人教版高中数学必修一知识点与重难点
人教版高一数学必修一精选知识点总结5篇

人教版高一数学必修一精选知识点总结5篇高一数学在整个高中数学中占有特别重要的地位,既是高一又是整个高中阶段的重难点,所以要保持良好的学习心态和正确的学习方法。
下面就是我给大家带来的人教版高一数学必修一学问点,盼望能关心到大家!人教版高一数学必修一学问点13.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特殊地,当直线l与x轴平行或重合时,规定α=0°.2、倾斜角α的取值范围:0°≤α180°.当直线l与x轴垂直时,α=90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;⑴当直线l与x轴垂直时,α=90°,k不存在.由此可知,一条直线l的倾斜角α肯定存在,但是斜率k不肯定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,假如它们平行,那么它们的斜率相等;反之,假如它们的斜率相等,那么它们平行,即留意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即假如k1=k2,那么肯定有L1⑴L22、两条直线都有斜率,假如它们相互垂直,那么它们的斜率互为负倒数;反之,假如它们的斜率互为负倒数,那么它们相互垂直,即3.2.1直线的点斜式方程1、直线的点斜式方程:直线经过点且斜率为2、、直线的斜截式方程:已知直线的斜率为3.2.2直线的两点式方程1、直线的两点式方程:已知两点2、直线的截距式方程:已知直线3.2.3直线的一般式方程1、直线的一般式方程:关于x、y的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。
人教版高中数学知识点汇总(全册版)

① f (x) 是整式时,定义域是全体实数. ② f ( x) 是分式函数时,定义域是使分母不为零的一切实数. ③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是
提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数 的值域或最值.
对象 a 与集合 M 的关系是 a M ,或者 a M ,两者必居其一.
(4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{ x | x 具有的性质},其中 x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
人教版高中数学知识点(必修+选修)
高中数学 必修 1 知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念 集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集, N 或 N 表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集.
必修1高一数学人教版最全知识点(必须珍藏)

高中数学必修1知识点总结目录高中数学必修1知识点总结............................. 错误!未定义书签。
第一章集合与函数概念............................... 错误!未定义书签。
〖〗集合 ............................................ 错误!未定义书签。
【】集合的含义与表示................................. 错误!未定义书签。
【】集合间的基本关系................................. 错误!未定义书签。
【】集合的基本运算................................... 错误!未定义书签。
〖〗函数及其表示 .................................... 错误!未定义书签。
【】函数的概念 ...................................... 错误!未定义书签。
【】函数的表示法 .................................... 错误!未定义书签。
〖〗函数的基本性质................................... 错误!未定义书签。
【】单调性与最大(小)值............................. 错误!未定义书签。
【】奇偶性 .......................................... 错误!未定义书签。
【】函数周期性和对称性............................... 错误!未定义书签。
〖补充知识〗函数的图象............................... 错误!未定义书签。
第二章基本初等函数(Ⅰ) ............................. 错误!未定义书签。
人教版高中数学必修一知识点归纳总结

人教版高中数学必修一知识点归纳总结
本文档总结了人教版高中数学必修一的重要知识点,旨在帮助学生复和梳理相关内容。
第一章:集合与常用数集
- 集合的表示和运算
- 常用数集:自然数集、整数集、有理数集、实数集
- 数集的划分和分类
第二章:集合的运算与应用
- 集合的运算:交集、并集、差集、补集
- 集合间关系的判定和表示
- 集合的应用:概率、分类、调查统计等
第三章:函数基本概念与性质
- 函数的定义和表示
- 函数的自变量、因变量和值域
- 函数的性质:奇偶性、周期性等
第四章:一元一次方程与不等式
- 一元一次方程的解法
- 一元一次不等式的解法
- 一次方程和一次不等式的应用
第五章:平面坐标系与直线的基本性质
- 平面直角坐标系的建立和使用
- 直线方程的表示和性质
- 直线的斜率和截距
第六章:平面向量的基本概念
- 向量的定义和表示
- 向量的运算:加法、数乘
- 向量的模、方向和单位向量
第七章:平面向量的数量积
- 向量的数量积定义和性质
- 向量之间的夹角
- 向量的投影和垂直
以上是人教版高中数学必修一的知识点归纳总结,希望对学生们进行知识回顾和复有所帮助。
更多详细内容请参考教材。
高中数学(新人教版)必修一知识点归纳

高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。
以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。
- 代数式:基本概念、多项式、公式等。
- 幂与乘方:指数、乘方、幂等运算。
- 整式的加减法:同类项、整式的加减法规则。
- 分式:基本概念、分式的性质与化简等。
2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。
- 一元一次不等式:基本概念、解不等式的方法、应用问题等。
3. 函数及其图像
- 函数与自变量、函数与因变量的关系。
- 函数的表示与性质:映射、函数图像、奇偶性等。
- 一次函数:定义、性质、图像、方程等。
- 反函数与复合函数:定义、性质、求反函数、求复合函数等。
4. 等差数列
- 等差数列的定义与性质。
- 等差数列的前n项和与通项公式。
- 应用问题:等差数列应用于数学与生活中的实际问题。
5. 平面向量
- 向量的基本概念与表示法。
- 向量的运算:加法、数乘等。
- 向量共线与共面的判定。
- 向量的数量积与模的概念与性质。
6. 不等式与线性规划
- 不等式的基本性质与解法。
- 一元一次不等式组:基本概念、解法、应用问题等。
- 线性规划的基本概念与常见问题。
以上是高中数学(新人教版)必修一的主要知识点的简要归纳。
详细内容可以参考相关教材或课堂讲义。
希望这份归纳对你有帮助!。
高中数学必修一知识点整理【史上最全】---人教版

高中数学必修一知识点整理【史上最全】
---人教版
1. 数的性质与运算
- 自然数、整数、有理数、实数、复数的定义和性质
- 加法、减法、乘法、除法的运算法则及性质
- 乘方、开方、指数运算的基本概念和性质
2. 一元一次方程与一元一次不等式
- 一元一次方程的定义、解的概念及解法
- 一元一次不等式的定义、解的概念及解法
- 一元一次方程与一元一次不等式的应用
3. 二次根式与二次方程
- 二次根式的概念、性质及化简
- 二次方程的定义、解的概念及解法
- 二次方程与二次根式的应用
4. 几何图形的认识与性质
- 点、线、面的基本概念及性质
- 一些常见几何图形的性质,如线段、角、三角形、四边形等5. 平面向量
- 向量的定义、线性运算及性质
- 平面向量坐标与位移、相等、共线的判定
- 平面向量的加减乘法及其应用
6. 相交与平行
- 相交直线的判定
- 平行线的判定和性质
- 平行四边形的性质及判定
7. 图形的相似性和尺度
- 图形的相似性的定义和性质
- 相似三角形的判定及性质
- 尺度的概念及应用
8. 三角函数与周期性
- 三角函数的定义及常用公式
- 三角函数的图像和性质
- 三角函数的周期性和简单应用
9. 数据处理与统计
- 统计调查的基本概念和方法
- 平均数、中位数、众数的计算及应用
- 统计图的绘制和数据的分析
以上是高中数学必修一的知识点整理,希望对您有所帮助。
*以上信息为简要总结,具体内容请参考教材或课本。
高中数学必修1知识难点总结

高中数学必修1知识难点总结高中数学必修一作为高中学生必须掌握的重要学科之一,其内容广泛,难度较大。
其中涉及到了很多重要的知识点,以下是笔者针对这些知识点的难点进行的总结。
1.方程与不等式:方程和不等式是高中数学必修1中难度较大的部分,它们是数学分析和解决实际问题的重要工具。
而其中又以一次方程和一次不等式最为基础,理解和掌握其解法是学习这一部分知识的关键。
此外,二次方程和二次不等式也是难点,其解的方法不仅多样,且常涉及高中数学中其他知识点的关联,因此也需要学生投入大量时间和精力去掌握。
2.函数:函数是高中数学必修1中最主要的部分之一,是整个数学课程的重中之重。
函数可以用来总结和反应实际问题中的某些规律,是数学与实际生活相结合的一个重要工具。
而其中又以幂函数、指数函数、对数函数、三角函数等更为常见且重要的知识点最为难以掌握,这些函数不仅是高中数学的重要内容,同时也是高考中经常涉及的复杂题型,因此学生需要针对这些知识点进行重点练习和深入理解。
3.几何:高中数学必修1涉及到的几何部分有很多内容,如直线与角、三角形、四边形和圆等,其中以圆和三角形为难点。
对于圆来说,其性质杂且记忆量大,而对于三角形来说,如线段中线定理、角平分线定理、余弦定理、正弦定理等都是比较抽象的概念,需要学生多加练习,才能掌握。
4.向量:向量是高中数学必修1的新知识,也是比较难理解的一部分。
其涉及到了向量的定义,向量的数量运算、向量的线性运算及向量的应用等多个方面。
需要学生具备很强的空间概念和抽象思维能力,才能够掌握和应用这部分知识。
5.三角函数的图象与性质:三角函数作为高中数学必修1中的重要部分之一,其图象和性质是学习这个领域必不可少的知识点。
但是这部分内容既抽象又复杂,需要学生针对性进行练习和理解,才能够掌握其相关的概念和规律。
6.数列与数学归纳法:数列是高中数学必修1中的一个非常重要的概念,在高考数学中经常涉及。
而数学归纳法则是证明数学命题的常见方法,需要学生掌握其基本思想和应用方法,才能够在数列相关的题型中取得好的成绩。
高中数学:必修1-6重难点梳理

高中数学:必修1-6重难点梳理必修1第一章:集合和函数的基本概念错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。
高三生在一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数指数、对数、幂函数三大函数的运算性质及图像。
函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。
关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。
对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考常错点。
另外指数函数和对数函数的对立关系及其相互之间要怎样转化问题也要了解清楚。
第三章:函数的应用主要就是函数与方程的结合。
其实就是方程的实根,即函数的零点,也就是函数图像与X轴的交点。
这三者之间的转化关系是这一章的重点,要学会在这三者之间的灵活转化,以求能最简单的解决问题。
关于证明零点的方法,这是这一章的难点,几种证明方法都要记得,多练习强化。
二次函数的零点的Δ判别法,这个倒不算难。
必修2第一章:空间几何三视图和直观图的绘制不算难。
但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物。
这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推。
有必要的还要在做题时结合草图,不能单凭想象。
后面的锥体柱体台体的表面积和体积,把公式记牢问题就不大。
做题表求表面积时注意好到底有几个面,到底有没有上下底这类问题就可以。
第二章:点、直线、平面之间的位置关系这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生要多看图,自己画草图的时候要严格注意好实线虚线,这是个规范性问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学必修一————各章节知识点与重难点第一章集合与函数概念1.1 集合1.1.1集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性(1)元素的确定性;(2)元素的互异性;(3)元素的无序性2、“属于”的概念我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素如:如果a是集合A的元素,就说a属于集合A 记作a∈A,如果a不属于集合A 记作a A3、常用数集及其记法非负整数集(即自然数集)记作:N;正整数集记作:N*或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}(3)图示法(Venn图)【重点】集合的基本概念和表示方法【难点】运用集合的三种常用表示方法正确表示一些简单的集合【知识要点】1、“包含”关系——子集一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A B2、“相等”关系如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B3、真子集如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)4、空集不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集.【重点】子集与空集的概念;用Venn图表达集合间的关系【难点】弄清元素与子集、属于与包含之间的区别【知识要点】1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作“A 交B”),即A∩B={x| x∈A,且x∈B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
记作:A ∪B(读作“A并B”),即A∪B={x | x∈A,或x∈B}.3、交集与并集的性质A∩A = A,A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A , A∪B = B∪A.4、全集与补集(1)全集如果集合U含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U来表示。
(2)补集设U是一个集合,A是U的一个子集(即A U),由U中所有不属于A的元素组成的集合,叫做U中子集A的补集(或余集)。
记作:C U A ,即C S A ={x | x U且x A} (3)性质C U(C U A)=A,(C U A)∩A=Φ,(C U A)∪A=U;(C U A)∩(C U B)=C U(A∪B),(C U A)∪(C U B)=C U(A∩B).【重点】集合的交集、并集、补集的概念【难点】集合的交集、并集、补集的概念与应用1.2 函数及其表示1.2.1函数的概念【知识要点】1、函数的概念设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.【注意】(1)如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;(2)函数的定义域、值域要写成集合或区间的形式.【定义域补充】求函数的定义域时列不等式组的主要依据是(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底数必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域.)2、构成函数的三要素定义域、对应关系和值域【注意】(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)。
(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
3、相同函数的判断方法(1)定义域一致;(2)表达式相同(两点必须同时具备)【值域补充】(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2)应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。
4、区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.【重点】理解函数的模型化思想,用集合与对应的语言来刻画函数【难点】符号“y=f(x)”的含义,函数定义域和值域的区间表示1.2.2函数的表示法【知识要点】1、常用的函数表示法及各自的优点(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据:作垂直于x轴的直线与曲线最多有一个交点。
(2)函数的表示法解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.【注意】解析法:便于算出函数值。
列表法:便于查出函数值。
图象法:便于量出函数值2、分段函数在定义域的不同部分上有不同的解析表达式的函数。
在不同的范围里求函数值时必须把自变量代入相应的表达式。
分段函数的解析式不能写成几个不同的方程,而应写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.注意:(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.3、复合函数如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A) 称为f是g的复合函数.4、函数图象知识归纳(1)定义在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行于Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2)画法A、描点法根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法常用变换方法有三种,即平移变换、对称变换和伸缩变换(Ⅰ)对称变换①将y= f(x)在x轴下方的图象向上翻得到y=∣f(x)∣的图象如:书上P21例5②y= f(x)和y= f(-x)的图象关于y轴对称。
如③y= f(x)和y= -f(x)的图象关于x轴对称。
如(Ⅱ)平移变换由f(x)得到f(x a) 左加右减;由f(x)得到f(x) a 上加下减(3)作用A、直观的看出函数的性质;B、利用数形结合的方法分析解题的思路;C、提高解题的速度;发现解题中的错误。
5、映射定义:一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。
记作“f:A B”给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b 叫做元素a的象,元素a叫做元素b的原象【说明】函数是一种特殊的映射,映射是一种特殊的对应(1)集合A、B及对应法则f是确定的;(2)对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;(3)对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
6、函数的解析式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:待定系数法、换元法、消参法等A、如果已知函数解析式的构造时,可用待定系数法;B、已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;C、若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)【重点】函数的三种表示法,分段函数的概念,映射的概念【难点】根据不同的需要选择恰当的方法表示函数,分段函数的表示及其图象,映射的概念1.3函数的基本性质1.3.1函数单调性与最大(小)值【知识要点】1、函数的单调性定义设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。
区间D称为y=f(x)的单调增区间;如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.【注意】(1)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;(2)必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)(或f(x1)>f(x2))。
2、图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.3、函数单调区间与单调性的判定方法(A) 定义法①任取x1,x2∈D,且x1<x2;②作差f(x1)-f(x2);③变形(通常是因式分解和配方);④定号(即判断差f(x1)-f(x2)的正负);⑤下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性:复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:同增异减【注意】函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.4、判断函数的单调性常用的结论①函数与的单调性相反;②当函数恒为正或恒有负时,与函数的单调性相反;③函数与函数(C为常数)的单调性相同;④当C > 0(C为常数)时,与的单调性相同;当C < 0(C为常数)时,与的单调性相反;⑤函数、都是增(减)函数,则仍是增(减)函数;⑥若且与都是增(减)函数,则也是增(减)函数;若且与都是增(减)函数,则也是减(增)函数;⑦设,若在定义域上是增函数,则、、都是增函数,而是减函数.5、函数的最大(小)值定义(ⅰ)一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0) = M那么,称M是函数y=f(x)的最大值.(ⅱ)一般地,设函数y=f(x)的定义域为I,如果存在实数M满足(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0) = M那么,称M是函数y=f(x)的最大值.【注意】○1函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M;○2函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).6、利用函数单调性的判断函数的最大(小)值的方法○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值○3利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);【重点】函数的单调性及其几何意义,函数的最大(小)值及其几何意义【难点】利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值.1.3.2 函数的奇偶性【知识要点】1、偶函数定义一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.2、奇函数定义一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.【注意】①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②函数可能没有奇偶性,也可能既是奇函数又是偶函数。