大学物理实验(三)数 据 处 理
大学物理实验 常用的数据处理方法范文

1.7 常用的数据处理方法实验数据及其处理方法是分析和讨论实验结果的依据。
在物理实验中常用的数据处理方法有列表法、作图法、逐差法和最小二乘法(直线拟合)等。
1.7.1 列表法在记录和处理数据时,常常将所得数据列成表。
数据列表后,可以简单明确、形式紧凑地表示出有关物理量之间的对应关系;便于随时检查结果是否合理,及时发现问题,减少和避免错误;有助于找出有关物理量之间规律性的联系,进而求出经验公式等。
列表的要求是:(1)要写出所列表的名称,列表要简单明了,便于看出有关量之间的关系,便于处理数据。
(2)列表要标明符号所代表物理量的意义(特别是自定的符号),并写明单位。
单位及量值的数量级写在该符号的标题栏中,不要重复记在各个数值上。
(3)列表的形式不限,根据具体情况,决定列出哪些项目。
有些个别的或与其他项目联系不大的数据可以不列入表内。
列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。
(4)表中所列数据要正确反映测量结果的有效数字。
列表举例如表1-2所示。
表1-2铜丝电阻与温度关系1.7.2 作图法作图法是将两列数据之间的关系用图线表示出来。
用作图法处理实验数据是数据处理的常用方法之一,它能直观地显示物理量之间的对应关系,揭示物理量之间的联系。
1.作图规则为了使图线能够清楚地反映出物理现象的变化规律,并能比较准确地确定有关物理量的量值或求出有关常数,在作图时必须遵守以下规则。
(1)作图必须用坐标纸。
当决定了作图的参量以后,根据情况选用直角坐标纸、极坐标纸或其他坐标纸。
(2)坐标纸的大小及坐标轴的比例,要根据测得值的有效数字和结果的需要来定。
原则上讲,数据中的可靠数字在图中应为可靠的。
我们常以坐标纸中小格对应可靠数字最后一位的一个单位,有时对应比例也适当放大些,但对应比例的选择要有利于标实验点和读数。
最小坐标值不必都从零开始,以便做出的图线大体上能充满全图,使布局美观、合理。
(3)标明坐标轴。
大学物理实验数据处理和实验基本要求

i Ai A (i 1,2, , n)
4.有限次测量的标准偏差
可以证明,当测量次数为有限时,可以用标准偏差S作为标准误差的最佳估计值。S 的计算公式 为
S
1 n 1
n i1
( Ai
A)2
贝塞尔(Bessel)公式
5、有限次测量算术平均值的标准偏差
A 对A的有限次测量的算术平均值 也是一个随机变量。
A E A0 10000
表示方法:1000±1米; 100±1厘米
绝对误差与相对误差的大小反映了测量结果的精确程度
表示绝对误差在整 个物理量中所占的 比重,一般用百分 比表示
1000米—1米—0.1% 100厘米—1厘米—1%
按照误差产生的原因和基本性质可分为:
系统误差
随机误差 粗大误差
1、系统误差
S 也存在标准偏差,这个标准偏差用 表示。可以证明: A
S SA
A
n
S的统计意义: A
被测量的真值
落在
A 到
0 范围内的可能性为68.3%
落在 落在
A S A S 到
范围内的可能性为95.5%
到
A范围内的可能性为99.A7%
A 2S A
A 2S A
A 3S A 3S
A
A
第四节 减小系统误差的基本方法
S 指用统计的方法评定的不确定度分量,用 表示(脚标 i 代表 A 类不确定度的第 i 个分量)。
在物理实验课中,A 类不确定度主要体现在用统计的方法处理随机误差。
i
设对物理量进行多次测量得到的测量列为 由下式计算
,则物理量 A 的不确定度的A分量可
大学物理实验_数据处理和实验基 本要求
大学物理实验 数据处理和实验基本要求
大学物理实验数据处理基本方法

实验数据处理基本方法实验必须采集大量数据,数据处理是指从获得数据开始到得出最后结论的整个加工过程,它包括数据记录、整理、计算与分析等,从而寻找出测量对象的内在规律,正确地给出实验结果。
因此,数据处理是实验工作不可缺少的一部分。
数据处理涉及的内容很多,这里只介绍常用的四种方法。
1列表法对一个物理量进行多次测量,或者测量几个量之间的函数关系,往往借助于列表法把实验数据列成表格。
其优点是,使大量数据表达清晰醒目,条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量之间的对应关系。
所以,设计一个简明醒目、合理美观的数据表格,是每一个同学都要掌握的基本技能。
列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点:1.各栏目均应注明所记录的物理量的名称(符号 )和单位;2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理;3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时,应将原来数据画条杠以备随时查验;4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判断和处理。
2图解法图线能够明显地表示出实验数据间的关系,并且通过它可以找出两个量之间的数学关系,因此图解法是实验数据处理的重要方法之一。
图解法处理数据,首先要画出合乎规范的图线,其要点如下:1.选择图纸作图纸有直角坐标纸 ( 即毫米方格纸 ) 、对数坐标纸和极坐标纸等,根据作图需要选择。
在物理实验中比较常用的是毫米方格纸,其规格多为17 25 cm 。
2.曲线改直由于直线最易描绘 , 且直线方程的两个参数 ( 斜率和截距 ) 也较易算得。
所以对于两个变量之间的函数关系是非线性的情形,在用图解法时应尽可能通过变量代换将非线性的函数曲线转变为线性函数的直线。
下面为几种常用的变换方法。
( 1) xy c ( c 为常数 ) 。
令 z1,则y cz,即 y 与 z 为线性关系。
大学物理实验数据处理方法总结

有效数字1、有效数字不同的数相加减时,以参加运算各量中有效数字最末一位位数最高的为准,最后结果与它对其,余下的尾数按舍入规则处理。
2、乘除法以参与运算的数值中有效位数最少的那个数为准,但当结果的第1位数较小,比如1、2、3时可以多保留一位(较小:结果的第一位数小于 有效数字最少的结果第一位数)! 例如:n=tg56° θ=56° d θ=1° θθθθθ2cos d d d dtg dn == 为保留)(,带入848.156n 15605.018056cos 1cos 22=︒=∴︒=∆︒=≈︒=∆=∆tg n θθπθθ3、可以数字只出现在最末一位:对函数运算以不损失有效数字为准。
例如:20*lg63.4 可疑最小位变化0.1 Y=20lgx01.04.631.010ln 2010ln 20ln 10ln 20≈===x dx dx dx x d dy 04.364.63lg 20=∴4、原始数据记录、测量结果最后表示,严格按有效数字规定处理。
(中间过程、结果多算几次)5、4舍5入6凑偶6、不估计不确定度时,有效数字按相应运算法则取位;计算不确定度时以不确定度的处理结果为准。
真值和误差1、 误差=测量值-真值 ΔN=N-A2、 误差既有大小、方向与政府。
3、 通常真值和误差都是未知的。
4、 相对约定真值,误差可以求出。
5、 用相对误差比较测量结果的准确度。
6、 ΔN/A ≈ΔN/N7、 系统误差、随机误差、粗大误差8、 随机误差:统计意义下的分布规律。
粗大误差:测量错误9、 系统误差和随机误差在一定条件下相互转化。
不确定度1、P (x )是概率密度函数dx P dx x x P p )x (之间的概率是测量结果落在+当x 取遍所有可能的概率值为1.2、正态分布且消除了系统误差,概率最大的位置是真值A3、曲线“胖”精密度低“瘦”精密度高。
4、标准误差:无限次测量⎰∞∞-=-2)()(dx X P A X x )(σ 有限次测量且真值不知道标准偏差近似给出1)(2)(--=∑K X X S i X5、正态分布的测量结果落入X 左右σ范围内的概率是0.6836、真值落入测定值X i 左右σ区间内的概率为0.6837、不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性。
大学物理实验测量的不确定度和数据处理

⼤学物理实验测量的不确定度和数据处理测量的不确定度和数据处理测量不确定度采⽤不确定度的必然性国际计量局等七个国际组织于1993年指定了具有国际指导性的“测量不确定度表⽰指南ISO 1993(E)”(以下简称《指南》)。
⼏年来国际与国内的科技⽂献开始采⽤不确定度概念,我国各个⾼校也不断开展这⽅⾯的讨论,改⾰教学内容与⽅法,以求与国际接轨。
虽然⼀些学者对《指南》的有些内容持批评态度[注1],但总的趋势是在贯彻《指南》的同时,不断改善它。
测量不确定度定义为测量结果带有的⼀个参数,⽤以表征合理赋予被测量量的分散性,它是被测量客观值在某⼀量值范围内的⼀个评定。
不确定度理论将不确定度按照测量数据的性质分类:符合统计规律的,称为A类不确定度,⽽不符合统计规律的统称为B类不确定度。
测量不确定度的理论保留系统误差的概念,也不排除误差的概念。
这⾥的误差指测量值与平均值之差或测量值与标准值(⽤更⾼级的仪器的测量值)的偏差。
测量不确定度的 B类分量仪器的最⼤允差Δ仪测量中凡是不符合统计规律的不确定度统称为B类不确定度,记为ΔB 。
它包含了由测量者估算产⽣的部分Δ估和仪器精度有限所产⽣的最⼤允差Δ仪。
Δ仪包含了仪器的系统误差,也包含了环境以及测量者⾃⾝可能出现的变化(具随机性)对测量结果的影响。
Δ仪可从仪器说明书中得到,它表征同⼀规格型号的合格产品,在正常使⽤条件下,⼀次测量可能产⽣的最⼤误差。
⼀般⽽⾔,Δ仪为仪器最⼩刻度所对应的物理量的数量级(但不同仪器差别很⼤,⼀些常⽤仪器的最⼤允差见第26页)。
测量者的估算误差Δ估测量者对被测物或对仪器⽰数判断的不确定性会产⽣估算误差Δ估。
对于有刻度的仪器仪表,通常Δ估为最⼩刻度的⼗分之⼏,⼩于Δ仪(因为最⼤允差已包含了测量者正确使⽤仪器的估算误差)。
⽐如,估读螺旋测微器最⼩刻度的⼗分之⼀为0.001毫⽶,⼩于其最⼤允差0.004毫⽶;估读钢板尺最⼩刻度的⼗分之⼀为0.1毫⽶,⼩于其最⼤允差0.15毫⽶。
大学物理实验三动态法测量金属杨氏模量

实验三 动态法测量金属杨氏模量杨氏模量是描述固体材料弹性形变的一个重要的物理量,它是反映材料形变与内应力关系的物理量,也是反映工程材料的一个重要物理参数。
测定杨氏模量的方法很多,通常采用静态法、动态法、 波速测量法等。
我们学过的拉伸法属于静态法,这种方法在拉伸时由于载荷大,加载速度慢,含有驰豫过程,所以不能真实地反映材料内部结构的变化,而且不能对脆性材料进行测量。
另一种通常采用的方法是动态共振法,它的适用范围大(不同的材料,不同的温度),试验结果稳定、误差小。
所以更具有实用性,也是国家标准GB/T2105-91所推荐使用的测量方法。
一、实验目的1.学习用动态悬挂法测定金属材料的杨氏模量。
2.培养学生综合运用物理实验仪器的能力。
3.进一步了解信号发生器和示波器的使用方法。
二、实验仪器动态杨氏模量试样加热炉、信号发生器(含频率计、信号放大器)、数显温控仪、示波器、游标卡尺、千分尺、天平、待测试样等。
三、实验原理悬挂法是将试样(圆棒或矩形棒)用两根悬线悬挂起来并激发它作横振动。
在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏模量。
如果在实验中测出试样在不同温度下的固有频率,就可以计算出试样在不同温度下的杨氏模量。
根据杆的横振动方程式02244=∂∂+∂∂tyEJS xy ρ (1)式中ρ为杆的密度,S 为杆的截面积,⎰=sdS y J 2称为惯量矩(取决于截面的形状),E即为杨氏模量。
求解该方程,对圆形棒得(见附录)2436067.1fdm l E =式中:l 为棒长;d 为棒的直径;m 为棒的质量;f 为试样共振频率。
对于矩形棒得:23394644.0fbhm l E =式中: b 和h 分别为矩形棒的宽度和厚度;m 为棒的质量;f 为试样共振频率。
在国际单位制中杨氏模量E 的单位为2-∙mN 。
本实验的基本问题是测量在一定温度下试样的固有频率f 。
实验中采用如图1所示装置。
大学物理实验—误差及数据处理
误差及数据处理物理实验离不开测量,数据测完后不进行处理,就难以判断实验效果,所以实验数据处理是物理实验非常重要的环节。
这节课我们学习误差及数据处理的知识。
数据处理及误差分析的内容很多,不可能在一两次学习中就完全掌握,因此希望大家首先对其基本内容做初步了解,然后在具体实验中通过实际运用加以掌握。
一、测量与误差1. 测量概念:将待测量与被选作为标准单位的物理量进行比较,其倍数即为物理量的测量值。
测量值:数值+单位。
分类:按方法可分为直接测量和间接测量;按条件可分为等精度测量和非等精度测量。
直接测量:可以用量具或仪表直接读出测量值的测量,如测量长度、时间等。
间接测量:利用直接测量的物理量与待测量之间的已知函数关系,通过计算而得到待测量的结果。
例如,要测量长方体的体积,可先直接测出长方体的长、宽和高的值,然后通过计算得出长方体的体积。
等精度测量:是指在测量条件完全相同(即同一观察者、同一仪器、同一方法和同一环境)情况下的重复测量。
非等精度测量:在测量条件不同(如观察者不同、或仪器改变、或方法改变,或环境变化)的情况下对同一物理量的重复测量。
2.误差真值A:我们把待测物理量的客观真实数值称为真值。
一般来说,真值仅是一个理想的概念。
实际测量中,一般只能根据测量值确定测量的最佳值,通常取多次重复测量的平均值作为最佳值。
误差ε:测量值与真值之间的差异。
误差可用绝对误差表示,也可用相对误差表示。
绝对误差=测量值-真值,反应了测量值偏离真值的大小和方向。
为了全面评价测量的优劣, 还需考虑被测量本身的大小。
绝对误差有时不能完全体现测量的优劣, 常用“相对误差”来表征测量优劣。
相对误差=绝对误差/测量的最佳值×100%分类:误差产生的原因是多方面的,根据误差的来源和性质的不同,可将其分为系统误差和随机误差两类。
(1)系统误差在相同条件下,多次测量同一物理量时,误差的大小和符号保持恒定,或按规律变化,这类误差称为系统误差。
大学物理实验数据处理基本方法
实验数据处理基本方法实验必须采集大量数据,数据处理是指从获得数据开始到得出最后结论的整个加工过程,它包括数据记录、整理、计算与分析等,从而寻找出测量对象的内在规律,正确地给出实验结果。
因此,数据处理是实验工作不可缺少的一部分。
数据处理涉及的内容很多,这里只介绍常用的四种方法。
1 列表法对一个物理量进行多次测量,或者测量几个量之间的函数关系,往往借助于列表法把实验数据列成表格。
其优点是,使大量数据表达清晰醒目,条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量之间的对应关系。
所以,设计一个简明醒目、合理美观的数据表格,是每一个同学都要掌握的基本技能。
列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点: 1.各栏目均应注明所记录的物理量的名称(符号)和单位;2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理; 3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时,应将原来数据画条杠以备随时查验;4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判断和处理。
2 图解法图线能够明显地表示出实验数据间的关系,并且通过它可以找出两个量之间的数学关系,因此图解法是实验数据处理的重要方法之一。
图解法处理数据,首先要画出合乎规范的图线,其要点如下:1.选择图纸 作图纸有直角坐标纸(即毫米方格纸)、对数坐标纸和极坐标纸等,根据作图需要选择。
在物理实验中比较常用的是毫米方格纸,其规格多为cm 2517⨯。
2.曲线改直 由于直线最易描绘,且直线方程的两个参数(斜率和截距)也较易算得。
所以对于两个变量之间的函数关系是非线性的情形,在用图解法时应尽可能通过变量代换将非线性的函数曲线转变为线性函数的直线。
下面为几种常用的变换方法。
(1)c xy =(c 为常数)。
令xz 1=,则cz y =,即y 与z 为线性关系。
(2)y c x =(c 为常数)。
大学物理实验 数据处理和实验基本要求
有一个反映准确程度的极限误差指标,习惯上称之为仪器
误差,用来 仪表示。这个指标在仪器说明书中都有明确的
说明。
第五节 测量结果的不确定度
对一个量进行测量后,应给出测量结果,并要对测 量结果的可靠性作出评价。
近年来,引入了不确定度这一概念来评价测量结果的 可靠程度。
系统误差按产生原因的不同可分为: 原因可知,有规律
(1)仪器误差
(2) 方法误差
(4)环境 条件误差
注意:
依靠多次重复测量一般不能发现系统误差的存在。
(3)个人误差
2、随机误差
15
相同的实验条件下
系统误差产生的因素
每次测量结果可能都不一样, 测量误差或大或小、或正或负, 完全是随机的
次数足够多
/94
所以
lim
n
A
A0
结论
可以用有限次数重复测量的算术平均值 A作为真值 A0
的最佳估计值。
由于平均值只是最接近真值但不是真值,因此, 误差也是无法得到的。在实际测量的数据处理中,用偏 差来估算每次测量对真值的偏差。偏差的定义为
i Ai A
4.有限次测量的标准偏差
(i 1,2, , n)
可以证明,当测量次数为有限时,可以用标准偏
1.不确定度的基本概念 测量结果的不确定度也称实验不确定度,简称为不确
定度,是对被测量的真值所处量值范围的评定。 不确定度给出了在被测量的平均值附近的一个范围,
真值以一定的概率落在此范围中。 不确定度越小,标志着测量结果与真值的误差可能值
越小;不确定度越大,标志着测量结果与真值的误差可能值越
2.不确定度分量的分类及其性质 按照“国际计量局实验不确定度的规定建议书”
大学物理实验数据的有效数字保留方法
大学物理实验数据的有效数字保留方法
1、测量数据:根据所用仪器的最小分度,有效数字保留到分度值的下一位。
(即估读一位,
游标卡尺除外)
2、实验数据的平均值及标准差:保留数字比测量数据的数字多一位;标准差保留三位有效数字。
(数据保留均采用四舍六入、五凑偶原则)
3、A类和B类不确定度:均保留三位有效数字。
(数据保留均采用非零即进原则)
4、合成不确定度:当数据的首位数字大于或等于三时,取一位有效数字;当数据的首位数字小于三时,去两位有效数字。
(数据保留采取非零即进的原则)
5、由测量得出的所测物理量的测量结果:该数据为平均值和合成不确定度的加减关系,此时平均值的数字的保留要与合成不确定度保持末位对齐。
6、由测量数据间接得出的数据的平均值:数字保留应与所测数据的最少的有效数字保持一致。
7、相对不确定度:保留三位有效数字。
(数据保留用非零即进原则)
8、有所测数据间接得出的物理量的不确定度:当首位数字大于或等于三时,取一位有效数字;当数据的首位数字小于三时,去两位有效数字。
(数据保留采取非零即进的原则)
9、所求物理量的测量结果:应为用所测数据计算出的平均值与其对应的不确定度的加减关系。
此时平均值的数字的保留要与合成不确定度保持末位对齐。
10、相对误差:当数据的百分数的首位数字大于一时,保留整数位;当数据的百分数的首位数字小于一时,保留一位有效数字。
(数据保留采取非零即进的原则)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
修正值△U 0.003 -0.003 -0.015 -0.008 0.007
毫伏表的级别为:
a%
max
量程
100%
0.015 100% 1.00
1.5%
为1.5级表
三、逐差法
1.逐差法的含义
把实验测量数量(因变量)进行逐 项相减或依顺序分为两组实行对应项测 量数据相减之差作因变量的多次测量值。 然后求出最佳值——算术平均值的处理 数据的方法。
次数(K)
1
2
3
4
5
6
7
8
9
10
电压 V(V) 0
Hale Waihona Puke 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00
电流 I(mI) 0
2.04 3.95 6.03 8.02 9.96 11.97 13.98 16.04 18.06
I K1 I K (mA ) 2.04 1.91 2.08 1.99 1.94 2.01 2.01 2.06 2.02
0.100 0.1050 0.005
0.200 0.2150 0.015
0.300 0.3130 0.013
0.400 0.4070 0.007
0.500 0.5100 0.010
毫伏表读数 0.600 0.700 0.800 0.900 1.000
电势差计读数 0.6030 0.6970 0.7850 0.8920 1.0070
12.00
10.00
8.00
6.00 4.00
2.00
0
1.00
2.00
3.00
电学元件伏安特性曲线
§2-3 作图法处理实验数 据
横轴坐标分度选取 不当。横轴以3 cm 代
表1 V,使作图和读图都 很困难。实际在选择坐标 分度值时,应既满足有效 数字的要求又便于作图和
读图,一般以1 mm 代 表的量值是10的整数 次幂或是其2倍或5倍。
第五节 数据处理
1.列表法 2.作图法 3.逐差法
4.最小二乘法
一、列表法
在记录和处理实验测量数据时,经常把 数据列成表格,它可以简单而明确地表示 出有关物理量之间的对应关系,便于随时 检查测量结果是否正确合理,及时发现问 题,利于计算和分析误差,并在必要时对 数据随时查对。通过列表法可有助于找出 有关物理量之间的规律性,得出定量的结 论或经验公式等。列表法是工程技术人员 经常使用的一种方法。
通常可将等间隔所测量的值分成前后两组的,前一组为L0、 L1、L2、L3、L4,后一组为L5、L6、L7、L8、L9,将前后两
组的对应项相减为
L L L , L L L , , L L L
1
5
0
2
6
1
5
9
4
再取平均值
L 1[(L L ) (L L ) (L L )] 1 4 (L L )
电阻(Rt)~ 温度(t)关系 (样品:铜)
次数 1
2
3
4
5
6
7
8
9
10
t(C) 5.0 10.0 15.0 20.0 25.0 30.3 35.0 40.0 45.0 50.0 Rt () 10.3 10.51 10.64 10.79 10.94 11.08 11.22 11.36 11.53 11.66
表中数据均为有效数字
二 作图法处理实验数据
作图法可形象、直观地显示出物理量之间的函数关系,也可用 来求某些物理参数,因此它是一种重要的数据处理方法。作图时要 先整理出数据表格,并要用坐标纸作图。
●作图步骤:实验数据列表如下.
表1:伏安法测电阻实验数据
U (V ) 0.74 1.52 2.33 3.08 3.66 4.49 5.24 5.98 6.76 7.50 I (mA) 2.00 4.01 6.22 8.20 9.75 12.00 13.99 15.92 18.00 20.01
电流 I(mI) 0
2.04 3.95 6.03 8.02 9.96 11.97 13.98 16.04 18.06
I K1 I K (mA ) 2.04 1.91 2.08 1.99 1.94 2.01 2.01 2.06 2.02
I K5 I K (mA) 9.96 9.93 10.03 10.01 10.04
700.0 λ(nm)
§2-3 作图法处理实验数 据
改正为:
n
1.7000 1.6900 1.6800 1.6700 1.6600 1.6500
400.0
500.0
600.0
玻璃材料色散曲线图
700.0 λ(nm)
§2-3 作图法处理实验数 据
图2
I (mA)
20.00
18.00
16.00
14.00
§2-3 作图法处理实验数 据
5.标出图线特征: I (mA)
在图上空白位置标明 20.00
实验条件或从图上得出的 18.00
某些参数。如利用所绘直 16.00 线可给出被测电阻R大小: 14.00 从所绘直线上读取两点 A、
12.00
B 的坐标就可求出 R 值。
10.00
6.标出图名:
8.00
6.00
1.选择合适的坐标分度值,确定坐标纸的大小
坐标分度值的选取应能反映测量值的有效位数,一般以 1~2mm 对应于测量仪表的仪表误差。
根据表1数据U 轴可选1mm对应于0.10V,I 轴可选1mm对应于 0.20mA,并可定坐标纸的大小(略大于坐标范围、数据范围) 约为 130mm×130mm。
§2-3 作图法处理实验数 据
2. 标明坐标轴:
用粗实线画坐标轴, 用箭头标轴方向,标坐标 轴的名称或符号、单位, 再按顺序标出坐标轴整分
格上的量值。
I (mA)
20.00 18.00 16.00 14.00
3.标实验点:
12.00
实验点可用“ ”、 10.00
“ ”、“ ”等符号标 8.00
出(同一坐标系下不同曲
线用不同的符号)。
列表时,一般应遵循下列规则 (1)简单明了,便于看出有关物理量之 间的关系,便于处理数据。 (2)在表格中均应标明物理量的名称和 单位。 (3)表格中数据要正确反映出有效数字。 (4)必要时应对某些项目加以说明,并 计算出平均值、标准误差和相对误差。
列表法
通过测量温度t和在温度t下铜的电阻Rt来 测量铜的电阻温度系数,得到t与Rt的数 据列表如下:
由于有x=0的坐标点,故
b 10.20
最后,得到电阻随温度的变化关系为:
Rc 0.0314t 10.20()
2. 用 电 势 差 计 校 准 量 程 为 1mV 的 毫 伏 表,测量数据如下(表中单位均为mV)。 在如图所示的坐标中画出毫伏表的校准曲线, 并对毫伏表定级别。
毫伏表读数 电势差计读数 修正值△U
(L1 L0 ) (L2 L1) (L3 L2 ) (L9 L8 ) 9
L9 L0 9
从上式可看出,中间的测量值全部低消了,只有始 末二次测量值起作用,与一次加九克砝码的测量完全 等价。
• 为了保证多次测量的优点,只要在数据处理方法上作一
些组合,仍能达到多次测量来减小误差的目的。因此一般使 用逐差法的规则如下:
• 逐差法是对等间距测量的有序数据进行逐项或 相等间隔项相减得到结果的一种方法。它计算 简便,并可充分利用测量数据,及时发现差错, 总结规律,是物理实验中常用的一种数据处理 方法。
1)逐差法的使用条件
(1)自变量x是等间距离变化的。
(2)被测的物理量之间的函数形式可以写成x的多项式, 即
n
y
ai xi
6.00
4.00
4. 连成图线:
2.00
用直尺、曲线板等把 点连成直线、光滑曲线。
0
U (V)
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
一般不强求直线或曲线通
过每个实验点,应使图线两边的实验点与图线最为接近且分布大体均匀。图
线正穿过实验点时可以在点处断开。
i0
2)逐差法的应用 例: 拉伸法测弹簧的倔强系数
设实验中等间隔地在弹簧下加砝码(如每次加一
克),共加9次,分别记下对应的弹簧下端点的位置L0、 L1、L2、…L9,则可用逐差法进行以下处理。 (1)验证函数形式是线性关系 把所测的数据逐项相减
L L L , L L L , ,L L L
1.作图规则
②标明坐标轴和图名
1.作图规则
③标点
2.作图规则
④连线
●不当图例展示:
n
1.7000
1.6900
1.6800
1.6700 1.6600 1.6500
400.0
图1
曲线太粗,不 均匀,不光滑。
应该用直尺、曲 线板等工具把实 验点连成光滑、 均匀的细实线。
500.0
600.0
玻璃材料色散曲线图
定容气体压强~温度曲线
§2-3 作图法处理实验数 据
3.作图举例
直角坐标举例。测得铜电阻与温度对应的 一组数据如表所示,试用直角坐标作图表 示出电阻与温度的函数关系。
测量次数
1
2
3
4
5
6
7
8
9 10
铜电阻 Rt () 10.20 10.35 10.51 10.64 10.76 10.94 11.08 11.22 11.36 11.53
0.8000
数可以不从零