高中数学必修1知识点
高一数学必修一知识点总结全

高一数学必修一知识点总结全1. 直线与坐标1.1 直线的斜率直线的斜率是指直线上一点到另一点的纵坐标之差与横坐标之差的比值。
1.2 直线的截距直线在坐标系上与y轴的交点称为直线的截距。
1.3 直线的方程直线的方程可以用斜截式、两点式或点斜式来表示。
2. 二次函数与函数的图像2.1 二次函数的定义二次函数是形如y=ax^2+bx+c的函数,其中a、b、c为常数。
2.2 二次函数的图像特征二次函数的图像是一条抛物线,其开口方向由二次项系数a的正负决定,开口向上为正,开口向下为负。
2.3 二次函数的平移与伸缩二次函数可以通过平移和伸缩变换图像的位置和形状。
3. 平面向量与坐标3.1 平面向量的定义平面向量是具有大小和方向的量,在坐标系中可以表示为有序数对。
3.2 平面向量的运算平面向量可以进行加法、减法、数乘和向量乘法运算。
3.3 平面向量的坐标表示平面向量的坐标表示可以用分量表示法或单位向量表示法。
4. 三角函数4.1 三角函数的定义三角函数是角的函数,包括正弦、余弦和正切等。
4.2 三角函数的基本关系式三角函数之间存在一些基本关系式,如正弦定理和余弦定理等。
4.3 三角函数的图像特征三角函数的图像具有周期性和对称性,可以通过坐标系表示。
5. 函数与方程5.1 函数的定义与性质函数是一种特殊的关系,具有输入与输出的对应关系。
5.2 方程的解与解集方程是含有未知数的等式,解是使方程成立的未知数的值。
5.3 一次函数与一次方程一次函数是函数的一种特殊形式,一次方程是一次函数的等式形式。
以上是高一数学必修一的一些重要知识点总结,这些知识点对于建立高中数学基础知识非常重要。
希望这份总结对你有所帮助!。
高中数学必修一知识点整理

高中数学 必修1知识点总结第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示● 什么是集合集合中的元素具有确定性、互异性和无序性。
● 常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集。
集合的表示法①自然语言法:用文字叙述的形式来描述集合。
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合。
③描述法:{x |x 具有的性质},其中x 为集合的代表元素。
④图示法:用数轴或韦恩图来表示集合。
● 集合的分类①含有有限个元素的集合叫做有限集。
②含有无限个元素的集合叫做无限集。
③不含有任何元素的集合叫做空集(∅)。
【1.1.2】集合间的基本关系● 已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集。
交集、并集、补集 名称 记号 意义性质 示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集UA {|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>12{|}x x x x <<∅ ∅()()()UU U A B A B =()()()UU U A B A B =〖1.2〗函数及其表示 【1.2.1】函数的概念● 函数、区间的概念及其表示方法:函数:①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.区间及表示法:①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.● 求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. ● 求函数的值域或最值:求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法● 函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. ● 映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值● 函数的单调性①定义及判定方法函数的 性 质定义 图象 判定方法函数的 单调性 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.● 打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数. ● 最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.yxo【1。
高中数学必修知识点归纳

必修1数学知识点第一章、集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、只要构成两个集合的元素是一样的,就称这两个集合相等。
3、常见集合:正整数集合:*N 或N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A .2、如果集合B A,但存在元素B x,且A x,则称集合A 是集合B 的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集.4、如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U 且§1.2.1、函数的概念1、设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数x f 和它对应,那么就称B A f :为集合A 到集合B 的一个函数,记作:A x x f y,.2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、注意函数单调性证明的一般格式:解:设ba x x ,,21且21x x ,则:21x f x f =…§1.3.2、奇偶性1、一般地,如果对于函数x f 的定义域内任意一个x ,都有x f x f,那么就称函数x f 为偶函数.偶函数图象关于y 轴对称.2、一般地,如果对于函数x f 的定义域内任意一个x ,都有x f x f,那么就称函数x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1、一般地,如果a xn,那么x 叫做a 的n 次方根。
高中数学必修一知识点总结(全)

高中数学必修一知识点总结(全)一、数与式1、常数、变量和运算符号:常数是除变量外的有限定义的数量,变量是可以任意取值的量,而运算符号则是进行数学运算的符号。
2、十进制及其他进制:十进制是分别使用0~9十个数字、以及逢十进一的一种进制制度,而其他进制则有二进制、八进制、十六进制等。
3、有理数的表示及其运算:有理数可以使用两个整数的商和余数的形式来表示,其中余数可以是负数,而有理数的运算则有加减乘除求倒数等。
4、无理数及其后结果:无理数是不能用有理数恒等式表达的数,通常用∞或“无穷不等式”来表示。
结果表明,无理数不是有理数的整数倍。
5、算术表达式的因式分解:分解因式是把一个多项式拆分成几个不同的因式的过程,在因式分解得到的两个因子可以进行乘、除、幂数运算,从而继续分解多项式,直到把多项式分解成几个不可继续分解的因式。
二、等差数列1、等差数列的定义:等差数列是一系列数按照一定规律等间隔排列而成的数列,在其中数字之间的差值成等差数列,可以表示为a1,a2,…, an,an+1,…,其中,a2-a1=a3-a2=…an+1-an=d,可以看出所有数之间都是等差的。
2、等差数列的求和:求和是求等差数列所有数字的和,其求和的公式为Sn=(n)(2a1+d(n-1))/2,在给定等差数列第一项和项数的情况下,即可直接求出等差数列的求和。
三、函数与方程1、定义域和值域:所谓“定义域”是指函数中可以取什么值,而“值域”则是指函数的值能够到达的最小和最大结果。
2、函数的定义及其基本性质:函数是定义域和值域之间的关系,函数的基本性质有单调性、统一性、性质等,其中单调性指函数上升或是下降,统一性指当定义域多于值域时,将多余的值合并为一个值。
3、折线图:折线图是一种表达定义域与值域变化关系的图表,用折线就能清楚地反映函数的变化,而其反映出的变化规律可以帮助我们分析函数的特性。
4、一元一次方程的求解:一元一次方程是一个有一个未知数的一元一次方程,其求解的方法有解析解法和求根解法,在一元一次方程求解得到未知数的值之后,可以利用求根解法把它带回原方程,验算正确性。
高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
高一数学必修一知识点总结归纳2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
高中数学必修一知识点归纳

高中数学必修一的知识点主要包括以下几个方面:
1. 函数与方程
-函数的概念和性质
-一次函数、二次函数、指数函数、对数函数、三角函数等基本函数的性质和图像-函数的运算和复合
-方程的解和根的概念
-一元一次方程、一元二次方程、一元三次方程等基本方程的解法
2. 数与式
-实数的概念和性质
-整数、有理数、无理数、复数等类型的数的定义和性质
-代数式的加减乘除运算和化简
-分式的概念和性质,分式的加减乘除运算和化简
3. 几何图形与空间几何
-点、线、面、体的基本概念和性质
-直线、射线、线段、角、平行线、垂直线等几何图形的性质和关系
-三角形、四边形、圆等多边形的性质和关系
-平面直角坐标系中的点的坐标表示和图形的坐标表示
-空间几何中的距离、体积、表面积等概念和计算方法
4. 数据与统计
-数据的收集、整理和表示方法
-频数分布表、频率分布直方图等统计图表的制作和分析
-平均数、中位数、众数等统计量的计算和应用
-样本调查和总体估计的方法和步骤
5. 概率与统计
-随机事件和概率的概念和性质
-概率的计算方法和应用
-条件概率、独立事件、互斥事件等概率相关概念和性质
-随机变量和概率分布的概念和性质
-离散型随机变量和连续型随机变量的概率分布和期望值的计算方法
以上是高中数学必修一的主要知识点归纳,每个知识点都有其具体的理论和方法,需要通过学习和练习来掌握。
在学习过程中,要注重理解概念和性质,掌握基本的计算方法和解题技巧,培养逻辑思维和问题解决能力。
同时,要注重实际应用,将数学知识与实际问题相结合,提高解决实际问题的能力。
高中数学必修一知识点归纳
高中数学必修一知识点归纳一、函数的概念与性质1. 函数的定义- 函数:从一个数集A(定义域)到另一个数集B(值域)的映射。
- 函数的表示:f(x) = y,其中x∈A,y∈B。
2. 函数的性质- 单调性:函数值随自变量增加而增加或减少。
- 奇偶性:f(-x) = f(x)(偶函数),f(-x) = -f(x)(奇函数)。
- 周期性:存在最小正数T,使得f(x+T) = f(x)。
- 有界性:函数的值在某个范围内。
3. 函数的图像- 坐标轴:x轴和y轴。
- 函数图像:表示函数关系的图形。
二、基本初等函数1. 幂函数- 定义:f(x) = x^n,n为实数。
- 性质:正整数幂、负整数幂、分数幂。
2. 指数函数- 定义:f(x) = a^x,a>0且a≠1。
- 性质:增长速度、指数律。
3. 对数函数- 定义:f(x) = log_a(x),a>0且a≠1。
- 性质:对数律、换底公式。
4. 三角函数- 正弦、余弦、正切函数:sin(x), cos(x), tan(x)。
- 性质:周期性、奇偶性、最值。
三、函数的运算1. 函数的四则运算- 加法、减法、乘法、除法。
2. 复合函数- 定义:f(g(x))。
- 性质:复合函数的值域。
3. 反函数- 定义:f(x)的反函数为g(x),满足f(g(x)) = x。
- 求法:通过解方程。
四、方程与不等式1. 一元一次方程- 解法:移项、合并同类项、系数化为1。
2. 一元二次方程- 解法:因式分解、配方法、公式法、图像法。
3. 不等式- 解法:移项、合并同类项、系数化为1。
- 性质:不等式的基本性质。
五、数列的概念与表示1. 数列的定义- 数列:按照一定顺序排列的一列数。
2. 等差数列- 定义:相邻两项之差为常数的数列。
- 通项公式:an = a1 + (n-1)d。
3. 等比数列- 定义:相邻两项之比为常数的数列。
- 通项公式:an = a1 * q^(n-1)。
高中数学必修1知识点
高中数学必修1知识点一、数集与函数数集是数学中用于研究数的集合。
数集有无穷集和有限集之分,有理数集、整数集、自然数集等是数学中常用的数集。
函数是数学中的一个重要概念,它描述了两个集合之间的关系。
函数由定义域、值域和对应关系构成,可以用图像、表格和公式等形式来表示。
二、函数的基本性质函数的基本性质包括奇偶性、单调性、最值等。
奇函数对称于原点,即f(-x)=-f(x);偶函数关于y轴对称,即f(-x)=f(x)。
单调函数指的是函数在定义域上递增或递减。
最值是指函数在定义域上的最大值和最小值。
三、函数的运算与复合函数函数的运算包括加减乘除和复合运算。
函数的加减运算是指两个函数相加或相减,乘除运算是指一个函数与一个常数相乘或相除。
复合函数是指一个函数作为另一个函数的自变量。
四、一次函数与二次函数一次函数是指函数的最高次数为1的函数,一般形式为y=kx+b,其中k为斜率,b为截距。
二次函数是指函数的最高次数为2的函数,一般形式为y=ax²+bx+c,其中a、b、c为常数。
五、指数函数与对数函数指数函数是指以指数为自变量的函数,一般形式为y=a^x,其中a 为底数,x为指数。
对数函数是指以对数为自变量的函数,一般形式为y=logₐx,其中a为底数,x为真数。
六、三角函数三角函数是指以角度或弧度为自变量的函数。
常用的三角函数有正弦函数、余弦函数和正切函数等。
它们的图像和性质在平面几何和物理等领域中有广泛的应用。
七、平面向量平面向量是指在平面上具有大小和方向的量。
平面向量的表示可以用坐标表示法或分解表示法。
平面向量的运算包括加法、减法、数量乘法和点乘法等。
八、数列与数列极限数列是按照一定的顺序排列的数的集合。
数列可以是等差数列、等比数列或其他特殊的数列。
数列的极限是指数列在无穷项处的极限值,可以是有限值、无穷大或无穷小。
九、平面几何基本概念平面几何是研究平面上的图形和性质的数学学科。
平面几何的基本概念包括点、线、面、角、多边形等。
高中数学必修一知识点总结归纳
高中数学必修一知识点总结归纳引言高中数学必修一通常涵盖了代数、函数、几何等多个基础数学领域,为学生进一步学习数学打下坚实的基础。
一、代数基础1.1 集合论概念:集合的表示、子集、并集、交集、补集。
1.2 逻辑用语逻辑连接词:与、或、非、蕴含、当且仅当。
1.3 不等式解法:一元一次不等式、一元二次不等式的解法。
二、函数2.1 函数的概念定义:函数的定义、定义域、值域。
2.2 函数的性质性质:单调性、奇偶性、周期性、有界性。
2.3 反函数概念:反函数的定义、性质及求法。
2.4 复合函数运算:复合函数的定义、运算法则。
2.5 函数图像绘制:函数图像的绘制方法和变换规律。
三、解析几何3.1 坐标系统介绍:直角坐标系、极坐标系的基本概念。
3.2 直线的方程形式:直线的点斜式、斜截式、一般式。
3.3 圆的方程形式:圆的标准方程、一般方程。
3.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。
四、算法初步4.1 算法的概念定义:算法的定义、特征。
4.2 程序框图绘制:程序框图的绘制方法,如顺序结构、条件结构、循环结构。
4.3 算法案例分析:常见算法问题的解决步骤,如排序、查找。
五、统计5.1 随机事件与概率概念:随机事件的定义、概率的计算方法。
5.2 概率的性质总结:概率的基本性质,如非负性、规范性、加法法则。
5.3 统计初步指标:均值、中位数、众数、方差、标准差的计算与意义。
5.4 统计图类型:条形图、直方图、饼图的绘制与解读。
六、数列6.1 等差数列公式:等差数列的通项公式、求和公式。
6.2 等比数列公式:等比数列的通项公式、求和公式。
6.3 数列的极限概念:数列极限的定义、无穷等比数列的极限。
6.4 数列的应用案例:数列在实际问题中的应用,如分期付款、人口增长模型。
七、推理与证明7.1 推理的概念定义:推理的定义、日常生活中的推理应用。
7.2 证明的方法步骤:直接证明、间接证明、反证法的一般步骤。
7.3 证明的策略技巧:构造法、归纳法、演绎法在证明中的应用。
高中一年级数学必修一知识点总结
高中一年级数学必修一知识点总结第一章:集合与函数1. 集合的概念集合的定义元素与集合的关系集合的表示法2. 集合的运算交集、并集、补集的定义和性质子集和真子集3. 函数的概念函数的定义函数的三要素:定义域、值域、对应关系函数的表示方法:解析式、图象、列表4. 函数的性质单调性奇偶性周期性5. 反函数反函数的概念反函数的求法第二章:指数函数与对数函数1. 指数函数指数函数的定义指数函数的图象和性质2. 对数函数对数函数的定义对数函数的图象和性质3. 指数与对数的运算指数运算法则对数运算法则第三章:三角函数1. 角的概念任意角象限角2. 三角函数的定义正弦、余弦、正切函数的定义3. 单位圆上的三角函数单位圆的定义单位圆上的三角函数值4. 三角函数的图象正弦、余弦函数的图象正切函数的图象5. 三角函数的性质周期性奇偶性单调性第四章:解析几何1. 平面直角坐标系坐标系的建立点的坐标2. 直线的方程直线的斜率直线的点斜式、斜截式、一般式方程3. 圆的方程圆的标准方程圆的一般方程4. 点与圆的位置关系点与圆的切线点与圆的弦第五章:不等式1. 不等式的解法代数法图形法2. 不等式的性质不等式的基本性质不等式的传递性3. 一元一次不等式组不等式组的解法求解不等式组的技巧第六章:数学思维与方法1. 归纳推理归纳推理的定义归纳推理的应用2. 演绎推理演绎推理的定义演绎推理的应用3. 数学建模数学建模的概念数学建模的步骤第七章:数学文化1. 数学在日常生活中的应用数学在决策中的作用数学在数据分析中的应用2. 数学家的故事著名数学家的生平数学家的贡献3. 数学思想的发展数学思想的历史演变数学思想在现代科技中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修1知识点1、集合元素的三个特征:确定性、互异性、无序性。
2、元素与集合的关系:∈、∉3、数集的符号:自然数集N ;正整数集*N 或N +;整数集Z ;有理数集Q ;实数集R .4、集合与集合的关系:⊆、≠⊂、= 5、若集合中有n 个元素,则它的子集个数为2n ;真子集个数为21n -;非空子集个数为21n -;非空真子集个数为22n -.6、空集是任何集合的子集,是任何非空集合的真子集.7、子集的性质:(1)A ⊆A (即任何一个集合是它本身的子集);(2)若A ⊆B ,B ⊆C ,则A ⊆C ;(3)若A ≠⊂B ,B ≠⊂C ,则A ≠⊂C. 8、集合的基本运算(1)并集:}{x x x AB =∈A ∈B 或 (2)交集:}{x x x AB =∈A ∈B 且 (3)补集:}{U x x U x A =∈∉A 且 (4)性质:①AA =A ,A ∅=A ;②A A =A ,A ∅=∅; ③()U A A =∅,()U U A A =,()U U A =A , ()()()U U U A B =A B ,()()()U U U A B =A B . 9、函数的三要素:定义域、值域和对应法则.10、(一)求函数定义域的原则:(1)若()f x 为整式,则其定义域是R ; (2)若()f x 为分式,则其定义域是使分母不为0的实数集合; (3)若()f x 是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合;(4)若()0f x x =,则其定义域是}{0x x ≠; (5)若()()0,1x f x a a a =>≠,则其定义域是R ;(6)若()()log 0,1a f x x a a =>≠,则其定义域是}{0x x >. (二)求函数值域的方法以及分段函数求值(三)求函数的解析式11、函数的单调性:(1)增函数:设12,x x ∈I (()f x 的定义域),当12x x <时,有12()()f x f x <. (2)减函数:设12,x x ∈I (()f x 的定义域),当12x x <时,有12()()f x f x >. 强调四点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数).③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在B A 上是增(或减)函数.④定义的变形应用:如果证得对任意的),(,21b a x x ∈,且21x x ≠有0)()(1212>--x x x f x f 或者2121(()())()0f x f x x x -->,能断定函数)(x f 在区间),(b a 上是增函数;如果证得对任意的),(,21b a x x ∈,且21x x ≠有2121()()0f x f x x x -<-或者2121(()())()0f x f x x x --<,能断定函数)(x f 在区间),(b a 上是减函数。
几点说明:函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在一些区间上是增函数,而在另一些区间上不是增函数;函数的单调区间是其定义域的子集;该区间内任意的两个实数,忽略任意取值这个条件,就不能保证函数是增函数(或减函数);讨论函数的单调性必须在定义域内进行,即函数的单调区间是其定义域的子集,因此讨论函数的单调性,必须先确定函数的定义域。
(3)三类函数的单调性:①一次函数()f x kx b =+ 当0k >时,函数()f x 在R 上是增函数;当0k <时,函数()f x 在R 上是减函数.②反比例函数()k f x b x a =++ 当0k>时,函数()f x 在()(),,,a a -∞--+∞上是减函数; 当0k <时,函数()f x 在()(),,,a a -∞--+∞上是增函数.③二次函数()2f x ax bx c =++0a >时,函数()f x 在,2b a ⎡⎫-+∞⎪⎢⎣⎭上是增函数,在,2b a ⎛⎤-∞- ⎥⎝⎦上是减函数; 当0a <时,函数()f x 在,2b a ⎡⎫-+∞⎪⎢⎣⎭上是减函数,在,2b a ⎛⎤-∞- ⎥⎝⎦上是增函数. (4)证明函数单调性的方法步骤:(i )定义:设值、作差、变形、断号、定论.即证明函数单调性的一般步骤是:⑴设1x ,2x 是给定区间内的任意两个值,且1x <2x ;⑵作差)(1x f -)(2x f ,并将此差式变形(要注意变形的程度);⑶判断)(1x f -)(2x f 的正负(要注意说理的充分性);⑷根据)(1x f -)(2x f 的符号确定其增减性.(ii )导数(5)如何求函数的单调区间(6)复合函数的单调性:同增异减(7)函数()f x 在(,)a b 上是减函数和函数()f x 的单调递减区间是(,)a b 的区别。
12、函数的奇偶性: (1)奇函数:()()f x f x -=- (2)偶函数:()()()()f x f x f x f x -===- 注意:①函数是奇函数或是偶函数称为函数的奇偶性②由于任意x 和x -均要在定义域内,故奇(偶)函数的定义域一定关于原点对称.所以我们在判定函数的奇偶性时,首先要确定函数的定义域是否关于原点对称③若奇函数的定义域中有零,则其函数图象必过原点,即(0)0f =.④函数的单调性是对区间而言,它是“局部”性质;而函数的奇偶性是对整个定义域而言的,它是“整体”性质⑤偶函数在对称区间上的单调性相反,奇函数在对称区间上的单调性相同。
(3)证明和判断函数奇偶性的方法步骤:利用定义判断函数奇偶性的一般步骤:① 首先确定函数的定义域,并判断其定义域是否关于原点对称;② ②确定()()f x f x -与的关系;③作出相应结论:若()()()()0,()f x f x f x f x f x -=--=或则是偶函数;若()()()()0,()f x f x f x f x f x -=--+=或则是奇函数.(4)奇偶函数图象的性质特点:偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.(5)函数()f x a +为奇函数可推得:(6)函数()f x a +为偶函数可推得:(7)两个函数的定义域的交集非空,则有奇函数与偶函数的乘积是奇函数,奇函数与奇函数的成绩是偶函数,偶函数与偶函数的乘积是偶函数。
13、函数的图象及其变换、对称性、双对称以及函数的周期性:(1)函数的轴对称:定理1:如果函数()y f x =满足()()f a x f b x +=-,则函数()y f x =的图象关于直线2a b x +=对称.推论1:如果函数()y f x =满足()()f a x f a x +=-,则函数()y f x =的图象关于直线x a =对称. 推论2:如果函数()y f x =满足()()f x f x =-,则函数()y f x =的图象关于直线0x =(y 轴)对称.特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化.(2)函数的点对称:定理2:如果函数()y f x =满足()()2f a x f a x b ++-=,则函数()y f x =的图象关于点(),a b 对称. 推论3:如果函数()y f x =满足()()0f a x f a x ++-=,则函数()y f x =的图象关于点(),0a 对称. 推论4:如果函数()y f x =满足()()0f x f x +-=,则函数()y f x =的图象关于原点()0,0对称.特别地,推论4就是奇函数的定义和性质.它是上述定理2的简化.(3)函数周期性的性质:定理3:若函数()f x 在R 上满足()()f a x f a x +=-,且()()f b x f b x +=-(其中a b ≠),则函数()y f x =以()2a b -为周期.定理4:若函数()f x 在R 上满足()()f a x f a x +=--,且()()f b x f b x +=--(其中a b ≠),则函数()y f x =以()2a b -为周期.定理5:若函数()f x 在R 上满足()()f a x f a x +=-,且()()f b x f b x +=--(其中a b ≠),则函数()y f x =以()4a b -为周期.14、指数幂的运算性质:(1)若n x a =,则))n x n =⎪⎩为奇数为偶数;(2()()a n a n ⎧⎪=⎨⎪⎩为奇数为偶数; (3)n a =;(4)*0,,,1)m n a a m n N n =>∈>且; (5)*0,,1)mn a a m n N n -=>∈>,且;(6)0的正分数指数幂为0,0的负分数指数幂没有意义.(7)()0,,r s r s a a a a r s R +⋅=>∈;(8)()()0,,r s rs a a a r s R =>∈;(9)()()0,0,,r r r ab a b a b r s R =⋅>>∈.15、对数函数的运算性质:(1)()log 0,1x a a N x N a a =⇔=>≠;(2)()log 100,1a a a =>≠;(3)()log 10,1a a a a =>≠;(4);()log 0,1a N aN a a =>≠; (5)()log 0,1m a a m a a =>≠;(6)()log ()log log 0,1,0,0a a a MN MN a a =+>≠M >N >; (7)()log log log 0,1,0,0a a a M M N a a N=->≠M >N >; (8)()log log 0,1,0n a a M n M a a =⋅>≠M >;(9)()log log 0,1,0,0,1log c a c b b a a b c c a=>≠>>≠; (10)()log log 0,1,,*m n a a n b b a a n m N m =>≠∈; (11)()1log log 0,1,0,a a M a a M n R n=>≠>∈; (12)()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠. 16、基本初等函数的性质:(1)指数函数()()0,1x f x a a a =>≠性质: ①定义域为(),-∞+∞; ②值域为()0,+∞;③过定点()0,1;④单调性:当1a >时,函数()f x 在R 上是增函数;当01a <<时,函数()f x 在R 上是减函数.⑤指数函数的图象不经过第四象限,在第一象限内,当1x >时,图象离y 轴越近的指数越大。