对数与对数运算(第二课时) 教学设计 1
2018年必修一 《对数与对数运算》第二课时参考教案

2.2.1对数与对数运算共三课时教学目标:1.理解并记忆对数的定义,对数与指数的互化,对数恒等式及对数的性质.2.理解并掌握对数运算法则的内容及推导过程.3.熟练运用对数的性质和对数运算法则解题.4.对数的初步应用.教学重点:对数定义、对数的性质和运算法则教学难点:对数定义中涉及较多的难以记忆的名称,以及运算法则的推导教学方法:学导式教学过程设计第二课时师:在初中,我们学习了指数的运算法则,请大家回忆一下.生:m n m na a a+⋅= (m,n∈Z);()m n mna a= (m,n∈Z);()n n nab a b=⋅ (n∈Z),师:下面我们利用指数的运算法则,证明对数的运算法则.(板书)(1)正因数积的对数等于同一底数各个因数的对数的和,即loga (MN)=logaM+logaN.(请两个同学读法则(1),并给时间让学生讨论证明.)师:我们要证明这个运算法则,用眼睛一瞪无从下手,这时我们该想到,关于对数我们只学了定义和性质,显然性质不能证明此式,所以只有用定义证明.而对数是由指数加以定义的,显然要利用指数的运算法则加以证明,因此,我们首先要把对数等式转化为指数等式.师:(板书)设loga M=p,logaN=q,由对数的定义可以写成M=a p,N=a q.所以M·N=a p·a q=a p+q,所以loga (M·N)=p+q=logaM+logaN.即loga (MN)=logaM+logaN.师:这个法则的适用条件是什么?生:每个对数都有意义,即M>0,N>0;a>0且a≠1.师:观察法则(1)的结构特点并加以记忆.生:等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算.师:非常好.例如,(板书)log2(32×64)=?生:log2(32×64)=log232+log264=5+6=11.师:通过此例,同学应体会到此法则的重要作用——降级运算.它使计算简化.师:(板书)log62+log63=?生:log62+log63=log6(2×3)=1.师:正确.由此例我们又得到什么启示?生:这是法则从右往左的使用.是升级运算.师:对.对于运算法则(公式),我们不仅要会从左往右使用,还要会从右往左使用.真正领会法则的作用!师:(板书)(2)两个正数的商的对数等于被除数的对数减去除数的对数.师:仿照研究法则(1)的四个步骤,自己学习.(给学生三分钟讨论时间.)生:(板书)设loga M=p,logaN=q.根据对数的定义可以写成M=a p,N=a q.所以师:非常好.他是利用指数的运算法则和对数的定义加以证明的.大家再想一想,在证明法则(2)时,我们不仅有对数的定义和性质,还有法则(1)这个结论.那么,我们是否还有其它证明方法?生:(板书)师:非常漂亮.他是运用转化归结的思想,借助于刚刚证明的法则(1)去证明法则(2).他的证法要比书上的更简单.这说明,转化归结的思想,在化难为易、化复杂为简单上的重要作用.事实上,这种思想不但在学习新概念、新公式时常常用到,而且在解题中的应用更加广泛.师:法则(2)的适用条件是什么?生:M>0,N>0;a>0且a≠1.师:观察法则(2)的结构特点并加以记忆.生:等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.师:(板书)lg20-lg2=?师:可见法则(2)的作用仍然是加快计算速度,也简化了计算的方法.师:(板书)例1 计算:(学生上黑板解,由学生判对错,并说明理由.):(1)log93+log927=log93×27=log981=2;(3)log2(4+4)=log24+log24=4;生:第(2)题错!在同底的情况下才能运用对数运算法则.(板书)生:第(3)题错!法则(1)的内容是:生:第(4)题错!法则(2)的内容是:师:通过前面同学出现的错误,我们在运用对数运算法则时要特别注意什么?生:首先,在同底的情况下才能从右往左运用法则(1)、(2);其次,只有在正因数的积或两个正数的商的对数的情况下,才能从左往右运用运算法则(1)、(2).师:(板书)(3)正数的幂的对数等于幂的底数的对数乘以幂指数.即loga (N)n=n·logaN.师:请同学们自己证明(给几分钟时间)师:法则(3)的适用条件是什么?生:a>0,a≠1;N>0.师:观察式子结构特点并加以记忆.生:从左往右仍然是降级运算.师:例如,(板书)log332=log525=5log52.练习计算(log232)3.(找一好一差两名学生板书.)错解:(log232)3=log2(25)3=log2215=15.正确解:(log232)3=(log225)3=(5log22)3=53=125.(师再次提醒学生注意要准确记忆公式.)师:(板书)(4)正数的正的方根的对数等于被开方数的对数除以根指数.即师:法则(4)的适用条件是什么?生:a>0,a≠1;N>0.师:法则(3)和法则(4)可以合在一起加以记忆.即loga Nα=αlogaN(α∈R).(师板书)例2 用loga x,logay,logaz表示下列各式:解:(注意(3)的第二步不要丢掉小括号.)例3 计算:解:(生板书)(1)log2(47×25)=log247+log225=7log24+5log22=7×2+5×1=19.师:请大家在笔记本上小结这节课的主要内容.小结:通过本节课,应使学生明确如何学习一种运算(从定义、记法、性质、法则等方面来研究);如何学习公式或法则(从公式推导,适用条件,结构特点和记忆以及公式作用四方面来研究).针对高中数学内容多、密度大、进度快的特点,应使学生尽早地掌握适应高中数学的学习方法.练习:课本第79页练习第1、2、3题。
对数与对数运算教案

对数与对数运算教案一、教学目标1.了解对数的概念和性质。
2.掌握对数的换底公式。
3.能够运用对数运算解决实际问题。
二、教学重点1.对数的换底公式的掌握。
2.对数运算的实际应用。
三、教学难点1.对数的换底公式的理解与应用。
2.对数运算在实际问题中的灵活运用。
四、教学过程1.导入(5分钟)通过提问的方式引入对数的概念,例如:什么是指数?怎样求指数运算的结果?对数与指数有何关系等。
2.知识讲解与演示(25分钟)(1)对数的概念与性质:先简要介绍对数的概念,即以一些数为底,使结果等于一些数的指数运算。
然后讲解对数的性质,包括对数的唯一性、对数的基本法则等。
3.练习与巩固(25分钟)(1)讲解练习题:组织学生进行对数运算的练习,包括计算对数的值、利用对数解决方程等。
逐步提高题目的难度,以巩固学生的基本技能。
(2)拓展练习:根据实际问题设置应用题,引导学生运用对数解决实际问题,如物种数量的估算、露营地数量的计算等。
培养学生的问题解决能力和分析能力。
4.深化与延伸(20分钟)(1)对数运算的实际意义:通过一些具体的实际例子,讲解对数运算在生活中的应用,如音量的计算、地震强度的测量等。
让学生感受到对数运算在实际问题中的重要性。
(2)拓展延伸:引导学生深入思考对数的概念和性质,并做一些拓展性的练习,如求对数的近似值、应用对数解决复杂方程等。
拓宽学生的数学思维。
五、课堂小结与展望(5分钟)对本节课的内容进行小结,回顾所学的知识点和技能。
展望下节课的内容,为下一步学习打下基础。
六、作业布置布置适量的练习题作业,巩固对数与对数运算的知识与技能的掌握。
七、教学反思通过本节课的教学,学生对对数和对数运算有了初步的了解。
对数的换底公式的掌握是此节课的难点和重点,需要进行反复的练习和巩固。
通过设置实际问题的应用题,培养学生的问题解决能力和应用能力。
同时,教师需要耐心引导学生思考和讨论,帮助学生更好地理解和掌握数学知识。
《对数与对数运算(2)》的教学设计

《对数与对数运算2》导学案一、温故而知新:1、指数与对数间的关系 __________,底数范围是 ___, 真数范围是 ____ 。
2、常用的对数等式: ㏒a a=___ , ㏒a 1= ___ .3、指数的运算性质:(1)__________ , (2) __________ , (3) __________ 。
二、探究对数的运算性质:1.自主完成表格,并从对数值间关系的角度,分析表中各列数据,你有哪些发现?如果0>a ,且1≠a ,0>M ,0>N ,那么:M a (log =)N __________ ,=NMa log __________ ,n a M log =__________ 。
学生任选一组验证:log a M + log a N = __ ,M a (log =)N __ ,log a M - log a N = __ , =NMalog ___ , n ·log a M = __ , n a M log =____ 。
(充分验证后填好前面的结论)2.运算性质的证明:① M a (log =)N M a log +N a log ;证明如下:NM MN n m MN a MN N n M m N a M a a a a a a a a n m a a n m n m n m log log )(log )(log log ,log ,,,+=+=======++,即,于是则令② =NMa log M a log -N a log ;证明一下?③ n a M log n =M a log )(R n ∈.证明一下?三、变式训练1.求值: (1)㏒(2)㏒31272.化简:㏒1014—2㏒1073+㏒107—㏒1018四、本节我学到了什么?(有总结才有提高噢!)__________________________ 。
对数与对数的运算第二课时(说课稿)

讲 授 新 课
1.基于对数的运算性质(1) ,引导 学生推导出对数的运算性质(1) ; 再借助课件展示,更加直观易懂. 紧接着,教师举例,把抽象的公式 具体化,加深印象. 2.学生仿照推导性质(1)的方法, 自主推导出性质(2) 、 (3) ,交流成 果,规范证明过程. 3.学生根据对数运算性质的符号表 示形式来用语言表述,交流成果, 规范表述. 4.教师强调几个注意点. 5.引导学生对比指数与对数.
多媒体投影幕布
例题讲解
我的说课到此结束,谢谢大家!
利用已学的知 识, 探索发现, 根据指数的运 算性质和指数 与对数的互化 进行推到,进 而得到对数的 运算.之后进 行归纳概括, 系统性的将指 数与对数进行 类比.
1.课本例题 1 2.求下列各式的值 即 时 巩 固
1 log 2 27 92 2 lg 0.00001
3.求下列各式的值
1 3 2 log3 5 log3 15
1.引导学生独立完成或合作交流解 决问题. 2.引导学生交流探究成果,明辨正 误,规范求解过程.
即时演练,让 学生能够灵活 地运用所学的 公式解决问 题.
1 log5 3 log5
证明:
合 作 探 究ຫໍສະໝຸດ log a b log c b log c a
内容设置 知识回顾 1.对数的概念,对数式 与指数式的互化; 2.常用的对数的性质, 指数的运算性质. 1.推导对数的运算性 质(1) 、 (2) 、 (3) ; 2.总结对数的运算性 质,并用语言表述. 3.对比指数与对数
处理方式
设计意图
借助课件展示,引导学生回顾相关 温故知新, 知识与方法. 为以下学习 作铺垫.
六、板书设计
对数的运算
人教版高一数学必修1第二章《对数与对数运算》学案第二课时换底公式及对数的应用

§2.2.1对数与对数运算3(换底公式及对数的应用)班级:高一( ) 姓名: 学号:学习目标:1、理解并掌握对数的换底公式2、运用对数运算性及公式质解决有关问题学习重点、难点:对数的换底公式,对数运算性质及公式的灵活应用自主预习:一、知识梳理:问题引入:数学史上,人们通过大量努力,制作了常用对数表、自然对数表,只要通过查表就可求出任意正数的常用对数或自然对数。
那么有没有方法把其他底的对数转换为以10或e 为底的对数呢?对数的底数能否随意转换?探究:设M b a =log (0>a 且 1≠a ,b>0)由对数的意义有,b a M =,显然M a >0,两边取常用对数得:_______________∵ 0>a ,∴M b a lg lg =•,又1≠a ,∴0lg ≠a ,∴M a b lg lg = ,即 【总结】更一般地,可得对数的换底公式:【归纳提升】1. 注意换底公式的结构特点:右边分子、分母所换的底必须是同一底,且为真数的对数除以底数的对数。
2. 当b ≠1且b >0时,存在倒数关系:二、自我检测1、计算下列各式的值 (1) log 98 log 3227 ; (2) 235111log log log 125323••三、学点探究探究1:对于底不同的对数的运算例1、 计算(1)32log 9log 38⨯ (2)a c c a log log •(3))2log 2(log )3log 3(log 9384+⋅+变式训练一:应用对数换底公式化简下列各式1、(1)16log 25log 9log 125274••(2))3log 3)(log 2log 2(log 8493++方法小结1:利用换底公式“化异为同”是解决有关对数问题的基本思想,在解题过程中应注意:1、针对具体问题,选择恰当的底数;2、注意换底公式与对数运算法则结合使用3、换底公式的正用与逆用探究2、对数换底公式的应用例2、已知518,9log 18==b a ,用a 、b 来表示45log 36变式训练二:1、30log ,53,2log 33表示、用b a a b ==2.已知32=x ,y =38log 4,则x+2y= .3.设p =3log 8,q =5log 3,则lg5= (用含p 、q 的式子表示) 课后作业:1、应用对数换底公式化简下列各式(1) 84log 27log 9; (2) log 225 log 34 log 59 ;2、 若0>a 且 1≠a ,x ,y ∈R 且xy >0则下列各式正确的是 : ① x x a a log 2log 2= ; ②||log 2log 2x x a a =; ③y x xy a a a log log )(log +=; ④||log ||log )(log y x xy a a a +=3、已知lg2=a,lg3=b ,用a,b 表示代数式log 2716=4、已知 lgN=alnN ; lnN=b lgN, 则a= , b=5、已知514,7log 14==b a ,求28log 356、设3a =4b =36,求21a b +的值7、已知m a =8log ,n a =5log ,请求n m a 2+的值.课后反思:。
2.2.1对数与对数运算(二)

对数与对数运算〔二〕〔一〕涵养目的1.常识与技艺:了解对数的运算性子.2.进程与办法:经过对数的运算性子的探求及推导进程,培育老师的“合情推理才干〞、“等价转化〞跟“归结归结〞的数学思维办法,以及翻新见地.3.感情、态态与代价不雅不雅经过“合情推理〞、“等价转化〞跟“归结归结〞的思维应用,培育老师统逐一致、互相联络,互相转化以及“特不—普通〞的辩证唯心主义不雅不雅念,以及勇敢探求,捕风捉影的迷信肉体.〔二〕涵养重点、难点1.涵养重点:对数运算性子及其推导进程.2.涵养难点:对数的运算性子察觉进程及其证实.〔三〕涵养办法针对本节课公式多、思维量大年夜的特点,采用实例归结,诱思探求,指点察觉等办法.〔四〕涵养进程备选例题例1计划以下各式的值:〔1〕;〔2〕.【剖析】〔1〕办法一:原式====.办法二:原式===.〔2〕原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2lg10+(lg5+lg2)2=2+(lg10)2=2+1=3.【小结】易犯lg52=(lg5)2的过失.这类咨询题普通有两种处置办法:一种是将式中真数的积、商、方根应用对数的运算法那么将它们化为对数的跟、差、积、商,而后化简求值;另一种办法是将式中的对数的跟、差、积、商应用对数的运算法那么将它们化为真数的积、商、幂、方根,而后化简求值.计划对数的值时常用到lg2+lg5=lg10=1.例2:〔1〕曾经清晰lg2=0.3010,lg3=0.4771,求lg;〔2〕设log a x=m,log a y=n,用m、n表现;〔3〕曾经清晰lg x=2lg a+3lg b–5lg c,求x.【剖析】由曾经清晰式与未知式底数一样,实现由曾经清晰到未知,只须将未知的真数用曾经清晰的真数的乘、除、幂表现,借助对数运算法那么即可解答.【剖析】〔1〕0.4771+0.5–0.1505=0.8266〔2〕〔3〕由曾经清晰得:,∴.【小结】①比拟曾经清晰跟未知式的真数,并将未知式中的真数用曾经清晰式的真数的乘、除、乘方表现是解题的要害,同时应留意对数运算法那么也是可逆的;②第〔3〕小题应用以下论断:同底的对数相称,那么真数相称.即log a N=log a MN=M.。
对数与对数运算教案-人教版高中数学必修一第二章2.2.1 第二课时

第二章基本初等函数(Ⅰ)2.2 对数函数2.2.1.对数与对数运算第二课时对数运算1 教学目标1.1 知识与技能:[1]掌握对数的运算性质,能正确地利用对数的运算性质进行对数运算;[2]掌握对数换底公式的运用 .能用换底公式将一般对数转化为自然对数或常用对数。
[3]对数及其运算性质的综合应用1.2过程与方法:[1]通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.1.3 情感态度与价值观:[1]通过对数的运算法则的学习,培养学生的严谨的思维品质 .[2]在学习过程中培养学生探究的意识.[3]让学生理解运算法则之间的内在联系,培养分析、解决问题的能力.通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.2教学重点/难点/易考点2.1 教学重点[1]重点:对数式运算性质及时推导过程;[2]对数换底公式。
[3]对数及其运算性质的综合应用2.2 教学难点[1]难点:对数运算性质的发现过程及其证明;[2]对数换底公式的证明和应用。
3 专家建议启发学生从对数运算性质入手,了解对数在数学史上的重要作用,了解对数对大数运算的简化作用,降低运算的数量级,掌握一定量的对数计算基本模型,在熟练运用对数运算性质的基础上以对数的思维模式去考虑和处理问题,加深对于运算性质和换底公式的理解和运用,掌握对数运算的特殊性,为下一节学习对数函数打好基础.高考中对数的考查方式一般以选择题或填空题的形式出现。
4 教学方法实验探究——归纳总结——补充讲解——练习提高5 教学用具多媒体。
6 教学过程6.1 引入新课【师】同学们好。
从今天我们开始进入新一节内容的学习:对数与对数运算。
【板书】2.2.1.对数与对数运算第二课时【师】我们知道了对数的基本定义和性质,请认真回忆一下!【板书或投影】对数基本知识点1、对数的定义b N a =log其中 ),1()1,0(+∞∈ a 与 ),0(+∞∈N (负数与零没有对数);b ∈(文字表述:N 为正数,a 为非1正数,b 为任意实数)两类特殊对数:(1)常用对数:以10为底,记作lgN .(2)自然对数:以无理数e=2.71828……为底,记作lnN .2、三组互化式)10( log ≠>=⇔=a a b N N a a b 且lg 10b N N b =⇔=ln b N N e b =⇔=3、两个恒值(1) 01log =a (2) 1log =a a4、两个嵌套式(迭代式)(1)对数恒等式N a N a =log(2))10( log ≠>=a a b a b a 且5.指数运算法则,(R n m a a a n m n m ∈=⋅+),()(R n m a a mn n m ∈=)()(R n b a ab n n n ∈⋅=【生】对数定义式是......,指数式与对数式的转化......,对数恒等式,自然对数、常用对数【师】注意每个字母的取值X 围:底数,10≠>a a 且,真数N>0;再回忆一下指数运算的几个式子【板书或投影】)10( log ≠>=⇔=a a b N N a a b 且指数的运算性质n m n m a a a +=⋅; n m n m a a a -=÷mn n m a a =)( ; m nm na a = 6.2 新知介绍[1] 对数的运算性质【师】下面请同学们自行推导对数的运算性质!(5 分钟)【板演/PPT 】教师演示对数运算性质三式的证明。
对数与对数的运算教案

对数与对数的运算教案教案标题:对数与对数的运算教案目标:1. 理解对数的概念和性质。
2. 掌握对数运算的基本规则。
3. 能够运用对数运算解决实际问题。
教案步骤:引入活动:1. 引导学生回顾指数的概念和运算规则,并提醒学生指数运算中可能遇到的困难。
2. 引出对数的概念,通过举例说明对数是指数的逆运算。
知识讲解:1. 解释对数的定义:如果a^x = b,那么x就是以a为底b的对数,记作log_a(b)。
2. 讲解对数的性质:a) log_a(a) = 1,任何数以自身为底的对数都等于1。
b) log_a(1) = 0,任何数以底为a的对数等于1。
c) log_a(a^x) = x,对数与指数运算互为逆运算。
d) log_a(b * c) = log_a(b) + log_a(c),对数运算中的乘法法则。
e) log_a(b / c) = log_a(b) - log_a(c),对数运算中的除法法则。
f) log_a(b^x) = x * log_a(b),对数运算中的幂运算法则。
示例练习:1. 给出一些简单的对数运算题目,让学生运用对数运算法则进行计算。
2. 提供一些实际问题,要求学生运用对数运算解决问题,如计算震级、pH值等。
拓展应用:1. 鼓励学生自主探索对数运算在科学、工程等领域的应用。
2. 分组讨论,让学生分享对数运算在日常生活中的应用案例。
总结回顾:1. 总结对数的定义和性质。
2. 强调对数运算的重要性和实际应用。
教学资源:1. 板书:对数的定义和性质,对数运算的基本规则。
2. 教材:提供相关的例题和练习题。
3. 计算器:用于计算较复杂的对数运算。
教学评估:1. 在课堂上进行小组讨论和问题解答,观察学生对对数和对数运算的理解程度。
2. 布置作业,包括计算题和应用题,检验学生对对数运算的掌握情况。
3. 批改作业,给予学生针对性的反馈和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《§2.2.1 对数与对数运算(第二课时)》教学设计
一.教学目标:
1.知识与技能
①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能.
②运用对数运算性质解决有关问题.
③培养学生分析、综合解决问题的能力.
培养学生数学应用的意识和科学分析问题的精神和态度.
2. 过程与方法
①让学生经历并推理出对数的运算性质.
②让学生归纳整理本节所学的知识.
3. 情感、态度、和价值观
让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性.
二.教学重点、难点
重点:对数运算的性质与对数知识的应用
难点:正确使用对数的运算性质
三.学法和教学用具
学法:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标.
教学用具:投影仪
四.教学过程
1.设置情境
复习:对数的定义及对数恒等式
log b a N b a N =⇔= (a >0,且a ≠1,N >0),
指数的运算性质.
;m n m n m n m n a a a a a a +-⋅=÷=
();n m n mn
m
a a a == 2.讲授新课
探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的
关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m n a a a +⋅=,那m n
+如何表示,能用对数式运算吗? 如:,,m n m n m n a a a M a N a +⋅===设。
于是,m n MN a +=由对数的定义得到 log ,log m n a a M a m M N a n N =⇔==⇔=
log m n a MN a m n MN +=⇔+=
log log log ()a a a M N MN ∴+=放出投影 即:同底对数相加,底数不变,真数相乘
提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗?
(让学生探究,讨论)
如果a >0且a ≠1,M >0,N >0,那么:
(1)log log log a a a MN M N =+
(2)log log log a
a a M M N N =-
(3)log log ()n a a M n M n R =∈ 证明:
(1)令,m n
M a N a ==
则:m n m n
M a a a N -=÷=
l o g a M m n N ∴-= 又由,m n M a N a ==
log ,log a a m M n N ∴== 即:log log log a a a
M M N m n N -=-= (3)0,log ,N n n a n N M M a ≠==时令则
l o g
,b n a b n M M ==则 N
b n n a a ∴= N b ∴= 即log log log a a a M M N N =-
当n =0时,显然成立.
l o g l o g n a a M n M ∴= 提问:1. 在上面的式子中,为什么要规定a >0,且a ≠1,M >0,N >0?
1. 1. 你能用自己的语言分别表述出以上三个等式吗?
例题:1. 判断下列式子是否正确,a >0且a ≠1,x >0且a ≠1,x >0,x >y ,则有
(1)log log log ()a a a x y x y ⋅=+ (2)log log log ()a a a x y x y -=-
(3)log log log a
a a x x y y =÷ (4)log log log a a a xy x y =-
(5)(log )log n a a x n x = (6)
1log log a a x x =- (7
1log a x n =
例2:用log a x ,log a y ,log a z 表示出(1)(2)小题,并求出(3)、(4)小题的值. (1)log a xy z (2
)log a (3)
75log (42)z ⨯ (4
)分析:利用对数运算性质直接计算:
(1)log log log log log log a a a a a a xy xy z x y z z =-=+-
(2
)2log log log log log log a a a a a a x x ==+ =112log log log 23a a a x y z +-
(3)
7575222log (42)log 4log 214519⨯=+=+=
(4
)
252lg105==
点评:此题关键是要记住对数运算性质的形式,要求学生不要记住公式.
让学生完成P 79练习的第1,2,3题
提出问题:
你能根据对数的定义推导出下面的换底公式吗? a >0,且a ≠1,c >0,且e ≠1,b >0
log log log c a c b
b a = 先让学生自己探究讨论,教师巡视,最后投影出证明过程.
设log ,log ,,M N c c M a N b a c b c ====则 且1
1,()N N M M M a c a a b ====N 所以c 即:log log ,log c a c b N N b M
M a ==又因为 所以:log log log c a c b b
a =
小结:以上这个式子换底公式,换的底C 只要满足C >0且C ≠1就行了,除此之外,对C 再也没有什么特定的要求.
提问:你能用自己的话概括出换底公式吗?
说明:我们使用的计算器中,“log ”通常是常用对数. 因此,要使用计算器对数,一定要先用换底公式转化为常用对数. 如:
2lg 3
log 3lg 2=
即计算32log 的值的按键顺序为:“log ”→“3”→“÷”→“log ”→“2” →“=” 再如:在前面要求我国人口达到18亿的年份,就是要计算
1.01
18
log 13x = 所以
1.0118lg 18lg18lg13 1.2553 1.13913log 13lg1.01lg1.010.043x --===≈
=32.883733()≈年 练习:P 79 练习4
让学生自己阅读思考P 77~P 78的例5,例的题目,教师点拨.
3、归纳小结
(1)学习归纳本节
(2)你认为学习对数有什么意义?大家议论.
4、作业
(1)书面作业:P86 习题2.2 第3、4题 P 87 第11、12题
2、思考:(1)证明和应用对数运算性质时,应注意哪些问题?
(2)222log (3)(5)log (3)log (5)---+-等于吗?。