 2-a 5=42,求a 5,a 7的等比中项.[分析][解析] 设该等比数列的首项为a 1,公比为q ,因为a 2-a 5=42,所以q ≠1,由已知,得a 1+a 1q +a 1q 2=168 a 1(1+q+q 2)=168 ,所以 ,a 1q -a 1q 4=42 a 1q (1-q 3)=42 因为1-q 3=(1-q )(1+q+q 2), 所以由②除以①,得q (1-q )=41. 所以q =21.所以a 1=4)21(2142⋅=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 12q 10=962×(21)10=9. 所以a 5,a 7的等比中项是±3.[说明] 由等比中项的定义可知:a G =Gb⇒G 2=ab ⇒G =±ab .这表明:只有同号的两项才有等比中项,并且这两项的等比中项有两个,它们互为相反数.异号的两数没有等比中项.反之,若G 2=ab (ab ≠0),则a G =Gb,即a,G,b 成等比数列.所以a,G,b 成等比数列⇔G 2=ab (ab ≠0).变式应用3 若a ,2a +2,3a +3成等比数列,求实数a 的值. [解析] 因为a ,2a +2,3a +3成等比数列, 所以(2a +2)2=a (3a +3). 解得a =-1或a =-4.因为当a =-1时,2a +2,3a +3均为0,故应舍去. 故a 的值为-4.探索延拓创新命题方向 等比数列的实际应用[例4] 据《中国青年报》2004年11月9日报导,卫生部艾滋病防治专家徐天民指出:前我国艾滋病的流行趋势处于世界第14位,在亚洲第2位,而且艾滋病毒感染者每年以40%的速度在递增,我国已经处于艾滋病暴发流行的前沿,我国政府正在采取有效措施,防止艾滋病蔓延,公元2004年我国艾滋病感染者至少有80万人,若不采取任何防治措施,则至少到公元 年后,我国艾滋病毒感染者将超过1000万人.(已知lg2=0.3010,lg3=0.4771,lg7=0.8451) [答案] 2012[解析] 设x 年后我国艾滋病毒感染者人数将达到1000万人,则80·(1+40%)x=1000, 即(57)x =801000, ∴lg (57)x =lg 801000, ∴x =57lg 8100lg =210lg 7lg 8lg 100lg --=12lg 7lg 2lg 32-+- =13010.08451.03010.032-+⨯-=1461.0097.1≈7.51(年).故8年后,即公元2012年后,我国艾滋病毒感染者人数将超过1000万人.辨误做答[例5] 在等比数列{a n }中,a 5、a 9是方程7x 2-18x +7=0的两个根,试求a 7. [误解] ∵a 5、a 9是方程7x 2-18x +7=0的两个根, a 5+a 9=718 ∴a 5·a 9=1又∵a 7是a 5、a 9的等比中项,∴a 72=a 5·a 9=1,即a 7=±1.[辨析] 上述解法忽视了对a 7的符号的讨论,由于a 5、a 9均为正数且公比为q =±57a a =±79a a ,所以不论q 取正还是取负,a 7始终与a 5和a 9的符号相同. [正解] ∵a 5、a 9是方程7x 2-18x +7=0的两个根,11 a 5+a 9=718>0∴ ,a 5·a 9=1>0∴a 5>0,a 9>0, 又∵a 7是a 5、a 9的等比中项, ∴a 72=a 5·a 9=1.又a 7与a 5、a 9的符号相同, ∴a 7=1.。

等比数列的概念和通项公式(教学设计)

等比数列的概念和通项公式(教学设计)
设计意图:培养学生的自学能力和探索精神,体会类比思想在数学中的应用,提高学生的知识迁移能力。
(四)例题解析
例1课本第51页例3.
解:略
设计意图:通过这道例题,加深学生对等比数列的通项公式的理解,同时养成学生良好的动手习惯和规范解题习惯,提高学生的计算能力。
例题后的练习1和2可让学生自己动手完成,以便学生熟练应用通项公式。
例2课本第51页 例4
解:略
设计意图:通过让学生举例、不完全归纳和证明,得到两个等比数列的积仍是等比数列,增强学生的归纳总结能力。
(五)、回顾小结
1.等比数列的概念和通项公式;
2.用类比的思想研究数学问题;
3.注重等差数列和等比数列的区别与联系。
(小结ቤተ መጻሕፍቲ ባይዱ先由学生叙述,教师进行补充和整理)
设计意图:让学生将获得的知识进一步条理化、系统化,同时培养学生的归纳总结能力,为学生以后解决问题提供经验和教训.
3.对等比数列概念的深化理解
给出几个数列让学生判断是否是等比数列,以加深对概念的理解。
问题1:等比数列的项可以为零吗?
问题2:等比数列的公比可以为零吗?
问题3:若,等比数列的项有什么特点?呢?特别地,若,数列的项有什么特点?
问题4:形如,,,…()的数列既是等差数列,又是等比数列吗?
设计意图:通过让学生分析讨论,加深学生对概念的深层次理解,培养学生严谨的思维习惯和良好的自主探究能力。
1.回顾等差数列的相关性质
设计意图:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点,为等比数列的学习做铺垫。
2.情境展示
情境1:“一尺之棰,日取其半,万世不竭。”
情境2:一张纸的折叠问题

最新完整版等比数列_教学设计

最新完整版等比数列_教学设计
教师追问理由,引出对的认识
六、教学评价设计
(2)对公式的认识
四、学习者特征分析
五、教学过程
教师活动
预设学生活动
设计意图
请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.
请学生指出②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是,让学生讨论后得出结论:当 时,数列 既是等差又是,当 时,它只是等差数列,而不是.
①与等差数列一样,也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出的特性,这些是教学的重点.
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.
③对等差数列、的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.
教学设计模板:
教学设计
课题名称:等比数列
学科年级:
高一
教材版本:
人教A版
一、教学内容分析
是另一个简单常见的数列,研比中项的概念,最后是通项公式的应用.
二、教学目标
三、教学重难点
教学重点是的定义和对通项公式的认识与应用,教学难点 在于通项公式的推导和运用.

等比数列教学案

等比数列教学案

等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。

授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。

教学难点:等比数列通项公式的探求。

教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,(2)8,16,32,64,128,256,(3)1,1,1,1,1,1,1,(4)1,2,4,8,16,263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q0),3.递推公式:an1∶anq(q0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0.(4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。

高中数学等比数列教案

高中数学等比数列教案

高中数学等比数列教案
一、教学目标:
1. 掌握等比数列的定义及判断方法;
2. 掌握等比数列的通项公式及前 n 项和公式;
3. 能够灵活应用等比数列解决实际问题。

二、教学重点:
1. 等比数列的定义及判断方法;
2. 等比数列的通项公式及前 n 项和公式。

三、教学难点:
1. 灵活运用等比数列解决复杂问题;
2. 培养学生数学思维和逻辑推理能力。

四、教学内容:
1. 等比数列的定义及性质;
2. 等比数列通项公式及前 n 项和公式的推导;
3. 等比数列的应用实例。

五、教学过程:
1. 引入:通过生活中的实例引入等比数列的概念,让学生了解等比数列的特点和应用场景。

2. 学习等比数列的性质和判断方法,让学生能够判断一个数列是否为等比数列。

3. 学习等比数列的通项公式及前 n 项和公式的推导,让学生掌握这两个公式的用法和计算
方法。

4. 练习与巩固:让学生通过练习题巩固所学知识,培养他们的解题能力和推理思维。

5. 应用实例:通过一些实际问题,让学生运用等比数列解决实际问题,培养他们的数学建
模能力。

六、作业布置:
1. 课后练习:布置一些等比数列相关的习题,巩固学生所学知识。

2. 探究性问题:布置一些拓展性问题,让学生能够进一步应用所学知识解决问题。

七、课堂反馈:
1. 通过课堂讨论和作业批改,及时纠正学生的错误,加深他们对等比数列的理解和掌握。

八、教学总结:
1. 总结本节课所学知识,梳理等比数列的性质和应用场景,巩固学生的学习成果。

2. 展望下一节课内容,引导学生进行自主学习和提前预习。

《等比数列》教学设计

《等比数列》教学设计

《等比数列》教学设计一、目的要求1.理解等比数列的概念。

2.掌握等比数列的通项公式,并会根据它进行有关计算。

二、内容分析1.等比数列与等差数列在内容上是完全平行的,包括定义、性质(等差还是等比)、通项公式、前n项和的公式、两个数的等差(等比)中项、两种数列在函数角度下的解释、具体问题里成等差(等比)数列的三个数的设法等。

因此在教学与复习时可用对比方法,以便于弄清它们之间的联系与区别。

这里指出,如果一个数列既是等差数列又是等比数列,其充要条件是它为非0的常数列。

事实上,由等比数列的定义可知这个数列是非0数列。

取这个数列中的任意连续3项,由题设知这个数列是非0的常数列。

2.数列的学习中,等差数列与等比数列是两种最重要的数列模型。

事实上,等差数列描述的是一种绝对均匀的变化,等比数列描述的是一种相对均匀的变化。

因为非均匀变化通常要转化或近似成均匀变化来进行研究,所以本章里重点研究等差数列和等比数列。

3.从函数的角度看,如果说等差数列可以与一次函数联系起来,那么等比数列则可以与指数函数联系起来。

事实上,由等比数列的通项公式可得,当q>0,且q≠1时,是一个指数函数,而上式则是一个不为0的常数与指数函数的积,因此等比数列{}的图象是函数的图象上的一些孤立点。

4.本课内容的重点是等比数列的概念及其通项公式。

与等差数列一样,在讲等比数列的概念时,关键是要讲清“等比”的意义,即数列中任一项与前一项的比是同一个常数。

等比数列的定义,是我们判断一个数列是否为等比数列的基本方法。

与等差数列一样,等比数列也具有一种对称性。

对于等差数列来说,与数列中任一项等距离的两项之和等于该项的2倍。

类似地,对于等比数列来说,与数列中任一项等距离的两项之积等于该项的平方。

利用上面的性质,常可使一些问题变得简便。

例如在具体问题里设成等差数列的3个数时,常设成a-d,a,a+d;三、教学过程1.提出教科书中的数列①、②、③,让学生观察其特点。

《等比数列的概念》教学设计

《等比数列的概念》教学设计

等比数列教案一、教学目标知识目标:通过教学使学生理解等比数列的概念,推导并掌握通项公式. 能力目标:使学生进一步体会类比、归纳思想,培养学生的观察、概括能力. 情感目标:培养学生勤于思考,实事求是的精神及严谨的科学态度.二、教学重点和难点重点:等比数列的定义,通项公式的猜想过程、理解.难点:等比数列的通项公式的应用.三、教学用具多媒体.四、教学过程(一) 复习旧知等差数列的定义,数学表达式,通项公式.(二)创设情境情景引入生活中实际的例子.1, 细胞分裂问题,可以记作数列:1,2,4,8,. ①2, 取木棒问题可以记作数列: .,81,41,21,1 ②3, 计算机病毒感染可以记作数列 : 2341,20,20,20,20观察三组数列的共同特征.从第2项起, 每一项与前一项的比都等于同一常数.(三)讲解新课一、等比数列的定义一般地,如果一个数列从第二项起,每一项与它前一项之比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做这个数列的公比,用q 表示,(q ≠0). 1, 等比数列的数学表达式:()*10,.n na q q n N a +=≠∈ 2, 对定义的认识(1)等比数列的首项不为0; (2)等比数列的每一项都不为0; 二、等比数列的通项公式.结合等比数列的定义可知,有:2341231,,,.n n a a a a q q q q a a a a -==== 即有: ()21213111,,0,0,2n n a a q a a q a a q a q n -===≠≠≥等比数列的通项公式为: ()1*110,0,n n a a q a q n N -=≠≠∈ 变形公式为: ()*0,,n m n m a a q q m n N -=≠∈三、等比中项:若,,a G b 成等比数列,那么G 叫做a 与b 的等比中项. 2G ab =四、例题讲解 例1 一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.解:设这个等比数列的第1项是1a ,公比是q ,那么21311218a q a q ⎧=⎨=⎩ 解得,1316,23q a == 因此21163832a a q ==⨯= 答:这个数列的第1项与第2项分别是163与8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等比数列》(第1课时)教学设计
授课地点:武威八中
授课时间:20XX年4月22日
授课人:武威六中杨志隆
一、教学目标
知识与技能
1.理解等比数列的概念;
2.掌握等比数列的通项公式;
3.会应用定义及通项公式解决一些实际问题。

过程与方法
培养运用归纳类比的方法去发现并解决问题的能力。

通过实例,归纳并理解等比数列的概念,探索并掌握等比数列的通项公式,培养学生严密的思维习惯。

情感态度与价值观
充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。

二、教学重点、难点
教学重点:
等比数列的概念及通项公式;
教学难点:
通项公式的推导及初步应用。

三、教学方法
发现式教学法,类比分析法
四、教学过程
(一)旧知回顾,情境导入
1. 回顾等差数列的相关性质
设计意图:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点,为等比数列的学习做铺垫。

2.情境展示
情境1:“一尺之棰,日取其半,万世不竭。


情境2:一张纸的折叠问题
把以上实例表示为数学问题,并引导学生通过观察、联想,得到两个数列:
① ⋅⋅⋅⋅⋅⋅16
1,81,41,21,1 ② 1,2,4,8,16,32,64⋅⋅⋅⋅⋅⋅
设计意图:让学生通过观察,得到两个数列的共同特点:从第二项起,每一项与它前面一项的比都等于同一个常数.由此引入等比数列。

(二)概念探究
1.引导学生通过联想并类比等差数列给出该数列的名称:等比数列
2.归纳总结,形成等比数列的概念.
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比(引导学生经过类比等差数列的定义得出)。

同时给出等比中项的定义,并和等差中项做比较,加深学生对概念的理解。

3.对等比数列概念的深化理解
给出几个数列让学生判断是否是等比数列,以加深对概念的理解。

问题1:等比数列的项可以为零吗?
问题2:等比数列的公比可以为零吗?
问题3:若0>q ,等比数列的项有什么特点?0<q 呢?特别地,若1=q ,数列的项有什么特点?
问题4:形如a ,a ,a ,…(R a ∈)的数列既是等差数列,又是等比数列吗?
设计意图:通过让学生分析讨论,加深学生对概念的深层次理解,培养学生严谨的思维习惯和良好的自主探究能力。

(三) 通项公式推导
1.定义的代数式表达
引导学生由等比数列的定义写出其递推式,并得到:
(1)判定:对于数列{}n a ,若1n n a q a +=(*
∈N n ,q 为常数 ),则称这个数列为等比数列,常数q 叫做等比数列的公比.
(2)性质:{}
n
a
是等比数列⇒
1
n
n
a
q
a
+=
(*
∈N
n,q为常数)
设计意图:通过探索,发现一个概念可以作为判定,又可以得到它的性质,提高学生的自主探究能力。

2. 回顾由等差数列的递推式求其通项公式的方法:叠加法和迭代法。

让学生类比等差数列的通项公式的推导思路和方法,自主探究等比数列的通项公式的求法,然后教师再做补充,引导学生归纳两种方法:叠乘法和迭代法。

设计意图:培养学生的自学能力和探索精神,体会类比思想在数学中的应用,提高学生的知识迁移能力。

(四)例题解析
例1 课本第51页例3.
解:略
设计意图:通过这道例题,加深学生对等比数列的通项公式的理解,同时养成学生良好的动手习惯和规范解题习惯,提高学生的计算能力。

例题后的练习1和2可让学生自己动手完成,以便学生熟练应用通项公式。

例2 课本第51页例4
解:略
设计意图:通过让学生举例、不完全归纳和证明,得到两个等比数列的积仍是等比数列,增强学生的归纳总结能力。

(五)、回顾小结
1.等比数列的概念和通项公式;
2.用类比的思想研究数学问题;
3.注重等差数列和等比数列的区别与联系。

(小结可先由学生叙述,教师进行补充和整理)
设计意图:让学生将获得的知识进一步条理化、系统化,同时培养学生的归纳总结能力,为学生以后解决问题提供经验和教训.
(六)课后作业
1.课本53页:A组1、2
2.课后思考:类比等差数列,试猜想等比数列的性质。

设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,在数学上得到不同的发展,同时为下一节等比数列的性质的学习打基础。

(七)教后反思。

相关文档
最新文档