(新)高中数学必修一第三章函数的应用知识点总结
高中数学新教材必修第一册第三章 函数的概念与性质基础知识

第三章 函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的 x ,按照某种 f ,在集合B 中都有 y 与它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(,其中,x 叫做 ,x 的取值范围A 叫做函数的 ,与x 的值相对应的y 值叫做 ,函数值的集合}|)({A x x f ∈叫做函数的 ,值域是集合B 的子集.2函数的三要素: 、 、 . 求函数定义域的原则:(1)若()f x 为整式,则其定义域是 ;(2)若()f x 为分式,则其定义域是 ;(3)若()f x 是二次根式(偶次根式),则其定义域是 ;(4)若()0f x x =,则其定义域是 ;(5)若()()0,1x f x a a a =>≠,则其定义域是 ;(6)若()()log 0,1a f x x a a =>≠,则其定义域是 ;(7)若f (x )=sinx,g (x )=cosx ,则其定义域是 ;(8)若x x f tan )(=,则其定义域是 ;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意 ,当 时,有 .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意 ,当 时,有 特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足: ,都有 ; 使得 ,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;偶函数的图象关于 对称;奇函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;奇函数的图象关于 对称;若奇函数)(x f y =的定义域中有零,则其函数图象必过原点,即(0)0f =.11幂函数:一般地,函数 叫做幂函数,其中 是自变量, 是常数. 12幂函数()f x x α=的性质:①所有的幂函数在 都有定义,并且图象都通过点 ; ①如果0α>,则幂函数的图象过原点,并且在区间[)0,+∞上是 ; ①如果0α<,则幂函数的图象在区间()0,+∞上是 ,①幂函数图象不出现于第四象限.。
高一数学必修一第三章函数的应用知识点总结.docx

第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数y = /(x)(xeD),把使/(x) = 0成立的实数无叫做函数y =f(x)(xeD)的零点。
2、函数零点的意义:函数y = /(x)的零点就是方程/(x) = 0实数根,亦即函数y = /(x)的图象与兀轴交点的横坐标。
即:方程/(%) = 0有实数根o函数y = /(x)的图象与兀轴有交点o函数y = /(x) 有零点.3、函数零点的求法:①(代数法)求方程f(x) = 0的实数根;© (几何法)对于不能用求根公式的方程,可以将它与函数y = /(x)的图象联系起來, 并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数y = kx(k 0)仅有一个零点。
②反比例函数y =-伙H 0)没有零点。
x③一次函数y = 伙工0)仅有一个零点。
④二次函数y = ax2 + bx^- c(a H 0).(1)A> 0 ,方程ax2+bx+c = 0(a^0)有两不等实根,二次函数的图象与兀轴有两个交点,二次函数有两个零点.(2)A=0,方程加+C =0(QH0)有两相等实根,二次函数的图象与兀轴有一个交点,二次函数有一个二重零点或二阶零点.(3)A<0,方程a^+fex+c = 0(dH0)无实根,二次函数的图象与x轴无交点,二次函数无零点.⑤指数函数y = a x(a > 0,且o h 1)没有零点。
⑥对数函数歹=log“ x(a > 0,且a工1)仅有一个零点1.⑦幕函数丁 =屮,当〃>0时,仅有一个零点0,当〃50时,没有零点。
5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把/(兀)转化成/(x) = 0,再把复杂的函数拆分成两个我们常见的函数)[,儿(基本初等函数),这另个函数图像的交点个数就是函数/ (兀)零点的个数。
6、选择题判断区间(a,b)上是否含有零点,只需满足/(a)/(b)<0。
高一上数学必修一第三章《3.1函数的概念与性质》知识点梳理

高一上必修一第三章《函数》知识点梳理3.1.1函数及其表示方法学习目标:(1)在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用;(2)了解构成函数的要素,能求简单函数的定义域、值域;(3)通过具体问题情境总结共性,抽象出函数概念,积累从具体到抽象的活动经验,发展数学抽象的核心素养。
【重点】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).【难点】1、求函数的定义域和值域回顾初中所学的函数,在情境与问题中感受高中函数表达方式与初中的不同。
一、函数的概念我们已经学习过一些函数的知识,例如已经总结出:在一个变化过程中,数值发生变化的量称为变量;在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就称y是x的函数.再例如,我们知道y=2x是正比例函数,y=-3x-1是一次函数,y=-2是反比例函数,y=x2+2x-3是二次函数,等等。
【情境与问题】(1)国家统计局的课题组公布,如果将2005年中国创新指数记为100,近些年来中国创新指数的情况如下表所示。
以y表示年度值,i表示中国创新指数的取值,则i是y的的函数吗?如果是,这个函数用数学符号可以怎样表示?(2)利用医疗仪器可以方便地测量出心脏在各时刻的指标值,据此可以描绘出心电图,如下图所示。
医生在看心电图时,会根据图形的整体形态来给出诊断结果(如根据两个峰值的间距来得出心率等).初中实际上是用变量的观点和解析式来描述函数的,但从情境与问题中的两个实例可知,初中的方法有一定的局限性:情境与问题中的i是y的函数,v是t的函数,但是这两个函数与初中的函数有所不同,比如都很难用一个解析式表示,而且每个变量的取值范围也有了限制,等等。
函数的应用学习总结

函数的应用学习总结一、函数的应用在课程中的地位和作用本单元的内容—函数的应用,是学习函数的一个重要方面,也是数学建模在高中数学中的一个初次体现。
本单元内容为教材必修一中第三章函数的应用,它包括一次函数、二次函数及指数函数、对数函数、幂函数的应用。
在此之前学生已经研究了函数的概念及有关性质,并学习了上述几个基本初等函数的有关知识,为本单元的学习打下了一定的基础。
在后续的教材中,还将学习三角函数的应用、数列的应用、不等式的应用等涉及实际应用的内容。
一方面,学生学习函数的应用,目的是利用已有的函数知识分析问题、解决问题。
通过函数的应用,对学生完善函数的思想、激发应用数学的意识、培养分析问题解决问题的能力、增强进行实践的能力等,都有很大帮助;另一方面,本单元内容,是高一学生第一次学习数学建模,它是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和解决问题的过程,有助于激发学生学习数学的兴趣,发展学生的创新精神和实践能力。
因此就中观层面分析本单元的内容是函数知识在高一阶段的重点部分,也是承上启下的部分。
二、函数应用的组成情况,解释专题的划分和专题之间的关系在本主题单元中,我把分散两节内容设计成三个专题来组织学习活动。
专题一:一次函数、二次函数的应用。
通过探究,初步掌握一次函数和二次函数模型的应用,初步体会数学建模的思想,会解决简单的实际应用问题;专题二:指数函数、对数函数、幂函数的应用。
通过研究经济、地理、物理等方面内容,理解这三种函数模型的常见应用,初步体会它们的增长差异性。
专题三:函数模型的选择与应用。
本专题学习内容适合于运用研究性的方法学习。
通过分析已给条件或收集数据,利用信息技术建立大致反映变化规律的函数模型,初步掌握选择函数模型的方法,体会利用信息技术建立函数模型的优势。
这三个专题内容的确定是源于教材,且整合了函数的应用的内容,又不拘泥于教材,并适当进行了拓展和延伸,为今后的学习做了铺垫。
最新高一数学第三章函数的应用知识点总结

高一数学第三章函数的应用知识点总结一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.零点存在性定理:如果函数y=f(x)在区间〔a,b 〕上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。
先判定函数单调性,然后证明是否有f (a )·f(b)<0 4、二次函数的零点:二次函数)0(2≠++=a c bx ax y .(1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.5、二分法求方程的近似解或函数的零点①确定区间〔a,b 〕,验证f(a)·f(b)<0,给定精度ε; ②求区间(a,b)的中点c ; ③计算f(c):若f(c)=0,则c 就是函数的零点; 若f(a)·f(c)<0,则令b=c (此时零点x0∈(a,c));若f(c)·f(b)<0,则令a=c (此时零点x0∈(c,b));④判断是否达到精度ε;即若∣a-b ∣<ε,则得到零点近似值a (或b );否则重复步骤②~④.第三章函数的应用习题一、选择题1.下列函数有2个零点的是 ( )A 、24510y x x =+-B 、310y x =+C 、235y x x =-+-D 、2441y x x =-+ 2.用二分法计算23380x x +-=在(1,2)x ∈内的根的过程中得:(1)0f <,(1.5)0f >,(1.25)0f <,则方程的根落在区间 ( )A 、(1,1.5)B 、(1.5,2)C 、(1,1.25)D 、(1.25,1.5)3.若方程0xa x a --=有两个解,则实数a 的取值范围是 ( )A 、(1,)+∞B 、(0,1)C 、(0,)+∞D 、Φ4.2函数f(x)=lnx-的零点所在的大致区间是 ( )x()()().,3.,C e D e +∞ A.(1,2)B.2,e5.已知方程310x x --=仅有一个正零点,则此零点所在的区间是 ( )A .(3,4)B .(2,3)C .(1,2)D .(0,1)6.函数62ln )(-+=x x x f 的零点落在区间 ( ) A .(2,2.25) B .(2.25,2.5) C .(2.5,2.75) D .(2.75,3)7. 已知函数()f x 的图象是不间断的,并有如下的对应值表:那么函数在区间(1,6)上的零点至少有( )个 A .5 B .4 C .3 D .2 8.方程5x 21x =+-的解所在的区间是 ( )A(0,1) B(1,2) C(2,3) D(3,4)9.方程34560x x -+=的根所在的区间为 ( )A 、(3,2)--B 、(2,1)--C 、(1,0)-D 、(0,1)10.已知2()22xf x x =-,则在下列区间中,()0f x =有实数解的是 ( )(A)(-3,-2) (B)(-1,0) (C) (2,3) (D) (4,5)11.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为 ( )A. (-1,0)B. (0,1)C. (1,2)D. (2,3) 12、方程12xx +=根的个数为( )A 、0B 、1C 、2D 、3 二、填空题13. 下列函数:1) y=x lg ; 2);2xy = 3)y = x2; 4)y= |x| -1;其中有2个零点的函数的序号是 。
人教版高一数学第三章函数的应用章节要点

人教版高一数学第三章函数的应用章节要点了解章节要点是学习的一种方法,以下是查字典数学网为您提供的高一数学必修一第三章函数的运用章节要点,希望可以协助到你!第三章函数的运用一、方程的根与函数的零点1、函数零点的概念:关于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。
2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数yf(x)的图象与x轴交点的横坐标。
即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.3、函数零点的求法:1(代数法)求方程f(x)0的实数根;○2(几何法)关于不能用求根公式的方程,可以将它与函数yf(x)的图象联络起来,○并应用函数的性质找出零点.4、基本初等函数的零点:①正比例函数ykx(k0)仅有一个零点。
k(k0)没有零点。
x③一次函数ykxb(k0)仅有一个零点。
②正比例函数y④二次函数yax2bxc(a0).(1)△0,方程ax2bxc0(a0)有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.(2)△=0,方程ax2bxc0(a0)有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△0,方程ax2bxc0(a0)无实根,二次函数的图象与x轴无交点,二次函数无零点.⑤指数函数ya(a0,且a1)没有零点。
⑥对数函数ylogax(a0,且a1)仅有一个零点1.⑦幂函数yx,当n0时,仅有一个零点0,当n0时,没有零点。
5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把fx转化成,这另fx0,再把复杂的函数拆分红两个我们罕见的函数y1,y2(基本初等函数)个函数图像的交点个数就是函数fx零点的个数。
6、选择题判别区间a,b上能否含有零点,只需满足fafb0。
7、确定零点在某区间a,b个数是独一的条件是:①fx在区间上延续,且fafb0②在区间a,b上单调。
2016学年度高一必修一数学第三章函数的应用知识点

2016学年度高一必修一数学第三章函数的应
用知识点
数学是学习和研究现代科学技术必不可少的基本工具。
以下是查字典数学网为大家整理的高一必修一数学第三章函数的应用知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:求函数的零点:1 (代数法)求方程的实数根;2 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:二次函
数.1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.最后,希望小编整理的高一
必修一数学第三章函数的应用知识点对您有所帮助,祝同学们学习进步。
高中数学必修一第三章第一节函数的概念及其表示的知识点综合能力提升总结归纳

高中数学必修一第三章第一节函数的概念及其表示的知识点综合能力提升总结归纳高中数学必修一第三章第一节为函数的概念及其表示,是数学中非常基础和重要的知识点。
本文将从以下几个方面对该知识点进行综合能力提升总结归纳。
一、函数的概念函数是数学中重要的概念之一,是一种数学关系。
它是一个集合到另一个集合的一种映射,其中每一个元素都与另一个集合中唯一的元素对应。
函数的概念是数学中重要的基础,任何涉及到数值的计算和分析都必须依赖于函数的概念。
二、函数的表示函数的表示有多种形式,如函数表、函数图像、符号表示等。
其中,函数表是最简单和最基本的表示方式,它以表格的形式列出函数的输入和输出值。
函数图像是一种用图像的形式来表示函数的方法。
符号表示则是将函数用数学符号来表达。
三、函数的性质函数有很多性质,如定义域、值域、单调性、奇偶性等。
其中,定义域是指函数的自变量可能取的值的集合;值域是指函数的因变量可能取的值的集合。
单调性是指函数在定义域上的增减性质,可以分为单调递增和单调递减。
奇偶性则是指函数在定义域上的对称性质,可以分为奇函数和偶函数。
四、函数的分类函数可以分为多种类型,如常函数、一次函数、二次函数、指数函数、对数函数、三角函数等。
其中,常函数是指函数的值在整个定义域上都相等;一次函数是指函数的表达式为y=kx+b,其中k和b 为常数;二次函数是指函数的表达式为y=ax+bx+c,其中a、b、c为常数;指数函数是指函数的形式为y=a^x,其中a为正实数;对数函数则是指函数的形式为y=loga(x),其中a为正实数;三角函数则是指函数的形式为y=sin(x)、y=cos(x)、y=tan(x)等。
以上是本文对高中数学必修一第三章第一节函数的概念及其表示的知识点综合能力提升总结归纳。
函数是数学中非常基础和重要的知识点,掌握好函数的概念、表示、性质和分类,可以帮助我们更好地理解和应用数学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数
)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)
(x f y =有零点.
3、函数零点的求法:
○
1 (代数法)求方程0)(=x f 的实数根; ○
2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.
4、基本初等函数的零点:
①正比例函数(0)y kx k =≠仅有一个零点。
②反比例函数(0)k
y k x
=
≠没有零点。
③一次函数(0)y kx b k =+≠仅有一个零点。
④二次函数)0(2
≠++=a c bx ax y .
(1)△>0,方程2
0(0)ax bx c a ++=≠有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.
(2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象与x 轴无交点,二次函数无零点.
⑤指数函数(0,1)x
y a a a =>≠且没有零点。
⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1.
⑦幂函数y x α
=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。
5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成
()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另
个函数图像的交点个数就是函数()f x 零点的个数。
6、选择题判断区间(),a b 上是否含有零点,只需满足()()0f a f b <。
Eg :试判断方程在区间0122
4
=-+-x x x [0,2]内是否有实数解?并说明理由。
8、函数零点的性质:
从“数”的角度看:即是使0)(=x f 的实数;
从“形”的角度看:即是函数)(x f 的图象与x 轴交点的横坐标;
若函数)(x f 的图象在0x x =处与x 轴相切,则零点0x 通常称为不变号零点; 若函数)(x f 的图象在0x x =处与x 轴相交,则零点0x 通常称为变号零点.
一元二次方程根的分布的基本类型
设一元二次方程02
=++c bx ax (0≠a )的两实根为1x ,2x ,且21x x ≤.
k 为常数,则一元二次方程根的k 分布(即1x ,2x 相对于k 的位置)或根在区间上的
分布主要有以下基本类型:
表一:(两根与0的大小比较)
分
布情况
两个负根即两根都小于0
()120,0x x << 两个正根即两根都大于0
()120,0x x >>
一正根一负根即一个根小于0,一个大于
()120x x <<
大致图象(
>a )
得出的结论
()00200b a f ∆>⎧⎪⎪
-<⎨⎪>⎪⎩ ()0
0200b a f ∆>⎧⎪⎪
->⎨⎪>⎪⎩
()00<f
大
致图象(
<a )
得出的结论
()00200b a f ∆>⎧⎪⎪
-<⎨⎪<⎪⎩ ()0
0200b a f ∆>⎧⎪⎪
->⎨⎪<⎪⎩
()00>f
综合结论
(不讨论a )
()00200b a a f ∆>⎧⎪⎪
-<⎨⎪⋅>⎪⎩ ()0
0200b a a f ∆>⎧⎪⎪
->⎨⎪⋅>⎪⎩
()00<⋅f a
表二:(两根与k 的大小比较)
分
布情况
两根都小于k 即
k x k x <<21, 两根都大于k 即
k x k x >>21,
一个根小于k ,一个大于k 即
12
x k x <<
大致图象(
>a )
得出的结论
()020b k a f k ∆>⎧⎪⎪
-<⎨⎪>⎪⎩ ()0
20b k a f k ∆>⎧⎪⎪
->⎨⎪>⎪⎩
()0<k f
大
致图象(
<a )
得出的结论
()020b k a f k ∆>⎧⎪⎪
-<⎨⎪<⎪⎩ ()0
20b k a f k ∆>⎧⎪⎪
->⎨⎪<⎪⎩ ()0>k f
综合结论
(不讨论a )
()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩
()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩
()0<⋅k f a
k
k
k
表三:(根在区间上的分布)
分
布情况
两根都在()n m ,内
两根有且仅有一根在()
n m ,内(有两种情况,只画了一种) 一根在()n m ,内,另一根在()
q p ,内,q p n m <<<
大致图象(
>a )
得出的结论
()()0002f m f n b m n
a ∆>⎧⎪
>⎪⎪
>⎨⎪⎪<-<⎪⎩
()()0<⋅n f m f
()()()()0
000f m f n f p f q ⎧>⎪
<⎪⎨
<⎪⎪>⎩或()()()()00
f m f n f p f q <⎧
⎪⎨<⎪⎩
大
致图象(
<a )
得出的结论
()()0002f m f n b m n
a ∆>⎧⎪
<⎪⎪
<⎨⎪⎪<-<⎪⎩
()()0<⋅n f m f
()()()()0000f
m f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩
或()()()()0
0f m f n f p f q <⎧⎪⎨
<⎪⎩
综
合
结
论
(不讨论a )
——————
()()0<⋅n f m f
()()()()⎪⎩⎪⎨⎧<<00
q f p f n f m f。