第一章 随机事件与概率

合集下载

概率论第一章随机事件及其概率

概率论第一章随机事件及其概率
A
B
和事件 A∪B={| ∈ A或B } A = { HHH },B = { TTT } ; A∪B = { HHH,TTT } 三次都是同一面
特别的,对任意的随机事件 A , A∪A = A, A∪ = A, A∪S = S 当 A、B 不相容时,记成 A∪B = A+B
S
(3).事件的积运算 得到一个新事件,它的发生表示 这些事件中每一个都要发生,
解. 由减法公式, P (B – A ) = P (B ) – P (AB ) 只需要计算出概率 P (AB ) 。 (1) A、B互不相容即 AB = ,则 P (B – A ) = 0.5; (2) A B 等价于 AB = A,得到 P (B – A ) = 0.2; (3) 利用加法公式的另一形式: P (A∪B ) = P (A ) + P (B – A ), 得到P (B – A ) = 0.4。
性质5 设A,B是两个事件,若 A B, 则 P (A ) ≤ P (B ) 性质6 对任意的事件A ,有P (A ) ≤1。 证明思路 利用概率定义中的无穷可加以及非负性等。
思考
性质4中如何推广到n个事件的加法公式
例1.11 假定 P (A ) = 0.3,P (B ) = 0.5 , 分别计算 (1) A、B 不相容;(2) A B; (3) P (A∪B) = 0.7 时概率P (B – A) 的值。
例如从 26 个英文字母中任取2 个排列, 所有不同方式一共有 P262 = 26×25 = 650。
(2) 可以重复的排列
从 n 个不同元素中允许放回任意取 m 个 出来排成有顺序的一列( 即取出的这些元素 可以相同 )。所有不同的排列方式一共有 n×n×…×n = nm

(完整版)概率论第一章随机事件与概率

(完整版)概率论第一章随机事件与概率
P(A) = A中样本点的个数 / 样本点总数
解题思路
1、将事件定义为某个参数,如A,B,C; 2、确定总样本空间样本数与事件对应的样本数 技巧:可以采用概率的性质和事件的运算关系灵 活变换。
2. 样本点 ω—— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
1.1.3 随机事件
1. 随机事件 —— 某些样本点组成的集合, Ω的子集,常用A、B、C…表示.
• 重复排列:nr

选排列: Pnr
n! n(n 1)......(n r 1) (n r)!
组合

组合:
Cnr
n r
n! r!(n r)!
Pnr r!
注意
求排列、组合时,要掌握和注意: 加法原则、乘法原则.
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
§1.1 随机事件及其运算 §1.2 概率的定义及其确定方法 §1.3 概率的性质 §1.4 条件概率 §1.5 独立性
§1.1 随机事件及其运算
1.1.1 随机现象:自然界中的有两类现象 1. 必然现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
乘法原理

概率第一章

概率第一章
1.2.1 基本事件空间与事件
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行。
1-4
概率论与数理统计
E
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行用 符号 E 表示。 随机事件 :在条件下事件可能发生也 可能不发生的事件用大写字母 A , B , C ,表
指出
件,并表示事件 1-9
事件中哪些是基本事 B, C, D
。 概率论与数理统计
E
1.2.2 事件间的关系与运算
1.事件的包含与相等 若事件 A 中的每个基本事件都包含在 B
A
事件 B 之中,即 A 的发生必然导致 B 的发
生,则称事件 A 包含于事件 B ,或事件 B
包含事件 A ,也称是的特款 ,记为 A B 。
1-19
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.2.4 化简下列各事件:
(1) ( A B)( A B) ; (2) AB AB BC; (3) ( A B)( A B)(B C ).
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.3.1 设事件A, B 的概率分别为 和
,试求下列三种情况下的值: (1) B 互不相容; A, (2) A B ; (3) ( AB ) 1 . P
8
1 3
1 2
1-27
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;

概率论与数理统计教程(茆诗松)第1章

概率论与数理统计教程(茆诗松)第1章
A = “针与平行线相交” 的充要条件是: x ≤ l/2 sin ϕ . 针是任意投掷的,所以这个问题可用几何方法 求解得
SA ∫0 P( A) = = SΩ
27 July 2011
π
l sinϕdϕ 2l 2 = d(π / 2) dπ
华东师范大学
第一章 随机事件与概率
第9页
§1.3 概率的性质
= (3/10)×(2/9)+(7/10)×(3/9) = 3/10
27 July 2011
华东师范大学
第一章 随机事件与概率
第24页 24页
1.4.4
贝叶斯公式
乘法公式是求“几个事件同时发生”的概率; 全概率公式是求“最后结果”的概率; 贝叶斯公式是已知“最后结果” ,求“原因” 的概率.
27 July 2011
第一章 随机事件与概率
第19页 19页
条件概率的三大公式
乘法公式; 全概率公式; 贝叶斯公式.
27 July 2011
华东师范大学
第一章 随机事件与概率
第20页 20页
1.4.2
性质1.4.2
乘法公式
(1) 若 P(B)>0,则 P(AB) = P(B)P(A|B); 若 P(A)>0,则 P(AB) = P(A)P(B|A). (2) 若 P(A1A2 ······An−1)>0,则 P(A1A2 ······An) = P(A1)P(A2|A1) ······ P(An|A1A2 ······An−1)
古典方法 设 Ω 为样本空间,若
① Ω只含有限个样本点; ② 每个样本点出现的可能性相等, 则事件A的概率为: P(A) = A中样本点的个数 / 样本点总数

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。

随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。

统计规律性:在大量重复试验或观察中所呈现的固有规律性。

概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。

(1)概率论:从数量上研究随机现象的统计规律性的科学。

(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。

2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。

在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。

样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。

样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。

3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。

事件发生:在一次试验中,当这一子集中的一个样本点出现时。

基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。

两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。

空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。

4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。

①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。

事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。

(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。

第1章 概率论的基本概念

第1章 概率论的基本概念

确定概率的常用方法有: (1)频率方法(统计方法) (2)古典方法 (3)几何方法 (4)公理化方法 (5)主观方法
古典概率
(1) 古典概率的假想世界是不存在的 .对于那些极其罕见的, 定义 1.2.5 如果试验满足下面两个特征,则称其 但并非不可能发生的事情,古典概率不予考虑.如硬币落地后 为古典概型(或有限等可能概型): 恰好站立,一次课堂讨论时突然着火等. (1 )有限性:样本点的个数有限; (2) 古典概率还假定周围世界对事件的干扰是均等的 .而在 (2)等可能性:每个样本点发生的可能性相同 . 实际生活中无次序的、靠不住的因素是经常存在的 .
(3) 如果AiAj= (1 i < j k),则
fn(A1∪A2∪ … ∪Ak ) = fn(A1 ) +fn(A2 ) + … +fn(Ak 着事件在一次试验中发生的可能性就 大,反之亦然. 人们长期的实践表明:随着试验重复次数n的增加, 频率fn(A)会稳定在某一常数a附近,我们称这个常数为频 率的稳定值.这个稳定值就是我们所说的(统计)概率.
互不相容与对立区别 随机事件间的关系与运算
(1)事件A与事件B对立 AB= , A∪B= . (2)事件 A与事件B互不相容 AB= . 关系 运算 包含 相等 互不相容 并 交 差 补
如果属于A的样本点一定 由在 中而不在事件 A 中的样本点 , B没有相同的样本点, 如果事件 A 由事件 如果 A A 与事件 B ,且 A B 中所共有的样本 B,那么 A=B. A中而不在事件B中的样 中所有的样本点 由在事件 属于B,则称 A 包含于 B , BB.B 组成的新事件,也叫 A的对立 B A A A 则称互不相容 . 记作 A ∩ B= . 点组成的新事件 即B包含 A=B A B, A B A. . 组成的新事件 .记作 A记作 ∪ B.BA 本点组成的新事件 .记作 A-B. 或 A. 记作 B. .

概率论-第一章-随机事件与概率

概率论-第一章-随机事件与概率

第一章随机事件及其概率自然界和社会上发生的现象可以分为两大类:一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。

这类现象称为确定性现象,另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。

这类现象称为随机现象.随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。

随机现象所呈现出的这种规律性,称为随机现象的统计规律性。

概率论与数理统计就是研究随机现象统计规律性的一门数学学科。

§1随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E表示。

举例如下:E\:抛一枚硬币,观察正面〃、反面卩出现的情况;£:将一枚硬币抛掷两次,观察正面〃、反面7出现的情况;£:将一枚硬币抛掷两次,观察正面〃出现的次数;£.:投掷一颗骰子,观察它出现的点数;£:记录某超市一天内进入的顾客人数;&:在一批灯泡里,任取一只,测试它的寿命。

随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果;(2)每次试验前,不能确定哪种结果会出现;%(3)试验可以在相同的条件下重复进行。

随机试验£的所有可能结果的集合称为£的样本空间,记作0。

样本空间的元素,即£的每个结果,称为样本点,一般用e表示,可记C = {e}。

上面试验对应的样本空间:n, ={w,T};D.2={HH、HT、TH、TT};o, ={0,1,2};也={123,4,5,6};={0,1234 …};o6 = {/|/>o}o注意,试验的目的决定试验所对应的样本空间。

二、随机事件试验£样本空间。

第1章随机事件与概率

第1章随机事件与概率

§2 样本空间、随机事件
§2 样本空间、随机事件
z 把随机试验的所有可能结果组成的集合称为该试 验的样本空间,记为 S .
z 样本空间的元素,即随机试验每一个可能发生的 结果,称为样本点,常用 e 表示.
试验的目的
S e1
随机试验
e2
分别记作e1和e2
于是 S = {e1, e2}
备注
将一枚硬币连抛三次,试验的目的分别是: z 观察正面H,反面T出现的情况,则
5
1
0.2
24 0.48 251 0.502
6
2
0.4
18 0.36 262 0.524
7
4
0.8
27 0.54 258 0.516
波动较大
n=5 n=50 n=500
0.5
f5(A)
波动最小 f50(A)
f500(A)
表明:随着n的增加,事件的频率将呈现出稳定性,稳定于0.5
历史上的掷硬币试验
试验者
推论3:若 A ⊂ B ,则必有 P(B − A) = P(B) − P( A) ,且 P( A) ≤ P(B) .
概率的性质
性质1:非负性 对任意事件 A,必有 P( A) ≥ 0. 性质2:规范性 对必然事件 S,必有 P(S ) = 1. 性质3:可列可加性 若 A1, A2 ,L 是两两互不相容的事件, 则有 P( A1 U A2 UL) = P( A1 ) + P( A2 ) + L
1977 1978 1979 1980 1981 1982
6年总计
3670 4250 4055 5844 6344 7231 31394
新生儿分类数
男孩数 m1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证 由题知
1 d 1
A
1
d
d
1
… … …
1 d 1
故 d为A的特征值
由于A可逆,知d 0, 故(*)式可变形为
第10页
2 设 A为 n 阶可逆矩阵,且每一行元素之和皆等于d,
试证(1)d 是 A 的特征值;
(2)A 的逆也是各行元素之和皆相等的矩阵。
1 1 1 d
1. 行列式的性质与计算; 2. 矩阵可逆的各种等价条件;
3. 矩阵秩与向量组的秩的讨论; 4. 向量组的相关性讨论;
5. 线性方程组的解的讨论; 6. 二次型化简(或对称阵化
为对角பைடு நூலகம்)。
第5页
2) *,* 1, * 2 , , * nr 线性无关。
故知 * ,1 ,2 , ,nr 线性无关。
第4页
线性代数中的 “一、二、三、四、五、六”
一种基本运算: 矩阵的初等变换。
两大主线:
向量与矩阵。
三种矩阵关系: 等价、相似、合同。
四个难点: 1. 矩阵和向量组的秩; 2. 伴随矩阵;
3. 相似变换; 4. 特征值和特征向量的讨论.
五大板块: 行列式、矩阵、向量、方程组、二次型 。
六个重要知识点:
1 1 4 4 行 1 0 3 0 当λ= 4时, B 1 4 1 16 ~ 0 1 1 4
2)不妨设为列向量情形
B (*, * 1, * 2 , , * nr ) 列(*, 1, 2 , ,nr ) A
故 R(B) R( A)
由(1)知 * ,1 ,2 , ,nr 线性无关, R( A) n r 1
R(B) R(*, * 1, * 2,, * nr ) n r 1 所以 *,* 1, * 2 , , * nr 线性无关。
2)设有
k0* k1(* 1 ) k2( * 2 ) knr ( * nr ) 0
(k0 k1 knr ) * k11 k22 knr nr 0
k0 k1 knr 0
由(1)知:
k1
0
k0 k1 knr 0
knr 0
求矩阵的秩、求逆矩阵等); 第三章 向量的线性相关性讨论、矩阵及向量组的秩的
讨论;用初等变换求向量组的秩和最大无关组; 第四章 带参数的非齐次线性方程组解的讨论、齐次或
非齐次解的结构的讨论; 第五章 方阵的特征值及特征向量的讨论、用正交矩阵
化实对称阵为对角阵(或用正交变换化二次型 为标准形)、正定性判别。
证 证: 1)反证。若 *,1 ,2 , ,nr 线性相关,

由于 1 ,2 , ,nr 线性无关,则 * 可由

1 ,2 , ,nr 线性表出
* k11 k22 knr nr
从而, *是齐次方程组的解,与题设矛盾。
第3页
复习要点
第一章 行列式的性质及计算; 第二章 伴随矩阵的性质、用矩阵的初等变换解题(如
设 *是非齐次线性方程组 AX b 的一个解,
1 ,2 , ,nr 是对应齐次线性方程组的一个基础
解系,证明:
练习册P29 第5题
1) *,1 ,2 , ,nr 线性无关;
2) *,* 1, * 2 , , * nr 线性无关。
证 证 1)设有 k0* k11 k22 knr nr O (*)
故有
A1
1
1 d
1
1 d
… … …
1
1
1
d
1 这表明A1的各行元素之和相等,皆为 d .
证毕
第11页
3
设有方程组
x1 x1
x2 λ λ x2
x3 x3
4 λ
2
x1 x2 2x3
4
问λ为何值时,该方程组有唯一解,无解,无穷多
解?并在有无穷多解时求其通解。
解 增广矩阵

两边用A左乘,得 k0 A* O, 即 k0b O

因为 b O, 故 k0 0. 将此代入(*)中,得
k11 k22 knr nr O
由 1 ,2 , ,nr 线性无关 k1 knr 0
第1页
2) *,* 1, * 2 , , * nr 线性无关。
故知 * ,1 ,2 , ,nr 线性无关。
第8页
7、若二次型 f ( x1 , x2 , x3 ) 2x12 x22 x32 2x1 x2 tx2 x3
是正定的,则 t 的取值范围是 2 t 2 。
8、设 A 是3阶矩阵,其特征值为1,-1,2,则
A2+3A-2E 的特征值为 2,- 4,8 。
第9页
2 设 A为 n 阶可逆矩阵,且每一行元素之和皆等于d, 试证(1)d 是 A 的特征值; (2)A 的逆也是各行元素之和皆相等的矩阵。

第7页
4、设
A
a c
b d
且ad
bc
0,
则A
1
=
ad
1
bc
d c
b a

5、设向量组 1 ,2 , ,r与1 , 2 , , t 等价,且 1 , 2 , , t 线性无关,则 r 与 t 间满足 r t 。
6.
设方阵A
1 2
2 x
4 2

5
y
相似,
4 2 1
4
则x, y的值 x 4, y 5 。
即 *,* 1 , * 2 , , * nr 线性无关。 第2页
设 *是非齐次线性方程组 AX b 的一个解,
1 ,2 , ,nr 是对应齐次线性方程组的一个基础
解系,证明:
练习册P29 第5题
1) *,1 ,2 , ,nr 线性无关; 2) *,* 1, * 2 , , * nr 线性无关。
第6页
一、填空
1、6 阶行列式中项 a23a41a35a16a52a64 的符号为 + 。
2、已知向量组 a1 1 2 1 1, a2 2 0 t 0 a3 0 4 5 2 线性相关。则 t= 3 。
3、设 A,B 同为 n 阶矩阵,A 2, B 3,
则 2A* B 1
1 2 2n1 3
1 B 1
1 λ
λ 1
4
λ
2
行 1 ~0
1 λ 1
λ 4
λ
1 λ2 4
1
1
2
4
0
2
2 λ
-8
行 1 1
λ
4
~0 2
2 λ
8
0
0

1)(4 λ )
2λ (λ
- 4)
第12页
x1 x1
x2 λ λ x2
x3 x3
4 λ2
x1 x2 2x3
4
故当λ≠4且λ≠-1时,方程组有唯一解。
相关文档
最新文档