水电站自动化系统机组LCU

水电站自动化系统机组LCU
水电站自动化系统机组LCU

水电站自动化系统机组LCU

一、系统概述:

1、水电站自动化系统概括说明:

水电站自动化系统是电站安全、优质、高效运行的重要保证。

目前我国绝大多数大中型电厂以及新建电厂均投入计算机自动化系统设备,国内自动化系统的市场已步入成熟发展的阶段。

水电站自动化系统采用全开放、分层分布式结构,系统由站控层、网络层和现地层设备构成。站控层各站点功能相对独立,互不影响;现地层以间隔为单元,各个 LCU (现地控制单元Local Control Unit)功能也相对独立,在站控层故障的情况下,LCU 仍能独立完成其监测和控制功能。

站控层是水电厂/站设备监视、测量、控制、管理的中心。站控层包括:操作员站、工程师站、通信服务器。另外根据水电厂/站的需要可以配置模拟屏、背投系统。

现地层一般以间隔为单元,配有机组LCU、公用设备及升压站LCU、坝区LCU 以及辅机控制单元等,不同的控制对象分散在各个机旁,或是中控室。在站控层及网络层故障的情况下,现地层仍能独立完成各间隔的监测和控制功能。现地层各LCU完成各单元的任务,相互独立,一个LCU故障不会影响其他LCU的运行。

网络层是站控层与现地层数据传输通道通。网络层可以按不同的容量的水电厂/站和不同的客户需求,配置成单以太网、双以太网和光纤自愈环网。网络通讯介质可采用光纤、同轴电缆或屏蔽双绞线。

系统网络结构有:单以太网、双以太网模式等。

单以太网系统特点是:在保证系统数据通道带宽的同时,做到系统扩展能力强,形式简洁,接口简单,方便安装调试。在实现系统性能的同时,可以有效地降低系统的成本。系统适合与中小型水电站,以及对系统成本控制有较高要求的水电站。

选用双以太网模式,相比单以太网而言,有效地提高系统的可靠性以及分担数据流量、减轻网络负荷,相应得网络投资加大。正常时,设备的数据交换分配在两个网络上,当某个网络发生故障的时候,立即自动切换到非故障的网络上,保证系统得正常通讯。该网络模式适用于各类大中型水电站,以及对系统

可靠性要求相对较高的用户。

现地层可以根据电厂的情况配备各种功能的LCU(现地控制单元),按对象分散,可设机组LCU,公用设备及开关站LCU,坝区LCU等。

现地控制单元LCU主要有以下设备构成:

?现地I/O控制单元:PLC+现地工作站

?同期装置

?温度巡检、转速信号装置

?接收232/485设备的参数,并通过工业以太网总线,使用modbus TCP 协议,协调232/485设备和P微机保护装置

?微机测控装置

LCU现场模式,图示如下:

LCU的设备包括PLC,保护、测控装置,温度巡检、转速信号以及调速和励磁等智能设备,以及以串口RS485/RS232方式接入并转换为以太网接入的嵌入式服务器

2、机组LCU双网控制方案

?系统架构

嵌入式服务器HMI60-20TU可作为主站从电量采集装置读取有用数据;也可以串连接其他厂家智能装置(励磁、调速器、温度巡检等);同时,嵌入式通讯服务器具有双网卡,支持双网冗余,而且,通过ModbusTCP可以与PLC的网络口建立连接,监视当前机组单元的所有信息,并能下发各种控制以及调节命令。

?系统分系:

1)、双网冗余的实现方法:我们使用Modicon Quantum Unity 热备系统实现双PLC热备控制,同时每个plc配备两个NOE以太网模块,每个plc的以太网模块和一个交换机形成一个网络,这样,我们从系统图中可以看到,已经形成了两个相互独立的网络。通过嵌入式服务器HMI60-20TU的双网卡,我们可以达到双网冗余:MODICON QUANTUM Unity 热备系统可以实现网址的自动转换,我们只要判断两个网络是否正常,如果正常,选择主网进行PLC进行监控,否则,副网监控。如果双网有问题,报警。

2)、嵌入式服务器HMI60-20TU具有四个串口,可以LC整体运行。

水电站自动化

水电站自动化 1、同步发电机并列时脉动电压周期为20s,则滑差角频率允许值ωsy为5、在电力系统通信中,主站轮流询问各RTU,RTU接到询问后回答的方式属于6、下列同步发电机励磁系统可以实现无刷励磁的是7、某同步发电机的额定有功出力为100MW,系统频率下降时,其有功功率增量为20MW,那么该机组调差系数的标么值R*为8、下列关于AGC 和EDC的频率调整功能描述正确的是9、在互联电力系统中进行频率和有功功率控制时一般均采用10、电力系统的稳定性问题分为两类,即11、电力系统状态估计的正确表述是1 2、发电机并列操作最终的执行机构是13.同步发电机励磁控制系统组成。14.电机励磁系统在下列哪种情况下需要进行强行励磁15.同步发电机的励磁调节器16.直流励

磁机励磁系统的优点是17.当同步发电机进相运行时,其有功功率和无功功率的特点是18.进行预想事故分析时,应采用快速潮流法仿真计算,主要包括19.电力系统发生有功功率缺额时,系统频率将。20.在互联电力系统区内的频率和有功功率控制用的最普遍的调频方法是。21.自动励磁调节器的强励倍数一般取。22.分区调频法负荷变动判断。23.下列关于主导发电机调频描述错误的是。24.下列不属于值班主机的任务是。发电计划的功能包括26.电力系统中期负荷预测的时间范围是。27.馈线远方终端FTU 的设备包括28.重合器的特点是29.主站与子站间通常采用的通信方案是30.同步发电机并列的理想条件表达式为:fG=fX、UG=UX、δe=0。 31.若同步发电机并列的滑差角频率允许值为ωsy =%,则脉动电压周期为(s)。 32.谋台装有调速器的同步发电机,额定有功出力为100MW,当其有功功率增量

水电站自动化系统机组LCU

水电站自动化系统机组LCU 一、系统概述: 1、水电站自动化系统概括说明: 水电站自动化系统是电站安全、优质、高效运行的重要保证。 目前我国绝大多数大中型电厂以及新建电厂均投入计算机自动化系统设备,国内自动化系统的市场已步入成熟发展的阶段。 水电站自动化系统采用全开放、分层分布式结构,系统由站控层、网络层和现地层设备构成。站控层各站点功能相对独立,互不影响;现地层以间隔为单元,各个 LCU (现地控制单元Local Control Unit)功能也相对独立,在站控层故障的情况下,LCU 仍能独立完成其监测和控制功能。 站控层是水电厂/站设备监视、测量、控制、管理的中心。站控层包括:操作员站、工程师站、通信服务器。另外根据水电厂/站的需要可以配置模拟屏、背投系统。 现地层一般以间隔为单元,配有机组LCU、公用设备及升压站LCU、坝区LCU 以及辅机控制单元等,不同的控制对象分散在各个机旁,或是中控室。在站控层及网络层故障的情况下,现地层仍能独立完成各间隔的监测和控制功能。现地层各LCU完成各单元的任务,相互独立,一个LCU故障不会影响其他LCU的运行。

网络层是站控层与现地层数据传输通道通。网络层可以按不同的容量的水电厂/站和不同的客户需求,配置成单以太网、双以太网和光纤自愈环网。网络通讯介质可采用光纤、同轴电缆或屏蔽双绞线。 系统网络结构有:单以太网、双以太网模式等。 单以太网系统特点是:在保证系统数据通道带宽的同时,做到系统扩展能力强,形式简洁,接口简单,方便安装调试。在实现系统性能的同时,可以有效地降低系统的成本。系统适合与中小型水电站,以及对系统成本控制有较高要求的水电站。 选用双以太网模式,相比单以太网而言,有效地提高系统的可靠性以及分担数据流量、减轻网络负荷,相应得网络投资加大。正常时,设备的数据交换分配在两个网络上,当某个网络发生故障的时候,立即自动切换到非故障的网络上,保证系统得正常通讯。该网络模式适用于各类大中型水电站,以及对系统 可靠性要求相对较高的用户。

水电站自动化讲解

1.7 数字式并列装置 1.7.1 概述 用大规模集成电路微处理器(CPU )等器件构成的数字式并列装置,由于硬件简单, 编程方便灵活,运行可靠,且技术上已日趋成熟,成为当前自动并列装置发展的主流。 模拟式并列装置为简化电路,在一个滑差周期s T 时间内,把S ω假设为恒定。数字式并列装置可以克服这一假设的局限性,采用较为精确的公式,按照e δ当时的变化规律,选择最佳的越前时间发出合闸信号,可以缩短并列操作的过程,提高了自动并列装置的技术性能和运行可靠性。 数字式并列装置由硬件和软件组成,以下分别进行介绍。 1. 主机。 微处理器(CPU )是装置的核心。 2. 输入、输出接口通道。 在计算机控制系统中,输入、输出过程通道的信息不能直接与主机总线相连,它必须由接口电路来完成信息传递的任务。 3. 输入、输出过程通道。 为了实现发电机自动并列操作,需要将电网和带并发电机的电压和频率等状态按照要 求送到接口电路进入主机。 (1) 输入通道。按发电机并列条件,分别从发电机和母线电压互感器二次侧交流电压 信号中提取电压幅值、频率和相角差等三种信息,作为并列操作的依据。 1)交流电压幅值测量。采用变送器,把交流电压转换成直流电压,然后由A /D 接 口电路进入主机。对交流电压信号直接采样,通过计算求得它的有效值。如图1.18所示。 2)频率测量。测量交流信号波形的周期T 。把交流电压正弦信号转化为方波,经二 分频后,它的半波时间即为交流电压的周期T 。 3)相角差e δ测量。如图1.19所示,把电压互感器电压信号转换成同频、同相的方 波信号。 (2)输出通道。自动并列装置的输出控制信号有: 1)发电机转速调节的增速、减速信号。 图1.17 数字式并列装置控制逻辑图

水电厂自动化(1)概论

1.水电厂在电力系统中的作用:1担负系统的调频、调峰任务。电能不能大量存储,其生产、输送、分配和消耗必须在同一时间内完成。为了保持系统的频率在规定的范围内,系统中就必须有一部分发电站和发电机组随负荷的变化而改变出力。以维持系统内发出的功率和与消耗的功率平衡。对于变化幅度不大的负荷,频率的调整任务主要是由发电机组的调速装置来完成。对于变化幅度较大、带有冲击性质的负荷,则需要有专门的电站或机组来承担调频的任务。2担负系统的备用容量。具有一定的备用容量,是电力系统进行频率调整和机组间负荷经济分配的前提。由于所有发电机组不可能全部不间断地投入运行,而且投入运行的发电机组也不是都能按额定容量工作,故系统中的电源容量并不一定等于所有发电机组额定容量的总和。为了保证供电可靠性和电能质量,系统的电源容量应大于包括网损和发电站自用电在内的系统总负荷。。。。 2.电力系统备用容量分类:1负荷备用。用于调整系统中短时的负荷波动,并满足计划外负荷增加的需要。这类备用容量应根据系统负荷的大小、运行经验和系统中各类用户的比重来确定,一般为系统最大负荷的2%—5%。2事故备用。用于代替系统中发生事故的发电设备,以便维持系统的正常供电。事故备用容量与系统容量、发电机台数、单机容量、各类型发电站的比重和供电可靠性的要求等因素有关,一般约为系统最大负荷5%—10%,并不应小于系统中最大一台机组的容量。3检修备用。是为定期检修发电设备而设置的,与负荷性质、机组台数、检修时间长短及设备新旧程度有关。。。。 3.水电厂自动运行的内容:1自动控制水轮发电机组的运行,实现开停机和并列、发电转调相和调相转发电等自动控制程序。2自动维持水轮发电机组的经济运行。3完成对水轮发电机组及其辅助设备运行工况的监视和对辅助设备的自动控制。4完成对主要电气设备(如主变压器、母线和输电线路等)的控制、监视和保护。5完成对水工建筑物运行工况的控制和监视,如闸门工作状态的控制和监视,拦污

xx水电站自动化改造

水电站自动化改造工程 一、工程概况 xxx水电站位于xx流域,xx河支流东河、西河上,xxx镇境内,为跨流域开发的水电站,该电站是xx公司装机容量最大的电站。装机容量为2×2000KW,设计年发电量1026万KWh,年利用小时数2565h。电站水库来水面积为66.2km2,总库容635万m3,调节库容298.9万m3。 电站主体建筑物有:拦河坝、隧洞、压力钢管、厂房、升压站。 拦河坝为砌石双曲拱坝,坝顶高程238.2m,最大坝高52.55m,坝顶宽3.0m,坝顶弧长158m。 发电引水隧洞,总长1554.3m,由进口、隧洞、调压井组成,从隧洞进口到调压井断面为2.5×2.75m的城门洞,局部采用钢筋混凝土衬砌。调压井为圆筒型,内径为2.5m,从调压井至隧洞出口101.5m,隧洞出口接压力钢管,主管直径1.3m,长241.5m,支管直径0.9m,两支管长30+21.5m,壁厚10mm及12mm。 发电主厂房内安装2×2000kW的卧式机组。水轮机型号为HLD46-WJ-67,额定出力为2000kW,设计水头103.5m,流量2.688m3/s,额定转速1000r/min,配套的水轮发电机为SFW2000-6/1430,额定容量2500kVA,额定电压为6300V,额定电流为229.1A,调速器为YDT-600型,油压装置为HYZ-0.3型,并设置了一台手动双梁桥式起重机。 升压站位于厂房左侧山坡,距厂房40m,站内布置S7-5000kVA/38.5/6.3kV主变压器1台,S7-100kVA/35/0.4kV厂用变1台,(另S7-100kVA/6.3/0.4kV厂用变1台备用),DW1-35/630型多

中央空调实验系统的监控设计与实施

中央空调实验系统的监控设计与实施 文章针对中央空调实验系统进行了监控方案设计,采用了MICROMASTER 420 变频器和C9090A多功能控制器进行PID调节和控制,并应用MCGS组态软件实现监测参数实时采集、显示和远程控制。 标签:空调;变频器;控制器;MCGS 引言 当今世界能源日益紧张,建筑能耗占总能耗的比例约为30%,而空调能耗占建筑能耗的比例约为50%。由此可见,空调系统在满足工艺性和舒适性的前提下,如何提高运行效率,实现能效比的最大化已成为空调系统设计和运行过程中的关键问题。文章以我校中央空调实验系统为基础,应用现有的自控技术及产品,设计开发操作简单、可视化强的监控系统,为专业发展提供更完善的实训平台。 1 中央空调实验系统监控方案设计 1.1 中央空调实验系统的组成 中央空调实验系统由冷、热源系统;空调水系统;空气调节系统;空气输配系统和空调房间组成。冷源系统由压缩机、膨胀阀、蒸发器、冷凝器组成,为风冷式系统;热源由热水器提供。水系统包括冷热媒供回水系统,补水系统和膨胀水箱。空气调节系统为卧式空气处理机组,包括混合段、过滤段、表冷段、加湿段、风机段等,箱体上盖可拆卸,便于观察箱体内部构造。空气输配系统包括送风管、消声器、回风管、新风管和排风管以及相应的风口。各个子系统的相应部位做了保温处理。整个系统规模虽小,但五脏俱全,并且各个子系统均采用敞开式布置,将理论知识与实际设备直接对应,便于观察和理清各个子系统的组成和相互联系。 1.2 中央空调实验系统监控方案设计 针对整个实验系统流程,采用闭环控制方式,应用现场设备实现数据采集,应用控制器、变频器实现设备控制,应用MCGS组态软件实现整个监控系统的运行程序编制、动画显示和远程控制。主要实现以下监控内容:制冷主机(风冷)的控制,控制量为开关量输出DO;空调水泵控制,控制量为开关量输出DO;空调机组风机启停控制,控制量为开关量输出DO;空调机组风机PID变频控制,控制量为模拟量输出AO(0-10V);空调回风温度控制(调节阀门PID控制),控制量为模拟量输出AO(0-10V);系统多点温湿度采集,采集系统采用单总线测量技术;空调机组初、中效过滤器堵塞报警信号采集,采集量为开关量输入DI;空调水流量监测,采集信号为模拟量输入AI(4-20MA);空调风管道风速监测,采集信号为模拟量输入AI(4-20MA)。

水电站自动化保护

一、选择题 1、应用水头范围广(约为20~700m)的水轮机是()水轮机。 A、混流式 B、轴流式 C、斜流式 D、贯流式 2、在施工中块体大小必须与混凝土制备、运输和浇筑的生产能力相适应,即要保证在混凝土初凝时间内所浇的混凝土方量,必须等于或大于块体的一个浇筑层的混凝土方量。主要是为了避免()出现。 A、冷缝 B、水平缝 C、临时缝 D、错缝 3、在洪泛区、蓄滞洪区内建设非防洪建设项目,应当编制()。 A、洪水影响评价报告 B、洪水可利用资源化评价报告 C、建设项目可行性研究报告 D、洪水影响与方案实施报告 4、根据《水利水电工程施工质量评定规程(试行)》(SL176—1996),关于工程质量检验,以下说法正确的是()。 A、工程质量检验的计量器具需经县级以上人民政府技术监督部门认定的计量检定机构或其授权设置的计量检定机构进行检定,并具备有效的检定证书 B、参与中间产品质量资料复核人员应具有中级以上工程系列技术职称 C、质量监督机构实行以普查为主要方式的监督制度 D、临时工程质量检验项目及评定标准,由建设、监理、设计及施工单位参照《水利水电基本建设工程单元工程质量评定标准》的要求研究决定,并报相应的质 E、检测人员应熟悉检测业务,了解被检测对象和所用仪器设备性能,并经考核合格,持证上岗 5、关于阶段验收,下列说法正确的是( )。 A、工程截流前,应进行截流前(阶段)验收 B、水电站每台机组投入运行前,均应进行机组启动(阶段)验收 C、大型枢纽工程在截流、蓄水等阶段验收前,必须先进行技术性初步验收 D、泵站每台机组投入运行前,均应进行机组启动(阶段)验收 E、对于总台数少于3台的泵站,可待全部机组安装完成后,再进行机组启动验收 6、水泥帷幕灌浆时,坝体混凝土和基岩的接触段应先行单独灌浆并应待凝,接触段在岩石中的长度不得大于()。 A、1m B、2m C、3m D、4m 7、对于挡水建筑物有时将坝轴线布置成折线,其主要考虑的理由是()。

轨温实时远程监测系统

GWYC-1型轨温实时远程监测系统 目录 一、项目背景 二、系统概述 三、系统结构 四、主要功能 五、技术指标 一、项目背景 随着高速铁路建设步伐的加快,既有线设备重型化的发展,越来越多的线路采用跨区间无缝线路技术,无缝线路在技术经济上有明显的优越性,与有缝线路比,可节约维修费用30%-75%,平顺性好、线路阻力小,行车平稳、旅客舒适,还可减少机车和车辆的修理费和燃料费。但无缝线路铺设锁定后,钢轨内部温度力随轨温变化热胀冷缩,产生的温度应力却无法做到即时监测,容易造成胀轨、断轨及轨道不平顺,危及列车安全运行,所以如何取代传统人工上道测量轨道温度,对轨道温度实施常态化、自动化、远程无人值守的实时监测显得尤为必要,“GWYC-1型轨温实时远程监测系统”即是出于此目的由成都铁路局科研所研制开发而成。

二、系统概述 “GWYC-1型轨温实时远程监测系统”项目由成都铁路局严格鉴定(鉴定证书编号:成铁技鉴字[2005]第20号),并获得成都铁路局2011年科技进步三等奖,该系统设计制造严格依照工业控制级标准,配备无线网络通讯功能、采用太阳能供电方式,适合在野外恶劣气候环境下全天候可靠运行,可实时高精度监测钢轨温度和大气温度,在钢轨温度出现异常时可通过无线网络实时向管理部门报警,以便及时采取应对措施,保证列车行车安全。 GWYC-1型轨温实时远程监测系统已成功运用在成都铁路局的成遂渝线、达成双线、襄渝线等动车径路和普速铁路线路上,实现了铁路线路轨温实时远程自动监测,可实现轨温高温、低温和温差异常报警,以及实现实时的超线路作业允许轨温的报警监控工作功能,完全替代人工上道检测轨温。 三、系统结构 本系统物理结构由前端轨温自动监测站、中心数据服务器、监测显示终端三大部分组成,在中心服务器上运行的系统软件负责实时通过无线网络(中国移动GPRS无线网络)接收前端轨温自动监测站采集上报的钢轨温度和大气温度数据,工务人员可通过监测显示终端实时访问中心数据服务器,及时获取各个监控路段的轨温数据和报警信息,各级管理人员可根据自身权限随时查看所有轨温自动监测站点情况、信息处理情况,实现即时监测、预警和处理。 四、主要功能 1、前端轨温自动监测站实时监测钢轨温度和大气温度,并通过中国移动无线数据通讯网络实时上报钢轨温度监测数据到中心数据服务器,在钢轨温度出现异常时通过文字、声音和图像三种醒目方式向工务值班人员提示报警,同时工务处、工务段等相关管理人员可以通过调度室监测显示终端实时监测查看线路即时轨温、气温信息及轨温预报警信息,并对预报警信息在第一时间内采取应对措施,保证列车行车安全。 2、轨温达到预警、报警时可第一时间给段、车间、工区的设备管理人员手机发送报警短消息,以便相关人员及时对报警情况做出处理;同时系统还可以用语音方式通过铁路专用话务频段向报警路段上行驶的列车实时报警,保证报警路段列车行车安全。

001中央空调监控系统设计方案

中央空调监控系统设计方案 一、引言 楼宇自动化系统中中央空调子系统占有重要的地位,目前中央空调系统的自动化实现方式很多,有采用单片机,接口采用RS485,现场总线或者以太网,能实现中央空调的远程监控功能;还有采用PLC,比如西门子的S7-200实现数据的采集和监控。目前单片机种类很多,能实现本采集监控功能的芯片选择范围也较广,比如MEGA系列,freescale系列等,另外高端的芯片本身带有丰富的接口,实现更加方便,但是成本较高,另外基于PLC的中央空调监控系统成本瓶颈限制了其进一步的推广。所以开发一套低成本、高可靠性的中央空调远程监控系统是很有必要的。 中央空调监控系统是一套工业远程监控系统。利用此系统,可以通过电脑对中央空调的主机和管道系统的各类参数进行远程集中监控。中央空调监控系统包括:空调冷源监控、空调机组监控、新风机组监控、风机盘管监控、膨胀水箱高、低水位监测报警和屋顶排气风机、通风机控制等。 二、系统结构 本系统采用模块化可编程控制器(PLC)进行设计,使用人机界面进行集中操作,保证系统的安全、可靠、连续运行。整个监控系统由可编程控制器(PLC)、监控电脑和数据通讯网络(TCP/IP以太网)组成。 下图为中央空调监控系统结构示意图

图1 系统结构示意图 三、系统设计思路 目前的中央空调系统按输送介质主要有以下三类:空气,水和冷凝剂,所以相应的中央空调系统主要分为风管系统、冷热水系统和制冷剂系统。本方案主要适用对象是冷热水系统。冷热水系统分主机和风机盘管,主要工作原理是通过室外主机产生出空调的冷热水,由管道系统送至室内的各末端装置,在末端处冷热水与室内空气进行热量交换,产生冷热风,从而消除房间空调负荷。冷热水空调系统的末端通常都装有风机盘管,风机盘管的控制原理采用温控器加电动阀结构,如图1示。所以可以通过调节末端风机转速来调节送入室内的冷热量,由此可见,此种系统的特点是可以对各个末端(房间进行)单独的控制和调节。 室内温度可由设于每台风机盘管回水支管上与各房间内的温度传感器连锁的电动三通阀调节,亦可由风机盘管三速开关调节。

水电站电气自动化设备的可靠性初探

水电站电气自动化设备的可靠性初探 发表时间:2017-03-29T15:18:59.600Z 来源:《北方建筑》2016年12月第35期作者:徐文静 [导读] 电在我们生活中发挥的作用越来越重要,已经成为我们日常生活和工作必不可少的一部分。 四川省玉溪河灌区管理局百丈水库电站四川邛崃 611530 摘要:电的发明并广泛应用,让我们的日常生活发生了翻天覆地的巨大变化。电灯、电话、冰箱、洗衣机等等电器设备的发明和使用,让我们的生活变得更加光明,更加方便,由此可见,电在我们生活中的重要性。同时,电还是企业单位生产发展所必须的能源,如果没有电,可能很多企业都无法正常运转生产,对国民经济的发展有着重要的意义。因此,保障电的供需平衡是电力人员工作的重中之重,必须保障发电机等与电生产运输使用等相关设备的正常并高速运转,其中,必然要全力保证发电站电气设备的可靠性和稳定性,保证与之相关的每一个子系统甚至是细小的零部件都可以正常使用,保证每一个生产环节的安全和可靠。本文通过多方面的研究和探索来全面介绍发电机的可靠性和电气设备的可靠性能,从而可以更多层次,更多方面的保障电力系统的可靠性。 关键词:水电站;电气自动化设备;可靠性探究 前言 电在我们生活中发挥的作用越来越重要,已经成为我们日常生活和工作必不可少的一部分。高功率设备的研制并投入使用让我们对电力资源的要求越来越高,这就促使人们研究出更加高质量、可以远距离运输和承受巨大电压的电力系统。但是,电力属于高危险领域,稍有不慎就会发生事故,不仅造成经济损失,更严重的是会造成巨大的人员伤亡。因而,要加强水电站等电力设备的可靠性,以此来更好的增加水电站发电系统的稳定性,减少故障发生的频率。因此,只有充分了解水电站的系统每一个环节,清楚每一个设备操作流程,并制定好各种故障的应急措施,保障水电站电气设备的安全使用,保证水电站的高效运转,从而传送出电压更加稳定,更加高质量的电能。一、电力系统可靠性探究的现状 (一)电力系统可靠性研究的进展 只有全面系统的了解电力设备的使用情况和可能出现的故障,才能更好的掌握电力设备的使用特点和存在的问题,及时的根据数据的变化来制定对应的调整措施,并指明下一步的研究方向。同时,建立关于电力可靠性管理的报告表,让更多的人知道目前的电力系统的发展状况和最新研究成果,这也从另一方面预测了电力系统运转的可靠性,更好的发现电力系统存在的不足之处,推动电气自动化的发展,更好的满足经济社会发展的需要。 目前,水电站数量众多,而且水电站电气设备并没有统一的要求和使用标准,或许,每一个水电站所使用的设备不一样,加之,电力生产和使用情况的不确定性让整个电力市场更加混乱,导致电力系统更加不稳定,这也给经济社会的发展埋下了潜在的安全隐患。因而,想要经济快速高效而又稳定的发展,必须加强电力市场的监管和规范,按照市场运行的特点制定契合实际情况的原则。除此之外,还应加强市场技术方面的支持,促进市场产品的标准更加规范化,更加统一化,以此更好的促进市场的发展,更好的规避风险。 (二)电力系统可靠性研究的瓶颈 电力系统的可靠性要求电力系统能够安全稳定而又持续不断的更加可靠的保证电能的需求量,尽可能的避免因自身或者外在原因造成的故障,导致电力系统的瘫痪或者破坏,带来严重的经济损失。 建立完整的数据库,电力系统是一个非常复杂而庞大无比的完整的系统,太多的不确定因素让它稳定性较差,因而,只有把这个完整的系统按照一定的规律和标准划分为多个不同的版块,进行全面细致的研究和评估预测,掌握其运行的规律和特点,得出可靠性的数据,发现可能会出现的各种故障以及找出解决措施,保证其的可靠性和稳定性。 当前的市场和用电情况在不断的变化之中,只有积极的去研究可以加强电力系统可靠性的措施和性能更加稳定的设备,才能更好的保证电力系统的安全运转,更好的推动电力系统的完善和发展。 (三)研究电力系统可靠性的初衷 电力对我们生活的重要性是有目共睹的,根本无法想象如果没有电,现如今的社会是什么样子,可能会瘫痪。电力的稳定需要电力系统的可靠运转,稳定传送,只有这样我们才能继续生活在电的世界。但是,电力系统并不是没有任何缺点的,水电站的电气设备可能会出现各种各项的故障造成电力系统的瘫痪,因而,要加强电力系统可靠性的研究,加强电力系统的可靠性,研究制造更多的新技术新产品新设备,更好的推动经济的发展,而不能因为现在的“安稳”而忘记潜在的隐患。 二、水电站电气设备的可靠性发展 (一)励磁系统、发电控制设备、机组顺序自动控制系统、调速系统的可靠性 励磁系统之所以被称为系统,是因为它由多个设备和子系统组成,各个组成部分之间的复杂连接,环环相扣,相互影响,不管是哪一个环节或者设备出现问题,整个系统都不能正常运转。 发电控制设备是整个发电系统的关键,包含着励磁系统、调速系统等组成,不管是哪一个系统出现问题,都会牵一发而动全身,整个系统也会处于非正常运转状态,因而,想要水电站正常工作就要保证每一个子系统的正常运转。 机组顺序自动控制系统包括电源灯部件,它们相互关联,共同的作用于这个系统,共同保证这个系统的正常运转。 调速系统是由三个部分组成的,分别是气电、机械部门和电液转换器,每个组成系统之间相互依存,相互作用。 (二)输电设备的可靠性 输电设备在电力系统中地位十分重要,由变压器、短路器以及电气主接线组成,它们相依相存,密不可分,只有每一个组成部分都正常运转才能保证整个系统的正常运转。只有用串联以及并联的方法来综合分析,才能明白输电设备的运行原理,才能更加明白它的可靠性分析。 (三)电气元件的可靠性 有些电气元件是可以修复的,但是有一些是无法修复的,包括时间以及使用寿命等等,其中设备系统的寿命,简单的说也就是时间,

水泵远程智能监测系统

水泵远程智能监测系统 一.公司简介 深圳市天地网电子有限公司致力于电力领域产品的开发,生产和技术性服务。公司聚集了一批在电力和通讯领域有着丰富经验的专家以及研发精英,为电力设备、输配电线路的运行状态监测、故障检测定位等提供产品以及技术性服务。公司本着以人为本、科技创新、团结协作、顾客至上的理念,为电力用户提供了诸多可靠的解决方案,并得到业内企业的认可。深圳市天地网电子有限公司成立于2011年,注册资金为500万元。公司位于深圳南山区,属于高新技术企业。 水泵站远程监测和控制系统的实现,首先依赖于各个环节重要运行参数的在线监测和实时信息掌控,基于此,物联网作为“智能信息感知末梢”,可成为推动智能电网发展的重要技术手段。未来智能电网的建设将融合物联网技术,物联网应用于智能水泵站最有可能实现原创性突破、占据世界制高点的领域。 二.概述 我公司自主研发的TDW-008水泵站自动化远程监控系统是集传感技术、自动化控制技术、无线通信技术、网络技术为一体的自动化网络式监控管理系统。 泵站管理人员可以在泵站监控中心远程监测站内水泵的工作电压、电流、多路无线检测温度、水位等参数;支持泵启动设备手动控制、自动控制、远程控制泵组的启停,实现泵站

无人值守。该系统适用于城市供水系统、电厂、工厂、排水泵站的远程监控及管理。 1)系统组成 TDW-008主要包括:值班室污水泵站自动化远程监控系统人值守集中控制管理系统中心主站监控平台和现场泵房控制分站: ◇中心主站监控平台由工控机、系统监控软件、网络接入设备共同构成,能够实现监测、查询、遥调、运算、统计、控制、存储、分析、报警等多项功能。 ◇现场泵房控制分站主要由数据采集模块:电压、电流、功耗、功率因数,无线可以接多路温度、水位传感器、电源控制器、继电器单元、配电控制机柜及安装附件组成。它与中心主站监控平台通过GPRS/3G网络方式连接到一起。水源地各井位泵房为分站,中心泵房统领各分站,通过中国移动的无线数据传输设备,实现点到多点的通讯,从而最终实现对各井位泵的远程集中监视和控制。 2)控制功能 (1)监测采集功能 ---监测采集泵站水位、各种在线温度;监测泵组的启停状态、电流、电压、保护状态以及深井泵电机的实际温度等数据。

空调系统设计方案

XXXX有限公司 空调系统设计方案 一、工程概况 XXXXX有限公司是一座现代化的生产制造工厂,根据工艺的要求,对厂房的温度、湿度、新风量都有严格的要求。为了满足室内空气质量及节能要求,我们为贵公司提供Siemens公司可编程逻辑控制PLC S7-200系统。该控制系统是将3台冷水机组、8个水泵系统、4个冷却塔系统,23台恒温恒湿空调机组集成在一个RS485 OPC协议网络上并与上位机HMI-Microsoft Visual Studio 2008 控制平台进行网络组态操作。 方案HMI监控范围及系统目标包括以下几部分: ·空调冷水机组 ·冷却水系统 ·冷冻水系统 ·组合式恒温恒湿空调机组 ·组合式新风机组 根据甲方的要求和相关图纸,以最高性价比为原则通过优化的设备控制方案和智能管理方式,从而给贵公司提供精确温湿度控制、高效节能可进行系统管理的生产环境。 二、系统设计规范与依据 -建筑智能化系统工程设计管理暂行规定(建设部1997-290) -建筑电气设计规范(JCJ/T16-92) -智能建筑设计标准(DBJ-08-47-95) -采暖通风与空气调节设计规范(GBJ19-87) -建筑设计防火规范(GB50045-95) -电气装置工程施工及验收规范(GBJ232-82) -招标文件要求的相关条例及规范 -业主提供的招标文件和设计图纸

三、系统方案描述 我们通过对甲方提出需求的了解,结合楼宇控制系统的设计规范,对集控冷水 机组,水系统,冷却塔空调设备的自动化系统提出以下方案。 自控系统组成: 机组系统控制 监控系统控制 1.机组系统控制 冷水机组系统采用3台1000RT离心式冷水机组。自控系统采用PLC控制器直接采集冷热源系统中的机组的各种参数。同时程序控制机组的启停,完成各种联动控制,备用设备的转换。 本方案的冷热源系统用Siemens系列控制器配合点扩展模块来解决。 PLC是现场管理和控制系统的组成部份,是一个高性能的控制器。PLC在不依靠较高层处理机的情形下,可以独立工作和联网以完成复杂的控制、监视和能源管理功能,而不需依赖更高层的处理器。PLC可以连接楼层级网络(FLN)设备并提供中央监控功能。 PLC可带扩展模块的和不带扩展模块的。本方案采用可带扩展模块的PLC,这对业主以后的维护和系统扩展时极为有利的。 特点 ●可与其它层级的处理机互相搭配,以符合应用的需求 ●通过扩展模拟量/数字量模块设备,可增加监控点数 ●结合软件与硬设备配合控制应用 ●以先进的PID 算法,精准的将HVAC 控制在最小的变动范围内 ●具有管理多种报警、历史及趋势记录的收集、操作控制和监控功能 ●可选配手动/停止/自动(HOA) 切换开关 本方案可实现空调冷热源的如下监控内容: 机组台数控制 根据供水管的流量及集水器、分水器的温差,计算负荷,然后通过冷水机组提供的通讯接口对风冷热泵机组的进行联网监控。通过网关的模式可实现数据的双向传输,并监控机组的运行状态、系统负荷、房间温湿度、系统启停指令信号等。

建筑物沉降的实时远程自动监测系统

建筑物沉降的实时远程自动监测系统 熊春宝1,孙明1,王儒杰2 (1.天津大学建筑工程学院, 天津300072; 2.天津市建设工程质量监督管理总站, 天津300191) 摘要:介绍了一种用于监测建筑物沉降的实时远程自动监测系统。将液体静力水准测量、电磁式位移传感、计算机、GPRS无线通信等技术集成于一体,该系统具有如下功能:监测数据的实时连续采集与管理、建筑物沉降的自动计算与分析、信息的远程无线发布与预警。该系统已成功应用于天津西站主站楼整体平移搬迁的施工过程中,对于此工程的施工进度以及施工措施的适时调整起到了关键性的指导作用。 关键词:建筑物沉降;实时;远程;自动监测 A Real-time Remote Automatic System for Monitoring the Settlement of Building XIONG Chun-bao1,SUN Ming1, WANG Ru-jie2 (1. School of Civil Engineering, Tianjin University, Tianjin 300072, China; 2. Tianjin Construction Quality Supervision Center, Tianjin 300191, China) Abstract:A system, which is real-time, remote, automatic for monitoring the settlement of building, is introduced. Hydrostatic leveling, displacement sensing by electromagnetism, computer technology and GPRS wireless communication are integrated into the system. The system has the following functions: real-time, continuous acquisition and management of the measured data; automatic computation and analysis of the settlement; remote, wireless release of information and early-warning. Applied successfully to monitor the settlement of the main building of Tianjin West Railway Station in integral moving, the system has taken the key directive effect in adjusting the schedule and the methods of construction timely. Key words:settlement of building; real-time; remote; automatic monitoring 作者简介:熊春宝(1964–),男,博士,教授,luhai_tj@https://www.360docs.net/doc/0c2128058.html,. 建筑物在施工过程中因自身荷载重量的不断增加会产生沉降,深基坑的开挖也常导致基坑周边原有建筑物的沉降。因此,为了确保施工质量和施工安全,建筑物的沉降监测至关重要。建筑物沉降传统的监测方法是采用精密几何水准测量[1],此方法虽然技术可靠、精度高,但它是一种非实时连续的、劳动强度很大的人工观测方法。近年来,借助于计算机和无线通信等技术,建筑工程各种变形的自动监测系统开始得到研制[2][3][4][5]。本文介绍了一种建筑物沉降实时远程自动监测系统,此系统已经成功应用于天津西站主站楼的整体平移搬迁的施工过程中。 1 系统工作原理 1.1 系统的组成 如图1所示,本监测系统主要由静力水准器、电磁式位移传感器、巡检仪、计算机、

水电站自动化讲解

1. 7 数字式并列装置 1.7.1概述用大规模集成电路微处理器(CPU)等器件构成的数字式并列装置,由于硬件简单,编程方便灵活,运行可靠,且技术上已日趋成熟,成为当前自动并列装置发展的主流。模拟式并列装置为简化电路,在一个滑差周期T s时间内,把S 假设为恒定。数字式并列装 置可以克服这一假设的局限性,采用较为精确的公式,按照 e 当时的变化规律,选择最佳的越前时间发出合闸信号,可以缩短并列操作的过程,提高了自动并列装置的技术性能和运行可靠性。数字式并列装置由硬件和软件组成,以下分别进行介绍。 图1.17 数字式并列装置控制逻辑图 1.主机。 微处理器(CPU)是装置的核心。 2.输入、输出接口通道。在计算机控制系统中,输入、输出过程通道的信息不能直接与主机总线相连,它必须由接口电路来完成信息传递的任务。 3.输入、输出过程通道。 为了实现发电机自动并列操作,需要将电网和带并发电机的电压和频率等状态按照要求送到接口电路进入主机。 (1)输入通道。按发电机并列条件,分别从发电机和母线电压互感器二次侧交流电压信号中提取电压幅值、频率和相角差等三种信息,作为并列操作的依据。 1)交流电压幅值测量。采用变送器,把交流电压转换成直流电压,然后由A /D 接 口电路进入主机。对交流电压信号直接采样,通过计算求得它的有效值。如图 1.18 所示。 2)频率测量。测量交流信号波形的周期T。把交流电压正弦信号转化为方波,经二 分频后,它的半波时间即为交流电压的周期T。 3)相角差e测量。如图1.19 所示,把电压互感器电压信号转换成同频、同相的方波信号。 (2)输出通道。自动并列装置的输出控制信号有: 1)发电机转速调节的增速、减速信号。

水电站自动化

1. 与火电相比,水电运行有什么特点? 答:水电站生产过程比较简单。水轮发电机组起动快,开停机迅速,操作简便,并可迅速改变其发出功率。同时,水轮发电机组的频繁起动和停机,不会消耗过多能量,而且在较大的负荷变化范围内仍能保持较高的效率。 2. 水电站在电力系统中可承担哪些作用? 答:一、担负系统的调频、调峰任务。二、担负系统的事故备用容量。 3. 什么是备用容量,按用途不同可分为哪些种类?答:为了保证供电的可靠性和电能质量,系统的电源容量应大于包括网损和发电站自用电在内的系统总负荷,即发电负荷。系统电源容量大于发电负荷的部分,即称为备用容量。一、负荷备用。用于调整系统中短时的负荷波动,并满足计划外负荷增加的需要。 二、事故备用。用于代替系统中发生事故的发电设备的工作,以便维持系统的正常供电。三、检修备用。是为定期检修发电设备而设置的,与负荷性质、机组台数、检修时间长短及 设备新旧程度等有关。 四、此外,为满足负荷超计划增长设置的备用,称为国民经济备用。 4. 水电站自动化的目的是什么?有哪些主要内容? 答:水电站自动化的目的是:一、提高工作的可靠性。二、保证电能质量。三、提高运行的经济性。四、提高劳动生产率。主要内容包括:一、自动控制水轮发电机组的运行方式,实现开停机和并列、发电转调相和调相转发电等的自动化。二、自动维持水轮发电机组的经济运行。三、完成对水轮发电机级及其辅助设备运行工况的监视和对辅助设备的自动控制。四、完成对主要电气设备的控制、监视和保护。五、完成对水工建筑物运行工况的控制和监视,如闸门工

作状态的控制和监视,拦污栅是否堵塞的监视等。 5. 计算机控制系统由哪些部分组成? 答:计算机控制系统由计算机(又称中央处理机)、外围和外部设备及被控制对象构成。 6. 分布控制将整个电站的控制功能分为哪两级,这种控制的优点是什么? 答:分布控制将整个电站的控制功能分成两级,即全站管理级和单元控制级。分布控制的优点:一、工作可靠。二、功能强。三、便于实现标准化。 第二章 1.什么是并列运行?有什么好处?答:并列运行就是系统中各发电机转子以相同的电角速度旋转,各发电机转子间的相角差不超过允许的极限值,且发电机出口的折算电压近似地相等。同步发电机乃至各个电力系统联合起来并列运行,可以带来很大的经济效益。一方面,可以提高供电的可靠性和电能质量;另一方面,又可使负荷分配更加合理,减少系统的备用容量和充分利用各种动力资源,以达到经济运行的目的。 2.并列方式有哪两种?各自起什么作用? 答:水轮发电机的并列有两种方式,即准同期和自同期。在水电站一般的应用情况是:以自动准同期作为水轮机发电机正常时的并列方式,以手动准同期作为备用,并均带有非同期闭锁装置。至于自同期,则主要用作事故情况下的并列方式,且一般均采用自动自同期并列,同时要求发电机定子绕组的绝缘及端部固定情况应良好,端部接头应无不良现象。 3. 什么是准同期?什么是自同期?它们各自的优缺点是什么? 答:准同期并列是将未投入系统的发电机加励磁,并调节其电压和频率,在满足

自动监测系统中的PLC控制

自动监测系统中的PLC控制 来源:开关柜无线测温 https://www.360docs.net/doc/0c2128058.html, 应用PLC实现对自动监测系统的控制,可实现远程、脱机、普通电话线连接的自动监测,具有实时信号采集、集中图形显示、智能化数据处理、自动打印记录等诸多优点。这种系统功能齐全、性能稳定、价格比高,对远程数据传输以及其它无人值守的系统均有一定的实用价值和指导意义。 关键词:监测系统PLC 模块控制 1 引言 利用可编程序控制器(PLC)组成远程自动监测系统时,首先遇到的是PLC的选型问题。在选用PLC时,除把可靠性、环境适应性放在首位外,还要根据具体应用场合尽量选用合适的可编程序控制器。 关于可编程控制器选型的一般原则可从以下几方面考虑: (1) 明确控制对象要求。本系统要求改善信息管理,把PLC 与上位微机的通讯能力远程I/O与微机通讯方式和手段作为选择的依据。PLC响应时间的影响因素有:输入信息时,CPU读解用户逻辑网络时间和输出时间。PLC的实时响应性还受到系统中最慢仪器的限制,与上位机的通讯也将增加服务时间。 (2) 功能选择要根据不同的控制对象确定。具体有:替代继电器、数学运算、数据传递、矩阵功能、高级功能、诊断功能以及串行接口。 (3) 输入输出模块选择。输入/输出模块是PLC与被控对象之间的接口,模块选择得当否直接影响控制系统的可靠性。 (4) 存储器类型及其容量选择。小型PLC作为单机小规模控制使用时,由于工艺简单、程序固定,多数使用EPROM或EPROM 加RAM。对于中、大规模的 PLC,往往用于工艺比较复杂,且

多变的场合,程序改变较多,因此一般都使用CMOSRAM存储器,且有后备电池,以便关机时保存存储信息。根据控制规模和应用目的,我们按下列公式进行估算: ①代替继电器M=Km[(10×DI)+(5×DO)] ②模拟量控制M=Km[(10×DI)+(5×DO)+(100×AI)] ③多路采样控制M=Km{[(10×DI)+(5×DO)+(100×AI)]+(1+采样点×0.25)} 式中DI为数字(开关)量输入信号; DO为数字(开关)量输出集中; AI为模拟量输入信号; Km为每个节点所占存储器字节数; M为存储器容量。 我们还可在编完程序以后精确地计算出存储器实际使用容量。 (5) 控制系统结构和方式的选择。用PLC构成的控制系统有集中控制、远程I/O控制和分布式控制等三种方式。 (6)支持技术条件。在选用PLC时,有无支持技术条件也是重要的选择依据。支持技术条件主要有:编程手段、程序文本处理、程序贮存方式和通讯软件包。通讯软件包往往是和通讯硬件一起使用的,如调制解调器等。 2 PLC构成的控制系统 PLC构成的控制系统流程图如图1所示:

远程中央空调监控系统设计方案

远程中央空调监控系统设计方案 一、引言 中央空调监控系统是一套工业远程监控系统。利用此系统,可以通过电脑对中央空调的主机和管道系统的各类参数进行远程集中监控。中央空调监控系统包括:空调冷源监控、空调机组监控、新风机组监控、风机盘管监控、膨胀水箱高、低水位监测报警和屋顶排气风机、通风机控制等。 楼宇自动化系统中中央空调子系统占有重要的地位,目前中央空调系统的自动化实现方式很多,有采用单片机,接口采用RS485,现场总线或者以太网,能实现中央空调的远程监控功能;还有采用PLC,比如西门子的S7-200实现数据的采集和监控。目前单片机种类很多,能实现本采集监控功能的芯片选择范围也较广,比如MEGA系列,freescale系列等,另外高端的芯片本身带有丰富的接口,实现更加方便,但是成本较高,另外基于PLC的中央空调监控系统成本瓶颈限制了其进一步的推广。所以开发一套低成本、高可靠性的中央空调远程监控系统是很有必要的。 二、系统结构 本系统采用模块化可编程控制器(PLC)进行设计,使用人机界面进行集中操作,保证系统的安全、可靠、连续运行。整个监控系统由可编程控制器(PLC)、监控电脑和数据通讯网络(TCP/IP以太网)组成。 下图为中央空调监控系统结构示意图

图1 系统结构示意图 三、系统设计思路 目前的中央空调系统按输送介质主要有以下三类:空气,水和冷凝剂,所以相应的中央空调系统主要分为风管系统、冷热水系统和制冷剂系统。本方案主要适用对象是冷热水系统。冷热水系统分主机和风机盘管,主要工作原理是通过室外主机产生出空调的冷热水,由管道系统送至室内的各末端装置,在末端处冷热水与室内空气进行热量交换,产生冷热风,从而消除房间空调负荷。冷热水空调系统的末端通常都装有风机盘管,风机盘管的控制原理采用温控器加电动阀结构,如图1示。所以可以通过调节末端风机转速来调节送入室内的冷热量,由此可见,此种系统的特点是可以对各个末端(房间进行)单独的控制和调节。 室内温度可由设于每台风机盘管回水支管上与各房间内的温度传感器连锁的电动三通阀调节,亦可由风机盘管三速开关调节。

相关文档
最新文档