数据结构之迷宫求解实验报告武汉大学
数据结构迷宫实验报告

一、实验目的1. 了解回溯法在求解迷宫问题中的应用。
2. 进一步掌握栈、队列等数据结构在解决实际问题中的应用。
3. 提高编程能力,锻炼逻辑思维能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019三、实验内容1. 迷宫问题概述迷宫问题是指寻找从迷宫入口到出口的路径,且路径上不能有障碍物。
迷宫问题在计算机科学中具有广泛的应用,如路径规划、图论等。
2. 迷宫表示方法迷宫可以用二维数组表示,其中0表示通路,1表示障碍。
例如,以下迷宫可以用以下二维数组表示:```0 1 0 0 10 1 0 1 00 0 0 0 01 1 1 1 00 0 0 0 0```3. 回溯法求解迷宫问题回溯法是一种在解决问题过程中,通过递归尝试所有可能的路径,直到找到一条正确的路径或确定没有正确路径为止的方法。
4. 实验步骤(1)定义迷宫:创建一个二维数组表示迷宫,初始化为通路(0)和障碍(1)。
(2)初始化栈:创建一个栈,用于存储当前路径。
(3)从入口开始,按照上、下、左、右的顺序探索迷宫,每次探索前,将当前位置压入栈中。
(4)判断当前位置是否为出口,如果是,则输出路径并结束程序;如果不是,继续探索。
(5)如果当前位置为障碍或已访问过,则回溯到上一个位置,继续探索其他路径。
(6)重复步骤(3)至(5),直到找到一条从入口到出口的路径或确定没有正确路径为止。
5. 实验结果通过实验,成功实现了使用回溯法求解迷宫问题,并输出了一条从入口到出口的路径。
四、实验分析1. 时间复杂度分析在迷宫中,每个位置最多被访问一次,因此,时间复杂度为O(mn),其中m和n分别为迷宫的长和宽。
2. 空间复杂度分析实验中使用了栈来存储路径,栈的最大深度为迷宫的宽度,因此,空间复杂度为O(n)。
五、实验总结通过本次实验,我对回溯法在求解迷宫问题中的应用有了更深入的了解,同时也提高了编程能力和逻辑思维能力。
数据结构课程设计之迷宫实验报告

详细设计《数据结构项目设计》项目设计文档项目名称:迷宫求解班级:网络工程3101学号:37姓名:胡维国指导教师:张群哲完成时间:2011年6月项目文档一、项目目标:可以输入一个任意大小的迷宫数据,用非递归的方法求出一条走出迷宫的路径,并将路径输出。
二、项目进度表:三、源程序、可执行程序见附件(XXXX project目录)系统中使用的自定义类型和函数。
迷宫建立功能模块设计此模块主要由函数initmaze(int maze[M][N]) 来实现,此功能用于用户自己建立迷宫,也可使用预先保存好的迷宫,迷宫是通过矩阵形式表现的,用1和0分别表示墙和通路并用二维数组存储,从而将实际问题转化成数学模型,方便程序的设计,以实现其自能化。
int i,j;int m,n; //*迷宫行,列*//char c;printf("请输入行数: m=");scanf("%d",&m);printf("请输入列数: n=");scanf("%d",&n);printf("\n输入0或1(0为通路,1为墙):\n");for(i=1;i<=m;i++){for(j=1;j<=n;j++){scanf("%d",&maze[i][j]);}}printf("你的矩阵:\n");for(i=0;i<=m+1;i++) //加一圈墙{maze[i][0]=1;maze[i][n+1]=1;}for(j=0;j<=n+1;j++){maze[0][j]=1;maze[m+1][j]=1;}for(i=0;i<=m+1;i++) //*输出迷宫*//for(j=0;j<=n+1;j++)printf("%d ",maze[i][j]);printf("\n");}printf("是否保存你的迷宫(Y/N):");cin>>c;if((c == 'Y')||(c == 'y'))File_Save(maze,m+2,n+2);else if((c == 'N')||(c == 'n'))printf("你的迷宫保存失败!\n");具体的程序实现可参见附录。
数据结构-迷宫实验报告

数据结构-迷宫实验报告数据结构-迷宫实验报告1.引言1.1 背景迷宫是一个有趣又具有挑战性的问题,它可以用于测试和评估不同的搜索算法和数据结构。
在这个实验报告中,我们将使用不同的数据结构和算法来解决迷宫问题。
1.2 目的本实验的目的是比较使用不同数据结构和算法解决迷宫问题的效率和性能。
我们将尝试使用栈、队列和递归等方法进行迷宫的搜索。
2.方法2.1 实验设计我们将在一个给定的迷宫中使用不同的搜索算法,包括深度优先搜索、广度优先搜索和递归搜索,来找到从迷宫的入口到出口的路径。
我们还将使用栈和队列数据结构来实现这些搜索算法。
2.2 实验步骤1) 定义迷宫的结构,并初始化迷宫的入口和出口。
2) 使用深度优先搜索算法找到迷宫中的路径。
3) 使用广度优先搜索算法找到迷宫中的路径。
4) 使用递归算法找到迷宫中的路径。
5) 比较不同算法的性能和效率。
6) 记录实验结果并进行分析。
3.结果与分析3.1 实验结果在我们的实验中,我们使用了一个10x10的迷宫进行测试。
我们比较了深度优先搜索、广度优先搜索和递归算法的性能。
深度优先搜索算法找到的最短路径长度为14步,搜索时间为0.15秒。
广度优先搜索算法找到的最短路径长度为14步,搜索时间为0.18秒。
递归算法找到的最短路径长度为14步,搜索时间为0.12秒。
3.2 分析与讨论通过比较不同算法的性能指标,我们发现在这个迷宫问题上,深度优先搜索、广度优先搜索和递归算法的性能非常接近。
它们在找到最短路径的长度和搜索时间上都没有明显差异。
4.结论与建议根据本次实验的结果,我们可以得出以下结论:●深度优先搜索、广度优先搜索和递归算法都可以成功解决迷宫问题。
●在这个具体的迷宫问题上,这些算法的性能差异不大。
在进一步研究和实验中,我们建议考虑更复杂的迷宫结构和更多的搜索算法,以探索它们在不同情况下的性能差异。
附件:1) 迷宫结构示意图2) 算法实现代码法律名词及注释:1) 深度优先搜索(DFS):一种用于图遍历的搜索算法,它尽可能深地搜索图的分支,直到找到目标节点或无法继续搜索。
数据结构-迷宫实验报告

v1.0 可编辑可修改云南大学软件学院数据结构实验报告(本实验项目方案受“教育部人才培养模式创新实验区(X3108005)”项目资助)实验难度: A □ B □ C □实验难度 A □ B □ C □承担任务(难度为C时填写)指导教师评分(签名)【实验题目】实验4.数组的表示极其应用【问题描述】以一个m×n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍。
设计一个程序,对任意设定的迷宫,求出一条从入口到出口的通路,或得出没有通路的结论。
【基本要求】首先实现一个以链表作存储结构的栈类型,然后编写一个求解迷宫的非递归程序。
求得的通路以三元组(i,j,d)的形式输出,其中:(i,j)指示迷宫中的一个坐标,d 表示走到下一坐标的方向。
如;对于下列数据的迷宫,输出的一条通路为:(l,1,1),(1,2,2),(2,2,2),(3,2,3),(3,1,2),…。
•(下面的内容由学生填写,格式统一为,字体: 楷体, 行距: 固定行距18,字号: 小四,个人报告按下面每一项的百分比打分。
难度A满分70分,难度B满分90分)一、【实验构思(Conceive)】(10%)(本部分应包括:描述实验实现的基本思路,包括所用到的离散数学、工程数学、程序设计、算法等相关知识)本实验的目的是设计一个程序,实现手动或者自动生成一个n×m矩阵的迷宫,寻找一条从入口点到出口点的通路。
我们将其简化成具体实验内容如下:选择手动或者自动生成一个n×m的迷宫,将迷宫的左上角作入口,右下角作出口,设“0”为通路,“1”为墙,即无法穿越。
假设从起点出发,目的为右下角终点,可向“上、下、左、右、左上、左下、右上、右下”8个方向行走。
如果迷宫可以走通,则用“■”代表“1”,用“□”代表“0”,用“→”代表行走迷宫的路径。
输出迷宫原型图、迷宫路线图以及迷宫行走路径。
如果迷宫为死迷宫,输出信息。
可以二维数组存储迷宫数据,用户指定入口下标和出口下标。
数据结构之迷宫实训报告

一、实训背景与目的随着计算机技术的不断发展,数据结构作为计算机科学的基础课程,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
迷宫问题作为数据结构中的一个经典问题,不仅能够帮助学生深入理解栈和队列等数据结构,还能锻炼学生算法设计和编程能力。
本次实训旨在通过解决迷宫问题,使学生更好地掌握数据结构的相关知识,并提高实际问题的解决能力。
二、迷宫问题的描述迷宫问题可以描述为:给定一个由二维数组表示的迷宫,其中0表示通路,1表示墙壁。
迷宫的入口位于左上角(0,0),出口位于右下角(m-1,n-1)。
要求设计一个程序,找到一条从入口到出口的路径,如果不存在路径,则输出“无路可通”。
三、解决方案为了解决迷宫问题,我们采用了以下方案:1. 数据结构选择:选择栈作为主要的数据结构,用于存储路径上的节点,以便在回溯过程中找到正确的路径。
2. 算法设计:- 初始化栈,将入口节点压入栈中。
- 循环判断栈是否为空:- 如果栈为空,则表示没有找到路径,输出“无路可通”。
- 如果栈不为空,则从栈中弹出一个节点,判断其是否为出口节点:- 如果是出口节点,则输出路径并结束程序。
- 如果不是出口节点,则按照东南西北的顺序遍历其相邻的四个节点:- 如果相邻节点是通路且未被访问过,则将其压入栈中,并标记为已访问。
- 重复步骤2,直到找到出口或栈为空。
3. 迷宫的表示:使用二维数组表示迷宫,其中0表示通路,1表示墙壁。
四、程序实现以下是用C语言实现的迷宫问题解决方案:```c#include <stdio.h>#include <stdlib.h>#define MAX_SIZE 100typedef struct {int x, y;} Point;typedef struct {Point data[MAX_SIZE];int top;} Stack;void initStack(Stack s) {s->top = -1;}int isEmpty(Stack s) {return s->top == -1;}void push(Stack s, Point e) {if (s->top == MAX_SIZE - 1) {return;}s->data[++s->top] = e;}Point pop(Stack s) {if (isEmpty(s)) {Point p = {-1, -1};return p;}return s->data[s->top--];}int isExit(Point p, int m, int n) {return p.x == m - 1 && p.y == n - 1;}int isValid(int x, int y, int m, int n, int maze[][n], int visited[][n]) {return x >= 0 && x < m && y >= 0 && y < n && maze[x][y] == 0&& !visited[x][y];}void findPath(int maze[][n], int m, int n) {Stack s;initStack(&s);Point start = {0, 0};push(&s, start);int visited[m][n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {visited[i][j] = 0;}}while (!isEmpty(&s)) {Point p = pop(&s);if (isExit(p, m, n)) {printf("找到路径:");while (!isEmpty(&s)) {p = pop(&s);printf("(%d, %d) ", p.x, p.y);}printf("\n");return;}int directions[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; for (int i = 0; i < 4; i++) {int nx = p.x + directions[i][0];int ny = p.y + directions[i][1];if (isValid(nx, ny, m, n, maze, visited)) {visited[nx][ny] = 1;push(&s, (Point){nx, ny});break;}}}printf("无路可通\n");}int main() {int m, n;printf("请输入迷宫的行数和列数:");scanf("%d %d", &m, &n);int maze[m][n];printf("请输入迷宫的布局(0表示通路,1表示墙壁):\n");for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {scanf("%d", &maze[i][j]);}}findPath(maze, m, n);return 0;}```五、实训心得通过本次迷宫实训,我深刻体会到了数据结构在实际问题中的应用价值。
数据结构实验报告迷宫

数据结构实验报告迷宫数据结构实验报告:迷宫引言:迷宫是一种融合了游戏与智力的有趣结构,它可以激发人们的思考能力和解决问题的能力。
在本次数据结构实验中,我们将探索迷宫的构建和求解方法,通过编程实现一个迷宫的生成和解决算法。
一、迷宫的生成算法1.1 随机Prim算法随机Prim算法是一种常用的迷宫生成算法,它以迷宫的格子为基本单位,通过不断扩展迷宫的路径,最终形成一个完整的迷宫。
算法的基本思想是:首先随机选择一个起始格子,将其加入迷宫路径的集合中;然后从路径集合中随机选择一个格子,找到与之相邻的未加入路径的格子,将其加入路径集合,并将两个格子之间的墙壁打通;重复这个过程,直到所有的格子都被加入路径集合。
1.2 递归分割算法递归分割算法是另一种常用的迷宫生成算法,它以迷宫的墙壁为基本单位,通过不断分割墙壁,最终形成一个完整的迷宫。
算法的基本思想是:首先选择一面墙壁,将其打通,将迷宫分割成两个部分;然后在分割后的两个部分中,随机选择一面墙壁,将其打通,将两个部分再次分割;重复这个过程,直到不能再分割为止。
二、迷宫的求解算法2.1 深度优先搜索算法深度优先搜索算法是一种常用的迷宫求解算法,它以迷宫的路径为基本单位,通过不断探索迷宫的路径,最终找到出口。
算法的基本思想是:首先选择一个起始格子,将其标记为已访问;然后选择与之相邻且未访问的格子,将其标记为已访问,并将其加入路径中;继续选择路径中最后一个格子的相邻未访问格子,直到找到出口或者无法继续探索为止。
2.2 广度优先搜索算法广度优先搜索算法是另一种常用的迷宫求解算法,它以迷宫的路径为基本单位,通过不断扩展迷宫的路径,最终找到出口。
算法的基本思想是:首先选择一个起始格子,将其标记为已访问,并将其加入路径中;然后选择路径中的第一个格子的相邻未访问格子,将其标记为已访问,并将其加入路径中;继续选择路径中的下一个格子的相邻未访问格子,直到找到出口或者无法继续扩展为止。
数据结构迷宫问题实验报告

竭诚为您提供优质文档/双击可除数据结构迷宫问题实验报告篇一:数据结构-迷宫-实验报告与代码一.需求分析本程序是利用非递归的方法求出一条走出迷宫的路径,并将路径输出。
首先由用户输入一组二维数组来组成迷宫,确认后程序自动运行,当迷宫有完整路径可以通过时,以0和1所组成的迷宫形式输出,标记所走过的路径结束程序;当迷宫无路径时,提示输入错误结束程序。
程序执行的命令:1创建迷宫;2求解迷宫;3输出迷宫求解;二.算法设计本程序中采用的数据模型,用到的抽象数据类型的定义,程序的主要算法流程及各模块之间的层次调用关系程序基本结构:设定栈的抽象数据类型定义:ADTstack{数据对象:D={ai|ai∈charset,i=1,2,3,?..,n,n>=0;} 数据关系:R={|ai?1,ai∈D,i=2,?,n}设置迷宫的抽象类型ADTmaze{数据对象:D={ai|ai∈‘’,‘@’,‘#’,‘1’,i=1,2,?,n,n>=0}数据关系:R={r,c}r={|ai-1,ai∈D,i=1,2,?,n,}c=|ai-1,ai∈D,i=1,2,?,n,}结构体定义:typedefstruct//迷宫中x行y列的位置{intx;inty;}posType;typedefstruct//栈类型{intord;//通道块在路径上的“序号”posTypeseat;//通道块在迷宫中的“坐标位置”intdi;//从此通道块走向下一通道块的“方向”}mazeType;typedefstruct{mazeType*base;mazeType*top;intstacksize;}mazestack;基本函数:statusInitstack(mazestackif(!s.base)exit(oVeRFLow);s.top=s.base+s.stacksize;s.stacksize+=sTAcKIncRemenT;}*s.top++=e;returnoK;}2)出栈操作statuspop(mazestacke=*--s.top;returnoK;}3)判断栈是否为空statusstackempty(mazestackreturneRRoR;}4)迷宫路径求解statusmazepath(posTypestart,posTypeend)//迷宫路径求解{posTypecurpos;mazestacks;mazeTypee;intcurstep;Initstack(s);curpos=start;//设定当前位置为入口位置curstep=1;//探索第一步cout {if(pass(curpos))//当前位置可以通过,即是未曾走到的通道块{Footprint(curpos);//留下足迹e.ord=curstep;e.seat=curpos;e.di=1;push(s,e);//加入路径if(curpos.x==end.xreturnTRue;//到达终点(出口)}curpos=nextpos(curpos,e.di);//下一位置是当前位置的东邻++curstep;//探索下一步}else//当前位置不能通过{if(!stackempty(s)){pop(s,e);while(e.di==4//留下不能通过的标记pop(s,e);cout }if(e.di {++e.di;//换下一个方向探索篇二:数据结构试验报告-迷宫问题实验报告:迷宫问题题目:编写一个求解迷宫通路的程序一、需求分析:1)采用二维数组maze[m][n]来表示迷宫,其中:maze[0][j]和maze[m-1][j](0≤j≤n-1)及maze[i][0]和maze[i][n-1](0≤i≤m-1)为添加在迷宫外围的一圈障碍。
数据结构迷宫问题实验报告

数据结构迷宫问题实验报告数据结构迷宫问题实验报告一、引言本实验旨在通过实现一个迷宫问题的解决方案,来深入理解数据结构的应用和算法的设计与实现。
通过本实验,我们将探索不同迷宫问题的解决方法,并比较它们的效率和优劣。
二、背景知识2·1 数据结构在本实验中,我们将使用图作为数据结构,用于构建迷宫的表示。
迷宫中的每个位置都将表示为一个节点,每个节点之间的连接将表示为边。
这样,我们就可以通过图的遍历算法来寻找迷宫的解。
2·2 算法为了解决迷宫问题,我们将使用深度优先搜索 (DFS) 算法和广度优先搜索 (BFS) 算法。
DFS 算法通过回溯的方式逐步向前,直到找到迷宫的终点或者无法继续前进为止。
BFS 算法则通过广度优先的方式逐层遍历,直到找到迷宫的终点为止。
三、实验方法3·1 实验设计本实验将分为以下几个步骤:1·构建迷宫图:根据给定的迷宫地图,将其转化为一个图的表示,并为每个位置添加节点和边。
2·实现 DFS 算法:编写一个使用 DFS 算法来解决迷宫问题的函数。
3·实现 BFS 算法:编写一个使用 BFS 算法来解决迷宫问题的函数。
4·测试算法效果:使用不同的迷宫地图测试实现的算法,并比较它们的运行时间和解的质量。
3·2 实验步骤1·根据给定的迷宫地图,将其转化为图的表示。
可以使用邻接矩阵或邻接表存储图的结构。
2·实现一个深度优先搜索算法,用于解决迷宫问题。
可以使用递归或栈来实现回溯。
3·实现一个广度优先搜索算法,用于解决迷宫问题。
可以使用队列来实现层次遍历。
4·使用不同的迷宫地图测试实现的算法。
记录每个算法的运行时间,并比较它们的解的质量。
四、实验结果与分析4·1 运行时间对比通过测试不同迷宫地图的运行时间,我们得到如下结果:●DFS 算法平均运行时间为 X 毫秒。
●BFS 算法平均运行时间为 Y 毫秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构实验报告——
迷宫求解问题实验
上机环境: DevC++
二、程序设计相关信息
(1)实验题目:迷宫求解问题
问题描述:
实验题3.5 改进3.1.4节中的求解迷宫问题程序,要求输出如图3.14所示的迷宫的所有路径,并求最短路径长度及最短路径。
(2)实验项目组成:
本项目由一个原程序mg.cpp 及mg.exe 文件组成。
(3)实验项目的程序结构: 函数调用关系图:
(4)实验项目包含的函数的功能描述:
mg[M+1][N+1] //构造迷宫二维数组,1表示墙不可走方块,0表示通道
mgpath(int xi,int yi,int xe,int ye)
//求解路径为:(xi,yi )->(xe,ye )
//采用顺序栈存储,进栈,回溯,退栈等 0 1 2 3 4 5
1
2
3
4
出入main() main()
struct 结构体 mgpath()路径函数
(5)算法描述:
求解迷宫从入口到出口的所有路径,从入口出发,顺某一个方向向前试探,对于可走的方块都进栈,并将这个可走发方位保存,且top+1,然后试探下一个方块,若下一个方块能走通则继续,否则则回溯到前一个方块,且top-1。
为记录所有的路径调用Path[k]=Stack[k]记录,从次方块向不同方向去试探,已经走过的方块则为不可走方块。
最后比较top值找到一条最短路径并输出。
试探路径过程的算法利用了“广度优先搜索遍历”算法。
流程图:
(6)实验数据:
迷宫数组如下:
int mg[M+1][N+1]={
{1,1,1,1,1,1},{1,0,0,0,1,1},{1,0,1,0,0,1},
{1,0,0,0,1,1},{1,1,0,0,0,1},{1,1,1,1,1,1}};
实验结果:
三、程序代码:
#include <stdio.h>
#include <stdlib.h>
#define M 6
#define N 6
#define Maxsize 100
int mg[M+1][N+1]={
{1,1,1,1,1,1},
{1,0,0,0,1,1},
{1,0,1,0,0,1},
{1,0,0,0,1,1},
{1,1,0,0,0,1},
{1,1,1,1,1,1}
};
struct
{
int i;
int j;
int di;
}Stack[Maxsize],Path[Maxsize]; int top=-1;
int count=1;
int min=Maxsize;
int mgpath()
{
int i,j,di,find,k;
top++;
Stack[top].i=1;
Stack[top].j=1;
Stack[top].di=-1;
mg[1][1]=-1;
printf("迷宫所有路径如下:\n");
while(top>-1)
{
i=Stack[top].i;j=Stack[top].j;di=Stack[top].di;
if(i==M-2&&j==N-2)
{
printf("%4d:",count++);
for(k=0;k<=top;k++)
{
printf("(%d,%d)",Stack[k].i,Stack[k].j);
if((k+1)%5==0)
printf("\n ");
}
printf("\n");
if(top+1<min)
{
for(k=0;k<=top;k++)
Path[k]=Stack[k];
min=top+1;
}
mg[Stack[top].i][Stack[top].j]=0;
top--;
i=Stack[top].i;j=Stack[top].j;di=Stack[top].di;
}
find=0;
while(di<4&&find==0)
{
di++;
switch(di)
{
case 0:i=Stack[top].i-1;j=Stack[top].j;break;
case 1:i=Stack[top].i;j=Stack[top].j+1;break;
case 2:i=Stack[top].i+1;j=Stack[top].j;break;
case 3:i=Stack[top].i;j=Stack[top].j-1;break;
}
if(mg[i][j]==0)find=1;
}
if(find==1)
{
Stack[top].di=di;
top++;
Stack[top].i=i;
Stack[top].j=j;
Stack[top].di=-1;
mg[i][j]=-1;
}
else
{
mg[Stack[top].i][Stack[top].j]=0;
top--;
}
}
printf("\n");
printf("最短路径如下:\n");
printf("路径最短长度:%d\n",min);
printf("最短路径路径:\n");
for(k=0;k<min;k++)
{
printf("(%d,%d)",Path[k].i,Path[k].j);
}
printf("\n\n");
}
int main()
{
mgpath();
system("PAUSE");
return 0;
}。