水电站自动化系统机组LCU

合集下载

水电站机组LCU控制流程设计及实施

水电站机组LCU控制流程设计及实施

水电站机组LCU控制流程设计及实施随着科技的不断发展,水电站的自动化程度越来越高,机组LCU(Local Control Unit)的控制系统也变得越来越重要。

机组LCU控制流程的设计及实施对于水电站的安全运行和高效发电具有至关重要的作用。

本文将对水电站机组LCU控制流程设计及实施进行详细探讨。

一、机组LCU控制流程设计1.系统结构设计机组LCU控制系统的结构设计应考虑到自动化控制、人机界面和通信等多个方面。

在自动化控制方面,需要考虑到对机组的启停、升降和负荷调节等功能;在人机界面方面,应提供简洁明了的操作界面,方便操作人员实时监控和控制机组的运行状态;在通信方面,需要考虑到与上级监控系统的数据交换和联锁保护等功能。

2.控制逻辑设计机组LCU控制系统的控制逻辑设计应考虑到液压控制、电气控制和保护控制等多个方面。

在液压控制方面,需要考虑到调速器、调节阀和液压缸等元件的控制逻辑;在电气控制方面,需要考虑到发电机、励磁系统和断路器等元件的控制逻辑;在保护控制方面,则需要考虑到过载、欠电压和短路等故障情况的处理逻辑。

3.参数调整设计机组LCU控制系统的参数调整设计应考虑到控制精度、响应速度和稳定性等多个方面。

在控制精度方面,需要考虑到对机组负荷和频率的精确控制;在响应速度方面,需要考虑到对机组启停和升降的快速响应;在稳定性方面,则需要考虑到对机组振动和共振的稳定控制。

1.系统调试机组LCU控制系统的实施过程需要进行系统调试,确保控制逻辑和参数调整的准确性。

在系统调试过程中,需要根据机组的实际情况对控制逻辑进行验证,对参数进行调整,以确保系统能够稳定运行。

2.安全保障机组LCU控制系统的实施过程需要考虑到安全保障的问题,确保系统能够安全有效地运行。

在安全保障方面,需要进行系统联锁保护的设置,确保机组在异常情况下能够及时停机,避免发生事故。

3.人员培训机组LCU控制系统的实施过程需要对操作人员进行系统的培训,确保他们能够熟练掌握系统的操作方法和应对措施。

水电站综合自动化系统(现地控制单元)

水电站综合自动化系统(现地控制单元)

④交流采样装置
EDCS-81A0
三相电压 三相电流 有功功率 无功功率 功率因数 支持模拟量输出(可选) 标准RS485通讯端口 支持MODBUS通讯协议
⑤同期装置
EDCS-81D0
自适应差频、同频同期 自适应系统接线形式 模糊调频调压方式 纯硬件闭锁
非同期闭锁装置
母线 无压指示
综合压差 满足要求
双100M以太网接口 双CAN总线 8个复用型串口 2KV通道隔离、浪涌保护 支持双机冗余 双以太网等网络通信工作方式 交直流供电模式 掉电报警功能 无扇散热 1U_19”标准机箱
三、开关站及公用LCU功能及配置
1、开关站及公用LCU功能 2、开关站公用LCU构成及组屏方式 3、开关站公用LCU主要设备
⑥机组控制单元顺序控制
机组运行工况有发电、调相和停机三种,工况转换方式有 发电转调相、发电转停机、停机转发电、停机转调相、调相转 发电机和调相转停机。
正常停机时,采用电气制动和机械制动混合制动方式,机
组电气事故停机时则将电气制动闭锁,只采用机械制动。
机组紧急停机控制命令与事故停机命令具有最高的优先权。 机组紧急停机顺序操作由安全装置自动启动或机组LCU屏上的 机组紧急停机按钮控制,作用于机组直接与系统解列并停机等 操作。机组电气保护作用于机组事故停机,与系统解列并停机。 机组机械保护作用于机组停机,应先减负荷至空载,然后与系 统分列。反映主设备事故的继电保护动作信号,除作用于事故 停机外,还应不经LCU直接作用于断路器和灭磁开关的跳闸回 路;机组辅助设备起动/停止控制;
MZ-10同期表
非同期闭锁装置
母线 无压指示
综合压差 满足要求
线路 无压指示
电源
重庆新世纪电气有限公司

大型水电站监控LCU与辅控设备通讯探究

大型水电站监控LCU与辅控设备通讯探究

大型水电站监控LCU与辅控设备通讯探究摘要:水轮发电机组作为水电厂最重要的动力设备之一,其安全性至关重要。

水电站辅控设备通过LCU将信号传输至计算机监控系统。

由于辅控设备多、信号传输量大,本文着重介绍与机组LCU的几种通讯方式,列写了各自的优缺点及适用场合,设计多种通讯方式共同保证信号传输正常,该思路值得借鉴。

关键词:水轮发电机组;LCU;硬接线;SJ30通讯;MB +通讯0 前言水电站计算机监控系统主要由上位机、下位机、网络设备组成。

上位机系统完成对水电站各被控对象的安全监视和控制,主要作用有:处理上送的各类实时数据信号、监视电站主设备的运行状态、下发命令执行机组开停机控制及各类辅助设备操作、系统通信,它直接作用于下位机系统。

下位机即现地控制单元,简称LCU[1]。

LCU通过自身配置的开关量、模拟量、温度量模件完成各类辅助设备信号的采集与处理,并上送至上位机系统,同时接受上位机下发的操作指令,紧急情况下自动启动机组事故停机流程保证电站安全。

现地控制单元LCU是计算机网络设备的基础,是实现对水电站主辅设备的监测和控制的枢纽设备。

网络设备主要用于连接上位机与下位机之间通信。

1 系统简介下位机LCU主要由机组LCU、公用LCU、GIS LCU、大坝LCU及相关远程IO柜组成。

机组LCU正常控制与否决定着水轮发电机组安全稳定运行,机组LCU功能如下:1)模拟量采集和处理定时采集。

按扫描周期定时采集数据,存入数据库中。

将采集到的模拟量数据进行滤波、工程单位变换、模拟数据变化等,根据规定产生报警并上送主控级。

越限检查。

对采集到的非电量进行越限检查,及时将越限情况和数据送往主控级;机组温度越限保护应采用多点比较和判别法,当相邻测量点的温度均越高限值时,启动机组事故停机流程执行机组水机机械保护程序。

2)数字量采集和处理自发性状态变位采集,状态检查,更新数据库,并将保护报警量即时上送主控级。

事件顺序记录与报警。

水电站综合自动化监控系统介绍

水电站综合自动化监控系统介绍

水电站综合自动化监控系统介绍一、概述我国小水电资源非常丰富,居世界第一,全国近1/2地域、1/3县和1/4人口主要靠中小水电供电。

但多数小水电站沿袭几十年来的一贯模式,采用常规设备与技术,自动化程度低下,元器件繁多,体积庞大,操作复杂,维护困难,发挥不了应有的生产效益,也实现不了中小电网或地方电网的调度自动化。

发达国家小水电站技术和设备先进可靠,自动化程度高,实现无人值班。

发展中国家由于经济等原因,小水电站很少采用自动控制技术,即使有也大多从美国或欧洲国家进口。

近几年,国内不少厂家开发了小水电站的自动控制系统,并在经济发达的东部沿海地区得到了大力推广应用,但是,自动化这一先进的技术却无法在经济欠发达的西部地区得到推广,主要原因还是自动控制系统价格偏高。

分析价格,在目前采用的集成型自动控制系统模式下,降价空间已非常小,必须从设计的理念上进行创新,开发拥有自主知识产权且适合我国特点的小水电站新型监控设备,使性能和价格都可以满足经济欠发达的西部地区的小水电站要求,并为小水电代燃料生态保护工程和农村水电现代化提供技术支持。

二十世纪九十年代,随着计算机和信息产业技术的进步以及电力事业的蓬勃发展,对水电站自动化提出了越来越高的要求。

“无人值班(少人值守)”的工作自1994年开展已有十年,并取得了很大的成绩,30多个大中型水电厂已通过原国电公司组织的无人值班验收,电厂技术和管理水平大大提高,减人增效成果显著。

但对于国内已建和正在建设的大批中小型水电站由于资金原因以及缺乏可供选用的性能价格比合适的自动化设备,其自动化水平的提高和“无人值班(少人值守)”的实现还有很多工作要做。

水电站自动控制功能包括机组的数据采集和顺序控制、励磁、调速、自动准同期等,以及各设备的保护,再加上风、水、气、油、厂用电等辅设系统,中小水电站提高自动化水平,实现无人值班有重大的意义。

水电站微机综合发电控制系统就是在这样的背景下研制开发的,它是集计算机监控、数据采集与处理、顺序控制、励磁、调速、自动准同期、测速、功率调节、水机及电气保护等多项功能为一体的综合发电控制装置。

水电站机组LCU控制流程设计及实施

水电站机组LCU控制流程设计及实施

水电站机组LCU控制流程设计及实施作者:吴正良吴卫明宋宏进来源:《科技资讯》2020年第02期摘; 要:简要地介绍了计算机监控系统机组LCU配置和结构,对机组LCU控制流程设计进行了比较详细的说明。

机组控制流程设计以安全、可靠、合理、操作方便为原则,除设计了开机、停机、紧急事故停机、一般事故停机等常规控制流程外,为了使机组试验过程中达到不同的运行状态,增设了冷备用空转、空载开机、热备用空转、空载开机等多种试验控制流程。

试验控制流程的设计简化了操作步骤,减轻了值班人员的工作强度,对于防止误操作的发生也起到一定作用。

关键词:配置; 结构; 控制流程; 设计中图分类号:TV736 ; ;文献标识码:A 文章编号:1672-3791(2020)01(b)-0030-04Abstract: This paper briefly introduces the configuration and structure of the computer supervisory control system unit LCU, and makes a detailed introduction to the control flow design of the unit LCU. The control flow design of the unit is based on the principles of safety, reliability,reasonableness and convenience of operation. In addition to the general control flow, such as start-up, shutdown, emergency shutdown and general accident shutdown, cold standby idling, no-load startup, hot standby idling and no-load idling are added in order to achieve different operation conditions during the unit test. A variety of test processes such as loading and starting. The design of the test control flow simplifies the operation steps, reduces the working intensity of the personnel on duty, and plays a certain role in preventing the occurrence of misoperation. The LCU configuration and structure of the unit are briefly introduced, and the design of the control flow of the unit is introduced in detail. The control flow of the unit is designed according to the principle of safety,reliability, rationality and convenience of operation. Besides the general control flow such as start-up and shutdown, a variety of test flow are added in order to make the unit run in different states during the test. The design of the test control flow simplifies the operation steps, reduces the working intensity of the personnel on duty, and plays a certain role in preventing the occurrence of misoperation.Key Words: Configuration; Structure; Control flow; Design某水电站安装有9台混流式水轮发电机组,总装机容量为850MW(8×95MW+1×90MW),担负华东电网调频、调峰、事故备用的任务。

水电站机组LCU控制流程设计及实施

水电站机组LCU控制流程设计及实施

水电站机组LCU控制流程设计及实施一、引言水电站机组LCU(Local Control Unit)是水电站的重要组成部分,它是用来监控和控制水电站机组运行的关键设备。

LCU控制流程的设计和实施对于水电站的安全运行和高效发电具有重要意义。

本文将从LCU控制流程设计和实施的角度出发,探讨水电站机组LCU控制流程的相关内容,以期为水电站运行管理提供一些参考和借鉴。

二、水电站机组LCU控制流程设计1. LCU控制流程设计的目标LCU控制流程设计的目标是实现对水电站机组的全面、准确、及时的监控和控制。

基于此目标,可以将LCU控制流程设计的重点放在实时数据采集、故障诊断、自动调节以及远程监控等方面,以确保水电站机组的安全、稳定、高效运行。

2. LCU控制流程设计的原则LCU控制流程设计应遵循以下原则:(1)安全优先:保证机组设备安全运行是LCU控制流程设计的首要原则,应当考虑各种可能的故障情况,并设计相应的应急控制措施。

(2)稳定可靠:LCU控制流程设计应当保证机组运行的稳定性和可靠性,避免出现频繁的调节和控制,以免影响发电效率。

(3)智能化:采用先进的控制策略和技术,提高LCU控制系统的智能化水平,实现对机组运行状态的智能诊断和调节。

3. LCU控制流程设计的内容LCU控制流程设计的内容主要包括以下几个方面:(1)数据采集:设计合理的数据采集方案,实现对机组各项参数的实时采集和记录,为后续的控制和监控提供可靠的数据支持。

(2)控制策略:设计合理的控制策略,包括启动、停机、调速、负荷调节等方面的控制逻辑,以确保机组运行在最佳状态。

(3)故障诊断:设计机组故障诊断的算法和逻辑,实现对机组故障的自动诊断和报警,为控制人员提供及时有效的故障处理建议。

(4)通讯联动:设计LCU与其他控制系统的通讯联动方案,实现与机组调度、远程监控等系统的信息交互和数据共享。

三、水电站机组LCU控制流程实施1. LCU控制流程实施的步骤LCU控制流程实施的步骤主要包括设备选择、系统集成、调试验证以及培训运行等几个方面。

水电站机组LCU控制流程设计及实施

水电站机组LCU控制流程设计及实施

水电站机组LCU控制流程设计及实施随着水电站的数字化转型,水电站机组的控制流程设计及实施越来越重要。

水电站机组的LCU(Local Control Unit)是机组的关键控制设备,其控制流程的设计和实施直接影响机组的效率和安全性。

本文将探讨水电站机组LCU控制流程设计及实施的相关内容。

一、水电站机组LCU的概述水电站机组LCU是水电站机组的局部控制设备,用于控制机组的启停、调速、启动机等操作。

LCU由多个PLC(Programmable Logic Controller)组成,可以进行安全控制、设备状态监测和参数调节等功能。

随着数字化技术和网络技术的发展,LCU也逐渐实现了远程控制、远程监测和数据交互等功能。

1.安全性优先水电站机组的安全控制是最重要的,因此在控制流程设计中要把安全控制放在第一位。

例如,在机组运行过程中,必须实时监测机组的转速、水位、油压等参数,一旦出现异常,立刻停机并发出警报。

同时,在启动、停机、调速等操作中也要设置多层保护措施,确保机组运行的安全性。

2.自动化程度高为了提高机组的效率和节约人力资源,水电站机组LCU的控制流程要尽可能地自动化。

例如,在启动机组时,可以通过PLC自动控制空气、燃油和点火等步骤,从而实现快速启动机组。

在调速过程中,可以使用PID控制算法,实现机组转速的平稳调节。

3.易操作性强在LCU的控制流程设计中,易操作性也是一个重要的考虑因素。

操作简单、易懂的界面和操作流程能够减少人为操作失误的风险,提高机组的稳定性和安全性。

例如,界面上应该清晰明了地显示机组的运行状态,操作流程也应该尽可能简单化。

1.编写控制流程图在控制流程实施前,需要编写控制流程图,详细描述控制流程的流转和控制条件。

流程图的编写是控制流程实施的基础,只有清晰明了的流程图才能保证控制流程的顺利实施。

编写控制程序代码是将控制流程变成现实的关键步骤。

程序代码的编写应当符合设计要求、易维护和易扩展。

水电站机组LCU控制流程设计及实施

水电站机组LCU控制流程设计及实施

水电站机组LCU控制流程设计及实施1. 引言1.1 研究背景水电站是我国重要的能源基础设施,对于保障国家能源安全和经济社会发展起着至关重要的作用。

水电站机组LCU(Local Control Unit)作为机组控制系统中的核心部件,直接影响机组运行的安全性、稳定性和效率。

随着水电站规模的不断扩大和自动化水平的逐步提升,如何有效设计和实施LCU控制流程,成为水电站管理和运行中亟待解决的问题。

在过去的研究中,关于水电站机组LCU控制流程设计的文献较为有限,现有研究大多集中在控制策略和系统性能方面,对于控制流程的设计原理和实施步骤缺乏系统性的研究。

有必要开展水电站机组LCU控制流程设计及实施的研究,为水电站的安全稳定运行提供技术支持和指导。

本研究旨在通过深入分析水电站机组LCU概述、LCU控制流程设计原理和步骤、实施过程以及优化方法,为水电站管理者和运营人员提供有效的控制方案,提高水电站机组的运行效率和安全性。

通过本研究,我将探讨LCU控制流程设计的关键问题,为未来水电站机组控制系统的改进和优化提供参考。

1.2 研究意义水电站机组LCU控制流程设计的研究意义主要体现在以下几个方面:1. 提高水电站机组的运行效率和安全性。

通过对LCU控制流程进行设计和优化,可以使机组的运行更加稳定、高效,减少事故发生的可能性,提高机组的可靠性和安全性。

3. 推动水电行业的技术进步和发展。

通过研究水电站机组LCU控制流程设计,可以促进相关技术的创新和应用,推动整个水电行业的技术水平和发展。

4. 为新能源发展提供技术支持。

水电站作为清洁能源的重要组成部分,其运行效率和安全性直接影响到能源的供应稳定性和环境保护。

研究水电站机组LCU控制流程设计对于推动新能源的发展具有重要的意义。

1.3 研究目的研究目的是为了深入探讨水电站机组LCU控制流程设计及实施的相关问题,为提高机组运行效率和安全性提供技术支持。

具体目的包括:1.分析水电站机组LCU的概况,了解其工作原理和组成结构,为后续设计和优化流程提供基础;2.探讨LCU控制流程设计的原理和方法,深入理解其在机组控制中的作用和意义;3.总结LCU控制流程设计的步骤,并提出可行的实施方案,为实际操作提供指导和参考;4.分析LCU控制流程实施过程中可能出现的问题和挑战,并探讨解决措施和优化方法;5.评估实施后的效果,分析其对机组运行和管理的影响,并展望未来的研究方向,为进一步提升水电站机组控制流程的效率和性能提供建议和指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水电站自动化系统机组LCU
一、系统概述:
1、水电站自动化系统概括说明:
水电站自动化系统是电站安全、优质、高效运行的重要保证。

目前我国绝大多数大中型电厂以及新建电厂均投入计算机自动化系统设备,国内自动化系统的市场已步入成熟发展的阶段。

水电站自动化系统采用全开放、分层分布式结构,系统由站控层、网络层和现地层设备构成。

站控层各站点功能相对独立,互不影响;现地层以间隔为单元,各个 LCU (现地控制单元Local Control Unit)功能也相对独立,在站控层故障的情况下,LCU 仍能独立完成其监测和控制功能。

站控层是水电厂/站设备监视、测量、控制、管理的中心。

站控层包括:操作员站、工程师站、通信服务器。

另外根据水电厂/站的需要可以配置模拟屏、背投系统。

现地层一般以间隔为单元,配有机组LCU、公用设备及升压站LCU、坝区LCU 以及辅机控制单元等,不同的控制对象分散在各个机旁,或是中控室。

在站控层及网络层故障的情况下,现地层仍能独立完成各间隔的监测和控制功能。

现地层各LCU完成各单元的任务,相互独立,一个LCU故障不会影响其他LCU的运行。

网络层是站控层与现地层数据传输通道通。

网络层可以按不同的容量的水电厂/站和不同的客户需求,配置成单以太网、双以太网和光纤自愈环网。

网络通讯介质可采用光纤、同轴电缆或屏蔽双绞线。

系统网络结构有:单以太网、双以太网模式等。

单以太网系统特点是:在保证系统数据通道带宽的同时,做到系统扩展能力强,形式简洁,接口简单,方便安装调试。

在实现系统性能的同时,可以有效地降低系统的成本。

系统适合与中小型水电站,以及对系统成本控制有较高要求的水电站。

选用双以太网模式,相比单以太网而言,有效地提高系统的可靠性以及分担数据流量、减轻网络负荷,相应得网络投资加大。

正常时,设备的数据交换分配在两个网络上,当某个网络发生故障的时候,立即自动切换到非故障的网络上,保证系统得正常通讯。

该网络模式适用于各类大中型水电站,以及对系统
可靠性要求相对较高的用户。

现地层可以根据电厂的情况配备各种功能的LCU(现地控制单元),按对象分散,可设机组LCU,公用设备及开关站LCU,坝区LCU等。

现地控制单元LCU主要有以下设备构成:
Ø现地I/O控制单元:PLC+现地工作站
Ø同期装置
Ø温度巡检、转速信号装置
Ø接收232/485设备的参数,并通过工业以太网总线,使用modbus TCP 协议,协调232/485设备和P微机保护装置
Ø微机测控装置
LCU现场模式,图示如下:
LCU的设备包括PLC,保护、测控装置,温度巡检、转速信号以及调速和励磁等智能设备,以及以串口RS485/RS232方式接入并转换为以太网接入的嵌入式服务器
2、机组LCU双网控制方案
Ø系统架构
嵌入式服务器HMI60-20TU可作为主站从电量采集装置读取有用数据;也可以串连接其他厂家智能装置(励磁、调速器、温度巡检等);同时,嵌入式通讯服务器具有双网卡,支持双网冗余,而且,通过ModbusTCP可以与PLC的网络口建立连接,监视当前机组单元的所有信息,并能下发各种控制以及调节命令。

Ø系统分系:
1)、双网冗余的实现方法:我们使用Modicon Quantum Unity 热备系统实现双PLC热备控制,同时每个plc配备两个NOE以太网模块,每个plc的以太网模块和一个交换机形成一个网络,这样,我们从系统图中可以看到,已经形成了两个相互独立的网络。

通过嵌入式服务器HMI60-20TU的双网卡,我们可以达到双网冗余:MODICON QUANTUM Unity 热备系统可以实现网址的自动转换,我们只要判断两个网络是否正常,如果正常,选择主网进行PLC进行监控,否则,副网监控。

如果双网有问题,报警。

2)、嵌入式服务器HMI60-20TU具有四个串口,可以LC整体运行。

相关文档
最新文档